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Preface

The Computer Science Research Institute (CSRI) brings university faculty and
students to Sandia National Laboratories for focused collaborative research on Department
of Energy (DOE) computer and computational science problems. The institute provides an
opportunity for university researches to learn about problems in computer and computa-
tional science at DOE laboratories, and help transfer results of their research to programs
at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization,
algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty
estimation, validation and verification methods, mesh generation, dynamic load-balancing,
virus and other malicious-code defense, visualization, scalable cluster computers, beyond
Moore’s Law computing, exascale computing tools and application design, reduced order
and multiscale modeling, parallel input/output, and theoretical computer science. The
CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the
publication of a summer proceedings.

1. CSRI Summer Program 2021. In 2021, the CSRI summer program was exe-
cuted completely virtually; all student interns worked from home due to the ongoing virus
pandemic. It included students from 1400 – the Center for Computing Research (CCR),
8700 – the Center for Homeland Security & Defense Systems, 1300 – the Radiation & Elec-
trical Science Center, and 1800 – the Material, Physical, and Chemical Science Center. This
year’s program included the traditional Summer Seminar Series and Summer Proceedings
and continued the second annual Virtual Poster Blitz. As an additional opportunity, a tu-
torial on using Kokkos was offered. Additional details on each of these activities is provided
below.

2. Seminar Series. The CSRI Summer Seminar Series is a quintessential part of the
CSRI Summer Intern Program Experience. Students are exposed to a broad showcase of
research from across Sandia, enriching their knowledge of the labs while providing introduc-
tions to novel subject areas. The theme for 2021 was A Summer of HPC: To Exascale
and Beyond. These talks were focused on the history, mathematics, applications, and
software of high performance computing (HPC) as well as new and emerging computing
technologies. We extend our deepest thanks to the staff who spoke at the 2021 Seminar
Series. These speakers and their talk titles are listed in Table 2.1.
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Table 2.1: List of talks and speakers at the 2021 Seminar Series

Date Name Org Title

6/15 James H. Laros III 1422 Those who fail to learn from history are condemned
to NOT repeat it.

6/22 Mike Heroux 1400 The US Exascale Project Software Stack: Why it
Matters to You.

6/29 Jerry Watkins 8754 Preparing for High-Fidelity Computational Fluid
Dynamics on Exascale Systems.

7/6 Eric Cyr 1442 Perfection is the Enemy of the Fast: The Case for
Mathematically Induced Parallelism.

7/13 Clayton Hughes 1422 HPC Architectures Beyond Exascale.
7/20 Corinne Teeter 1421 Neuromorphic and Beyond Lightning Talk.

Denis Mamaluy
Srideep Musuvathy

7/27 Hemanth Kolla 8753 Tensors for Statistical Analyses of Scientific Data: A
Turbulent Combustion Perspective.

8/3 Patricia Crossno 1461 Slycat� Ensemble Analytics.
8/10 Jon Berry 1461 Maintaining connected components for monitoring

Cindy Phillips (infinite) cyber streams.
8/17 Mohan Sarovar 8759 Quantum computing and quantum technologies: a

motivation and introduction.
Kevin Young Quantum computers: how they’re different.
Alicia Magann Quantum computers: where we are now and where

we are headed.
8/26 Brian Franke 1341 Algorithms and Applications of the SCEPTRE and

ITS Radiation Transport Codes.
Shawn Pautz

8/31 Jennifer Loe 1465 An Introduction to Trilinos.

3. Proceedings. All students and their mentors were strongly encouraged to con-
tribute a technical article to the CSRI Proceedings. For many students, these proceedings
are the first opportunity to write a research article. These proceedings serve both as doc-
umentation of summer research and also as research training, providing students the first
draft of an article that could be submitted to a peer-reviewed journal. Each of these arti-
cles has been reviewed by a Sandia staff member knowledgeable in the technical area, with
feedback provided to the authors.

Contributions to the 2021 CSRI Proceedings have been organized into three categories:
Computational & Applied Mathematics, Software & High Performance Computing and Ap-
plications.

All participants and their mentors who have contributed their technical accomplish-
ments to the proceedings should be proud of their work and we congratulate and thank
them for participating. Additionally, we would like to thank those who reviewed articles for
the proceedings. Their feedback is an extremely important part of the research training pro-
cess and has significantly improved the proceedings quality. Our many thanks are extended
to these reviewers: Erin Acquesta G Patrick Blonigan G Andrew Bradley G Tiernan Casey
G Frances Chance G Kenny Chowdhary G Michael Crockatt G Matthew Curry G Mary
Alice Cusentino G Eric Cyr G Danny Dunlavy G Chris Eldred G Brian Franke G Christian
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Glusa G Oksana Guba G Mamikon Gulian G John Jakeman G Reese Jones G Eric Keiter
G Brian Kelley G Ron Kensek G Patrick Knapp G Hemanth Kolla G Rich Lehoucq G Drew
Lewis G Cody Melton G David Montes de Oca Zapiain G Srideep Musuvathy G Stephen
Olivier G Kevin Pedretti G Gabe Popoola G Teresa Portone G Jaideep Ray G Denis Ridzal
G Fred Rothganger G Ahmad Rushdi G Antonio Russo G Andy Salinger G Tom Seidl G
John Shadid G Andrea Staid G J. Adam Stephens G Laura Swiler G Mark Taylor G Keita
Teranishi G Irina Tezaur G Aidan Thompson G Ahn Tran G Ray Tuminaro G Craig Ulmer
G Rick Vinyard G Tom Voth G Felix Wang G Kat Ward G Bekah White G Mitch Wood.

4. Virtual Poster Blitz. To prep for the proceedinngs, a virtual poster blitz was
held on 7/22/2021 where all interns hired under the CSRI intern posting were invited to
participate. These students submitted a summary slide of their current results or intended
research for their summer project. Other interns outside of CSRI were also invited to
participate with their mentor’s approval. This event provided an opportunity to formalize
work directions, socialize their ideas, as well as offering a chance to network and interact
with other interns and staff across the labs. The slides from the virtual poster blitz event
are published under SAND number SAND2021-8956 PE.

5. Kokkos Tutorial. Interns were invited to attend a tutorial from the Kokkos Team
on Kokkos Parallel Programming. This offered an opportunity to learn how the Kokkos
EcoSystem provides a performance portability programming model, enabling science and
engineering codes to leverage all major HPC platforms without rewriting code each time.
We deeply thank Christian Trott and Nathan Ellingwood of 1465 – Scalable Algorithms –
for presenting the two-part tutorial.

These two half-days included lectures and hands-on exercises teaching the basics of
shared memory parallel programming and how to use Kokkos to write performance portable
codes, allowing interns and attendees to get started with profiling and performance opti-
mization. In addition to basic parallelism and data management, these lectures addressed
memory access patterns, hierarchical parallelism, profiling with Kokkos-Tools and an intro-
duction to KokkosKernels.

Once more, the intern program was held virtually. The technical glitches of telework
are challenging and it is no easy task to undertake a virtual internship. The program found
success primarily due to the hard work of our students and the dedication of their staff men-
tors. We would like to thank all students and mentors for their extradorinary patience and
dedication. We would also like to thank the program managers for the CSRI Summer Intern
Program, Michael Wolf (1465) and Jerry McNeish (8754). Their support has been critical
throughout the organization of the seminars and the editing of these proceedings. Further-
more, the CSRI Summer Intern Program would not be possible without the administrative
support of Becky March, Hailey Poole, Sandra Portlock, and Cookie Santamaria.

J.D. Smith
E. Galvan

November 1, 2021
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Articles

I. Computational & Applied Mathematics

Computational & Applied Mathematics are concerned with the design, analysis, and imple-
mentation of algorithms to solve mathematical, scientific, or engineering problems. Articles
in this section describe methods to design new neural network architectures, discretize and
solve partial differential equations, couple multiphysics systems of equations, and analyze
sensitivity & quantify uncertainty in complex systems.

1. Buczkowski, Foss, Parks, Radu, and Trageser study the properties of two nonlocal
biharmonic operators and examine their relationship with the classic operator.

2. Christensen and Parish leverage the least-squares principles and the Euler-Lagrange
equations to develop a parallel-in-time approach to solving the 1D Advection
Equation.

3. de Castro, Kuberry, and Bochev develop a partition solution method for a coupled
Reduced Order Model-Finite Element Model using a proper orthogonal de-
composition and a Lagrange multiplier. This approach is tested on a transmission
problem.

4. Dean and Galvan survey techniques and results employing the Koopman Oper-
ator to dynamical systems, providing applications to uncertainty quantification.

5. Gilman and Phipps utilize majorize-minimize algorithms to compute the Gener-
alized Canonical Polyadic Tensor Decomposition from streaming data.

6. Jin, Rizzi, and Parish perform dimension reduction in both the spatial and time di-
mensions for Reduced Order Modeling and examine the methodology for uncer-
tainty quantification. Numerical tests are executed on advection-diffusion problems
and compared against state-of-the-art reduced order modeling approaches.

7. McCracken and Miller implement a Recovery Discontinuous Galerkin Method
for diffusive fluxes in the Navier-Stokes equation set.

8. Mcquarrie, Hart, van Bloemen Waanders, and Willcox utilize operator inference as
dynamical constraints for Data-Driven Model Reduction applied to two control
problems.

9. Olson, D’Elia, Foss, Gulian, and Radu analyze a truncated variation of Tempered
Fractional Operators, comparing results to the non-truncated more computation-
ally intensive operator.

10. Parker, Nicholson, Siirola, Laird, and Biegler describe a reduced-space formulation
for optimization of index-1 Differential Algebraic Equation Systems and im-
plement the formulation in Pyomo. This formulation is then used to solve dynamic
optimization problems.

11. Partin, Geraci, Rushdi, Eldred, and Schiavazzi apply convolutional neural networks
to Fluid Dynamics problems, providing predictive uncertainty to a partial differ-
ential equation model trained on both high- and low-fidelity data.

12. Voronin, Tuminaro, Olson, and MacLachlan develop Monlithic Algebraic Multi-
grid Preconditioners for mixed finite-element discretizations of coupled partial
differential equations. This method is applied to investigate higher-order discretiza-
tions of the Stokes equations.
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TWO NONLOCAL BIHARMONIC OPERATORS∗

NICOLE E. BUCZKOWSKI† , MIKIL D. FOSS‡ , MICHAEL L. PARKS§ , PETRONELA RADU¶,

AND JEREMY TRAGESER ‖

Abstract. Nonlocal models have gained interest due to their flexibility in handling discontinuities, in
particular for systems that model higher-order phenomena. We consider the biharmonic operator in the
nonlocal setting and discuss its derivation as it appears in modeling deformations and damage in beams and
plates. The nonlocal formulations of the biharmonic operator may be expressed through a single integral or
as an iterated Laplacian, leading to a doubly nonlocal operator. In this work we study properties of these
operators, including continuous dependence, and relations to the classical biharmonic.

1. Introduction. Beams and plates are key components of many engineering appli-
cations that have been studied for centuries. However after the invention of calculus, the
Euler-Bernoulli beam theory was constructed, modeling the deflection of these long, thin
beams utilizing the biharmonic operator. In this theory, the beam is viewed as one dimen-
sional object, with points x deflecting only in the z direction. In the simplest case, with
given constant moment of inertia, I and elastic modulus E, one can use

EI
d4w

dx4
= q,

where w is the displacement of the beam and q is the load. This fourth order derivative is
the biharmonic operator in one dimension. In n dimensions, the biharmonic is defined as

∆2u = ∆(∆u),

where ∆ is the classical Laplace operator ∆u =
∑n
i=1

∂2u
∂x2 .

Nonlocal operators, as opposed to classical operators, take into account effects of nearby
points and are formulated using integral operators. They naturally accommodate discontin-
uous solutions. In 2000 [8], the theory of peridynamics was formulated using such integral
operators in order to handle fracture in materials. As in [3], for functions u : Rn → R and
α, µ, v : Rn × Rn → R, we define the nonlocal (two-point) gradient with kernel α as the
two-point operator

Gαu(x, y) := [u(y)− u(x)]α(x, y), x, y ∈ Rn.

The nonlocal Laplacian with kernel µ is given by

Lµu(x) :=

∫
Rn

(u(y)− u(x))µ(x, y)dy, x ∈ Rn.

For symmetric kernels (µ(x, y) = µ(y, x)) one can write Lµu = Dα(Gαu), where the nonlocal
divergence of a two-point function is given by

Dαv(x, y) :=

∫
Rn
v(x, y)α(x, y)− v(y, x)α(y, x) dy,

∗N.B. was supported by an NSF- INTERN Award associated with NSF-DMS 1716790; M. D. F. and P.
R were partially supported by NSF-DMS 1716790 and by NSF-DMS 2109149.
†University of Nebraska-Lincoln, nbuczkowski@huskers.unl.edu
‡University of Nebraska-Lincoln, mikil.foss@unl.edu
§Sandia National Laboratories, mlparks@sandia.gov
¶University of Nebraska-Lincoln, pradu@unl.edu
‖Sandia National Laboratories, jtrages@sandia.gov



4 Two Nonlocal Biharmonic Operators

in which case µ(x, y) = α2(x, y). From [5], we know that given proper kernel scaling, we
have convergence to the classical Laplacian.

We consider here two different formulations of a nonlocal biharmonic operator: one with
a single integral that was explored in [10]:

B[u](x) =

∫
Bδ(0)

(
ωδ(|ξ|)
|ξ|2

)
(u(x+ 2ξ)− 4u(x+ ξ)

+ 6u(x)− 4u(x− ξ) + u(x− 2ξ))dξ

and one with two integrals as explored in [7]:

Bµ,ν [u](x) =Lν [Lµ[u]](x)

=

∫
Ω∪Γ

(∫
Ω∪Γ

(u(z)− u(y))µ(y, z)dz

−
∫

Ω∪Γ

(u(z)− u(x))µ(x, z)dz
)
ν(x, y)dy.

For more on peridynamic beams and plates, see for example [6], [11], [12].

1.1. Outline of Paper. In Section 2 of this paper, we cover two different possibilities
for the nonlocal biharmonic operator; the first of which was presented in [10] and the second
a continuum representation of that in [2]. In Section 3, we discuss well-posedness of the
single integral nonlocal biharmonic, as well as the well-posedness and stability with respect
to the forcing function and kernel function of the double integral nonlocal biharmonic.

2. Two Different Nonlocal Biharmonic Operators. In this section, we discuss the
convergence of the two operators, as well as the peridynamic formulation of the nonlocal
biharmonic formulated with two integrals.

2.1. First Formulation: Single Integral. We first consider the nonlocal fourth
order derivative as in [10]. Assume the following properties for the kernel:

(M1)The kernel γ be nonnegative, compactly supported,
(M2) |x|4γ(|x|) ∈ L1

loc(RN ) ,
(M3) There exists an η > 0 so that Bη(0) ⊂ Supp{γ(| · |)},
(M4) γ(s) ∈ L1

loc(RN ),
and let the single integral nonlocal biharmonic be defined as

B[u](x) =

∫
Bδ(0)

(
ωδ(|ξ|)
|ξ|2

)
(u(x+ 2ξ)− 4u(x+ ξ)

+ 6u(x)− 4u(x− ξ) + u(x− 2ξ))dξ

=

∫
Bδ(0)

(
ωδ(|y − x|)
|y − x|2

)
(u(2y − x)− 4u(y)

+ 6u(x)− 4u(2x− y) + u(3x− 2y))dy.

It is desirable for this nonlocal biharmonic operator to converge to the classical operator
when the solution u is from an appropriate space. The following Lemma yields the desired
property.

Lemma 2.1 (Convergence). [10] Let Ω ⊂ R. Further let m =
∫
Bδ(0)

ωδ(|ξ|)|ξ|2dξ and

ωδ(|s|) = 1

|δ|5ω( |s|δ )
. Then for all u ∈ C∞c (Ω), and x ∈ Ω, we have

B[u]→ m∆2u

as δ → 0 uniformly in Ω.
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2.2. Second Formulation: Double Integral. In this section we look at a peridy-
namic formulation of the Euler-Bernoulli beam equation. The derivation presented here is
a continuum version of the derivation in [2]. We describe the strain energy density W (x) at
a point x in the body in terms of a micro-potential ω:

W (x, t) :=
1

2

∫
Hx

ω(x,Hx, u) + ω(y,Hy, u)dy, (2.1)

where Hx and Hy are the neighborhoods of x and y, and u is the transverse deflection field.
The micro-potential ω has the form

ω(x,Hx, u) = ω({u(z, t)− u(x, t)}z∈Hx), (2.2)

i.e., ω(x,Hx, u) is a function of the differences (u(y, t) − u(x, t)) for each y ∈ Hx. The
micropotential ω may be quite general, but in order to facilitate intuition a typical form of
ω is given by:

ω(x,Hx, u) =

∫
Hx

λ(y − x)(u(y)− u(x))dy, (2.3)

where λ(y−x) is the kernel of the nonlocal operator and determines the interaction between
points x and y. The potential energy U of the beam is the sum of the strain energy and the
energy of the external loads,

U(t) =
1

2

∫
Ω

W (x, t)dx−
∫

Ω

b(x, t)u(x, t)dx, (2.4)

where b is the body force density field. The kinetic energy of the beam is found by summing
the kinetic energy densities over the material domain:

T (t) =
1

2

∫
Ω

ρ(x)u̇2(x, t)dx. (2.5)

The Lagrangian is given by T (t)− U(t) and so the Lagrangian density is given by

L(x, t) :=
1

2
ρ(x)u̇2(x, t)− 1

2
W (x, t) + b(x, t)u(x, t). (2.6)

The Euler-Lagrange equation is thus

0 =
∂

∂t

∂L

∂u̇(x, t)
− ∂L

∂u(x, t)

= ρ(x)ü(x, t)− b(x, t)

+
1

4

∂

∂u(x, t)

∫
ω({u(y, t)− u(x, t)}y∈Hx) + ω({u(x, t)− u(y, t)}x∈Hy )dy,

or

ρ(x)ü(x, t)− b(x, t)

= − 1

4

∂

∂u(x, t)

∫
ω({u(y, t)− u(x, t)}y∈Hx) + ω({u(x, t)− u(y, t)}x∈Hy )dy.

(2.7)

The micropotential is given in terms of curvature so that

ω(x, t) =
1

2
ak2(x),
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where

k(x) = d

∫
u(z)− u(x)

|z − x|2 dy,

and where a, d are scaling parameters.
Thus using the chain rule, the right hand side of (2.7) becomes

= − 1

4

∂

∂u(x, t)

∫
ω({u(y, t)− u(x, t)}y∈Hx) + ω({u(x, t)− u(y, t)}x∈Hy )dy

= − 1

4

∫
∂ω({u(y, t)− u(x, t)}y∈Hx)

∂u(x, t)
+
∂ω({u(x, t)− u(y, t)}x∈Hy )

∂u(x, t)
dy

= − 1

4

∫
∂ω({u(y, t)− u(x, t)})
∂ {u(y, t)− u(x, t)}

∂ {u(y, t)− u(x, t)}
∂u(x, t)

+
∂ω({u(x, t)− u(y, t)}
∂ {u(x, t)− u(y, t)}

∂ {u(x, t)− u(y, t)}
∂u(x, t)

dy

= − ad2

8

∫
∂

∂ {u(y, t)− u(x, t)}

(∫
Hx

u(z)− u(x)

|z − x|2 dz

)2
∂ {u(y, t)− u(x, t)}

∂u(x, t)

+
∂

∂ {u(x, t)− u(y, t)}

(∫
Hy

u(y)− u(z)

|z − y|2 dz

)2
∂ {u(x, t)− u(y, t)}

∂u(x, t)
dy

=
ad2

8

∫
∂

∂ {u(y, t)− u(x, t)}

(∫
Hx

u(z)− u(x)

|z − x|2 dz

)2

− ∂

∂ {u(x, t)− u(y, t)}

(∫
Hy

u(y)− u(z)

|z − y|2 dz

)2

dy

=
ad2

4

∫
Hx

(∫
Hx

u(z)− u(x)

|z − x|2 dz

)(
1

|y − x|2
)

−
(∫

Hy

u(z)− u(y)

|z − y|2 dz

)(
1

|y − x|2
)
dy.

(2.8)

Then

ρ(x)ü(x)− b(x, t) =
ad2

4

∫
Hx

(∫
Hx

u(z)− u(x)

|z − x|2 dz

)(
1

|y − x|2
)

−
(∫

Hy

u(z)− u(y)

|z − y|2 dz

)(
1

|y − x|2
)
dy.

(2.9)

Define

L[u](x) :=

∫
1

|y − x|2 (u(y)− u(x))dy.

Then 2.9 can be written as

ρ(x)ü(x)− b(x, t) = −ad
2

4

∫
1

|y − x|2 (L[u](x)− L[u](y)) dy

=
ad2

4
L[L[u]](x)

=
ad2

4
B[u](x).
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Note here that convergence to the classical biharmonic under specific kernel conditions
is given by iterating the argument for the nonlocal Laplacian [5], given that u,Lu ∈ C4.

3. Well-posedness and Stability. For both classical and nonlocal models, boundary
conditions for hinged and clamped settings are physically permissible. In the case of the
double integral, we also discuss hinged boundary conditions.

3.1. Single Integral. Uniqueness and existence of solutions for the single integral
biharmonic are given in [10]. In order to consider stability with regards to the forcing term,
we require the following lemma from [10]. Define the space

Sγ = {u ∈ L2(RN )||uSγ | <∞},

where

|u|Sγ =

(∫
R

∫
R

(u(x+ s)− 2u(x) + u(x− s))2
γ(s)dsdx

)1/2

.

Lemma 3.1 (A Nonlocal Poincaré Inequality). [10] Let the kernel satisfy (M1), (M2),
(M3). Then there exists a constant C > 0 depending only on the kernel and the domain Ω
so that

‖u‖L2 ≤ |u|Sγ .

Then consider the bilinear form

bδ(u, v) =:
(∫

R

∫
R

(u(x+ s)− 2u(x) + u(x− s))

(v(x+ s)− 2v(x) + v(x− s)) γ(s)dsdx
)1/2

and the variational problem:

find u ∈ Sγ such that bδ(u, v) = (f, v)L2 ∀v ∈ SγΩ. (3.1)

Proposition 3.2. If u satisfies the variational problem (3.1), then

‖u‖L2 ≤ ‖f‖L2 .

Proof. We have

‖u‖2L2 ≤ |u|2Sγ = bδ(u, u) = (f, u)L2 ≤ ‖f‖L2‖u‖L2

or

‖u‖L2 ≤ ‖f‖L2 ,

giving stability.
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Ω

Γδ

Γ2δ

δ

2δ

Fig. 3.1: A domain Ω with the induced nonlocal boundary layers Γδ (with ball of horizons
δ) and Γ2δ with balls of horizon δ centered at points on the boundary ∂Ω.

3.2. Double Integral. Uniqueness and existence can be found in [7]. Because the
double integral biharmonic consists of two nonlocal Laplacians we can generalize the operator
to depend on two kernels

Bµ,ν [u](x) =Lν [Lµ[u]](x)

=

∫
Ω∪Γ

(∫
Ω∪Γ

(u(z)− u(y))µ(y, z)dz

−
∫

Ω∪Γ

(u(z)− u(x))µ(x, z)dz
)
ν(x, y)dy.

We consider the nonlocal biharmonic with hinged boundary conditions for i = 1, 2:
Bµi,νiui = fi, x ∈ Ω

Lµiui = gi, x ∈ Γδ

ui = hi, x ∈ Γ2δ.

(3.2)

The domain Ω has two induced nonlocal boundary layers Γδ (with balls of horizons δ) and
Γ2δ with balls of horizons δ centered at points on the boundary ∂Ω, as shown in Figure ??.
We show that variations in the data fi, gi, hi and µi, νi result in comparable variations in
the solutions. Throughout this section, assume that the kernels satisfy necessary conditions
for Poincaré’s inequality to hold and µ, ν ∈ L1.

3.2.1. Forcing Terms. First we show the change in the solution as a function of the
change in the forcing term as a consequence of the following Lemma.

Lemma 3.3. [1] Consider the nonlocal Poisson’s equation over the domain Ω ⊂ R.{
Lµui(x) = fi(x), x ∈ Ω,
ui(x) = g(x), x ∈ Γ.

(3.3)

for i = 1, 2. Let g ∈ L2(Γ). Then

‖u2 − u1‖L2(Ω) ≤ CP ‖f2 − f1‖L2(Ω)
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where CP is the Poincaré constant from [4].
We extend this result to the nonlocal biharmonic with the following theorem.
Theorem 3.4. Consider the nonlocal biharmonic equation

Bµ,νui = fi, x ∈ Ω

Lµui = g, x ∈ Γδ

ui = h, x ∈ Γ2δ.

for i = 1, 2. Let g ∈ L2(Γ). Then,

‖u2 − u1‖L2(Ω) ≤ CP,µCP,ν‖f2 − f1‖L2(Ω)

where CP is the Poincaré constant from [4].
Proof. Define vi := Lµui. Then v satisfies{

Lνvi = fi, x ∈ Ω

vi = g, x ∈ Γδ.

From Lemma 3.3, we know that

‖v2 − v1‖L2(Ω) ≤ CP,ν‖f2 − f1‖L2(Ω).

Further, we consider the system 
Lui = vi, x ∈ Ω

Lui = g, x ∈ Γδ

ui = h, x ∈ Γ2δ.

Define

ji =

{
vi, x ∈ Ω

g, x ∈ Γδ.

Again from Lemma 3.3, we know that

‖u2 − u1‖L2(Ω) ≤ CP,µ‖j2 − j1‖L2(Ω∪Γδ)

= CP,µ‖v2 − v1‖L2(Ω)

≤ CP,µCP,ν‖f2 − f1‖L2(Ω).

3.2.2. Collar Terms. Since there are two collar regions with two collar conditions (one
in the first collar generated by the ball of radius δ and one in the second collar generated by
the ball of radius 2δ) we consider continuous dependence with respect to both. Similarly to
the forcing terms, we can use the following Lemma to give continuous dependence on each
collar term.

Lemma 3.5. [1] Consider the nonlocal Poisson’s equation over the domain Ω ⊂ R.{
Lµui(x) = f(x), x ∈ Ω,
ui(x) = gi(x), x ∈ Γ.

(3.4)
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for i = 1, 2. Then

‖u2 − u1‖L2(Ω) ≤ C‖g2 − g1‖L2(Γ),

where C = CP ‖µ‖L2(Ω×Γ).
Theorem 3.6. Consider the nonlocal biharmonic equation

Bui = f, x ∈ Ω

Lui = g, x ∈ Γδ

ui = hi, x ∈ Γ2δ.

for i = 1, 2. Then, if 1 > CPMµasym,2,

‖u2 − u1‖L2(Ω∪Γ) ≤ C‖h2 − h1‖L2(Γ2δ),

where C = CP ‖µ‖L2(Ω×Γ).
Proof. Note that if vi = Lui, then vi{

Lvi = f, x ∈ Ω

vi = g, x ∈ Γδ.

so, by uniqueness, v1 = v2. Then ui satisfies{
Lui = j, x ∈ Ω ∪ Γδ

ui = hi, x ∈ Γ2δ.

where

j =

{
v, x ∈ Ω

g, x ∈ Γδ.

and so by Lemma 3.5, we have the desired result.
Theorem 3.7. Consider the nonlocal biharmonic equation

Bui = f, x ∈ Ω

Lui = gi, x ∈ Γδ

ui = h, x ∈ Γ2δ.

for i = 1, 2. Then

‖u2 − u1‖L2(Ω∪Γ) ≤ C‖g2 − g1‖L2(Γδ),

where C = C2
P ‖µ‖L2(Ω×Γ) + CP .

Proof. Consider vi = Lui. Then vi{
Lvi = f, x ∈ Ω

vi = gi, x ∈ Γδ.

By Lemma 3.5,

‖v2 − v1‖L2(Ω) ≤ C‖g2 − g1‖L2(Γ),
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where C = CP ‖µ‖L2(Ω×Γ).
Then ui satisfies {

Lui = ji, x ∈ Ω ∪ Γδ

ui = h, x ∈ Γ2δ.

where

ji =

{
vi, x ∈ Ω

gi, x ∈ Γδ.

Then by Lemma 3.3, we know that

‖u2 − u1‖L2(Ω∪Γδ) ≤ CP ‖j2 − j1‖L2(Ω∪Γδ)

≤ CP ‖v2 − v1‖L2(Ω) + CP ‖g2 − g1‖L2(Γδ)

≤ CPC‖g2 − g1‖L2(Ω) + CP ‖g2 − g1‖L2(Γδ)

≤ (C2
P ‖µ‖L2(Ω×Γ) + CP )‖g2 − g1‖L2(Ω)

as desired.

3.3. Kernel. For the kernel argument, as before we will need the following lemma
pertaining to the nonlocal Laplacian. We will also need the following lemma as a nonlocal
“integration by parts” counterpart. For convenience, define the normalized kernels µ̃i ∈
L1(Rn × Rn) by

µ̃i(x, y) :=

{
‖µi‖L1µi(x, y), x ∈ Ω

0, x ∈ Rn /∈ Ω.
(3.5)

Lemma 3.8. [1] Consider the nonlocal Poisson’s equation over the domain Ω ⊂ R.{
Lµiui(x) = f(x), x ∈ Ω,
ui(x) = g(x), x ∈ Γ.

(3.6)

for i = 1, 2. Define K =
(

1
‖µ2‖L1

− 1
‖µ1‖L1

)
.

1. Then

‖u2 − u1‖L2(Ω) ≤ CP
[
2‖µ̃2 − µ̃1‖2L∞(Rn)‖u1‖L2(Ω∪Γ)

+ ‖K‖L∞(Ω)‖f‖L2(Ω)

]
.

2. If µi ∈ L2(Rn × Rn), then

‖u2 − u1‖L2(Ω) ≤ CP
[
2‖µ̃2 − µ̃1‖L2(Rn×Rn)‖u1‖L2(Ω∪Γ)

+ ‖K‖L∞(Ω)‖f‖L2(Ω)

]
.

Lemma 3.9. [5] Let u, v : Ω ∪ Γ→ R be measurable. Then∫
Ω∪Γ

Lµu(x)v(x)dx = −
∫

Ω∪Γ

∫
Ω∪Γ

Gu(x, y)Gv(x, y)dydx.
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Theorem 3.10. Consider the nonlocal biharmonic equation over the domain Ω ⊂ R.
Bµi,νiui = f, x ∈ Ω

Lµiui = g, x ∈ Γδ

ui = h, x ∈ Γ2δ.

for i = 1, 2. Define K =
(

1
‖µ2‖L1

− 1
‖µ1‖L1

)
. Suppose that µi is symmetric. Then

‖u2 − u1‖2L2(Ω∪Γδ)
≤

1

1− ‖u1‖L2(Ω∪Γδ∪Γ2δ)‖µ̃1 − µ̃2‖L2(Ω∪Γδ∪Γ2δ)
‖Kj,µ(x)‖L2(Ω∪Γδ),

where

‖Kj,µ(x)‖L2(Ω∪Γδ) ≤‖g(x)

(
1

‖µ2‖L1(x)
− 1

‖µ1‖L1(x)

)
‖L2(Γδ).

Proof. Define vi := Lµiui. Then vi satisfies{
Lνivi = f, x ∈ Ω

vi = g, x ∈ Γδ.

Then by Proposition 3.8, we know
1.

‖v2 − v1‖L2(Ω) ≤ CP
[
2‖ν̃1,2‖L∞(Rn)‖ν̃2 − ν̃1‖L∞(Rn)‖v1‖L2(Ω∪Γ)

+ ‖K‖L∞(Ω)‖f‖L2(Ω)

]
.

2. if µi ∈ L2(Rn × Rn), then

‖v2 − v1‖L2(Ω) ≤ CP
[
2‖ν̃2 − ν̃1‖L2(Rn×Rn)‖v1‖L2(Ω∪Γ) + ‖K‖L∞(Ω)‖f‖L2(Ω)

]
.

Now we also know that ui satisfies
Lµiui = vi, x ∈ Ω

Lµiui = g, x ∈ Γδ

ui = h, x ∈ Γ2δ.

(3.7)

Define

ji :=

{
vi, x ∈ Ω

g, x ∈ Γδ.

Then (3.7) becomes {
Lµiui = ji, x ∈ Ω ∪ Γδ

ui = h, x ∈ Γ2δ.
(3.8)
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We can rewrite ui as

ui(x) =

∫
Ω∪Γ

ui(y)µ̃i(x, y)dy − ji(x)

‖µi‖L1(x)
.

Thus

u2(x)− u1(x) =

∫
Ω∪Γ

u2(y)µ̃2(x, y)dy −
∫

Ω∪Γ

u1(y)µ̃1(x, y)dy

−
(

j2(x)

‖µ2‖L1(x)
− j1(x)

‖µ1‖L1(x)

)
=

∫
Ω

(u2(y)− u1(y)µ̃2(x, y)dy −
∫

Ω∪Γ

u1(y)(µ̃1(x, y)− µ̃2(x, y))dy

−Kj,µ(x).

Rearranging, we obtain∫
Ω∪Γ

u1(y)(µ̃1(x, y)− µ̃2(x, y))dy =

∫
Ω

(u2(y)− u1(y)µ̃2(x, y)dy

− (u2(x)− u1(x)) +Kj,µ(x)

=Lµ̃2
(u2 − u1)−Kj,µ(x),

and thus

Lµ̃2
(u2 − u1)(x) =

∫
Ω∪Γδ∪Γ2δ

u1(y)(µ̃1(x, y)− µ̃2(x, y))dy +Kj,µ(x). (3.9)

We next employ the nonlocal Poincaré inequality to bound ‖u2 − u1‖L2(Ω∪Γδ). Multi-
plying Lµ̃2

(u2 − u1) with u2 − u1 and using Lemma 3.9 produces∫
Ω∪Γδ∪Γ2δ

(u2(x)− u1(x))Lµ̃2
(u2 − u1)(x)dx

=−
∫

Ω∪Γ2δ

∫
Ω∪Γ2δ

[
G̃2(u2 − u1)(x)

]2
dydx

Here we used G̃2,sym = G√
µ̃2,sym

and the fact that u2 − u1 = 0 on Γ2δ. Rearranging and

using Nonlocal Poincaré’s inequality, we obtain

‖u2 − u1‖2L2(Ω) ≤ CP ‖G̃2(u2 − u1)‖2L2(Ω) = CP

∫
Ω

∫
Ω

G̃2(u2 − u1)]2dydx (3.10)

= −CP
∫

Ω

(u2(x)− u1(x))Lµ̃2
(u2 − u1)(x)dx.

We use

Lµ̃2
(u2 − u1)(x) =

∫
Ω∪Γ

u1(y)(µ̃1(x, y)− µ̃2(x, y))dy +K(x)f(x), (3.11)
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and get

|
∫

Ω

(u2(x)− u1(x))Lµ̃2
(u2 − u1)(x)dx|

≤
∫

Ω∪Γδ

∫
Ω∪Γδ∪Γ2δ

|u2(x)− u1(x)||u1(y)||µ̃1(x, y)− µ̃2(x, y)|dydx

+

∫
Ω∪Γδ

|u2(x)− u1(x)|Kj,µ(x)|dx

≤
∫

Ω∪Γδ

∫
Ω∪Γδ∪Γ2δ

|u2(x)− u1(x)||u1(y)||µ̃1(x, y)− µ̃2(x, y)|dydx

+ ‖Kj,µ(x)‖L2(Ω∪Γδ)‖u2 − u1‖L2(Ω∪Γδ).

Using Hölder’s inequality, we obtain

|
∫

Ω

(u2(x)− u1(x))Lµ̃2
(u2 − u1)(x)dx|

≤ ‖u2 − u1‖L2(Ω∪Γδ)‖u1‖L2(Ω∪Γδ∪Γ2δ)‖µ̃1 − µ̃2‖L2(Ω∪Γδ∪Γ2δ)

+ ‖Kj,µ(x)‖L2(Ω∪Γδ)‖u2 − u1‖L2(Ω∪Γδ).

So,

‖u2 − u1‖2L2(Ω∪Γδ)
≤

1

1− ‖u1‖L2(Ω∪Γδ∪Γ2δ)‖µ̃1 − µ̃2‖L2(Ω∪Γδ∪Γ2δ)
‖Kj,µ(x)‖L2(Ω∪Γδ).

Notice that

‖Kj,µ(x)‖L2(Ω∪Γδ) ≤‖
j2(x)

‖µ2‖L1(x)
− j1(x)

‖µ1‖L1(x)
‖L2(Ω∪Γδ)

≤‖ v2(x)

‖µ2‖L1(x)
− v1(x)

‖µ1‖L1(x)
‖L2(Ω)

+ ‖g(x)

(
1

‖µ2‖L1(x)
− 1

‖µ1‖L1(x)

)
‖L2(Γδ)

= ‖g(x)

(
1

‖µ2‖L1(x)
− 1

‖µ1‖L1(x)

)
‖L2(Γδ).

4. Conclusions. Two formulations for the nonlocal biharmonic are shown here, along
with a few corresponding properties. Existence and uniqueness of solutions for both for-
mulations have been shown, as well as stability with respect to the forcing terms. Notably,
we have also shown that the double integral nonlocal biharmonic also has similar properties
of continuous dependence. For future work, we will explore asymptotic compatibility [9]
for both the single integral biharmonic and the double integral biharmonic. We will also
consider continuous dependence of the solution on boundary data for the clamped boundary
condition. It is worth consider these two different properties in relation to the single integral
biharmonic, as well.
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A Parallel-in-Time Approach to Solving the 1D Advection Equation Using the
Euler-Lagrange Equations

NICHOLAS J. CHRISTENSEN∗ AND ERIC J. PARISH†

Abstract. Parallel-in-time solvers for partial differential equations allow for increased parallelism at
the cost of extra work. However, parallel-in-time solvers have been difficult to apply to hyperbolic systems.
We propose to use the least-squares principles and the Euler-Lagrange equations to convert a semi-discrete
system of ODEs into a large two-point space–time boundary value problem that may be more amenable
to parallel-in-time solution algorithms. We test this approach using finite differences on the 1D advection
problem.

1. Introduction. PDE solvers often parallelize in the spatial dimensions to solve prob-
lems faster. However, the high number of processors on modern machines often means spa-
tial parallelism becomes saturated on a fraction of the machine leaving compute resources
underused. Parallel-in-time (PinT) solvers attempt to address this by extending parallel
computing to the time dimension. This increases the number of floating point operations
and memory accesses, but allows for the use of more processors which may compensate for
these costs. Numerous PinT solvers have been developed throughout the years; popular
examples include parareal [3] and multigrid reduction in time (MGRIT) [2]. While these
and other PinT solvers have seen success in accelerating the time-to-solution for parabolic
systems, extensions to hyperbolic systems have suffered stability and convergence prob-
lems [1, 5].

We propose a parallel-in-time approach based on a least-squares formulation of a semi-
discrete dynamical system. In this approach, we convert the initial condition problem
corresponding to the dynamical system of interest into a two-point boundary value problem
via the Euler–Lagrange equations associated with the least-squares principle. We believe
that the system emerging from this process is more amenable to PinT solution strategies
— particularly for dynamical systems emerging from the spatial discretization of hyperbolic
PDEs — due to its parabolic-like structure. This work comprises an initial investigation
into the proposed approach. In the following, we derive the approach for linear problems
and show results for preliminary numerical experiments with the 1D advection equation
using finite differences.

2. Derivation from the Euler-Lagrange Equations. Let the vector function u(t) ∈
RNx denote values of the scalar function u(x, t) for Nx discrete spatial points x ∈ [a, b] and

u̇(t)− f(t,u(t)) = 0 (2.1)

with t ∈ [0, T ] and u(0) = u0. A typical finite difference code discretizes the system in
space and time and solves for the value of each time step sequentially starting from the
initial condition. We instead seek a function u(t) to minimize the objective functional

J [u(t)] =

∫ T

0

‖u̇(t)− f(t,u(t))‖22 dt (2.2)

subject to boundary conditions with Lagrangian

∗University of Illinois at Urbana-Champaign, njchris2@illinois.edu
†Sandia National Laboratories, ejparis@sandia.gov

This material is based in part upon work supported by the Department of Energy, National Nuclear
Security Administration, under Award Number DE-NA0003963.
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L(t,u(t), u̇(t)) = ‖u̇(t)− f(t,u(t))‖22 = u̇(t)T u̇(t) + fT f − 2fT u̇(t). (2.3)

The functional J is minimized for critical functions u(t) that satisfy1

∇J [u] =
∂L

∂u
(t,u(t), u̇(t))− d

dt

(
∂L

∂u̇(t)
(t,u(t), u̇(t))

)
= 0. (2.4)

Substituting our expression for L(t,u(t), u̇(t)) into (2.4) we obtain

[
∂fT

∂u

]
(u̇− f) + ü− df

dt
= 0. (2.5)

If f is a linear function f : u 7→ Au, then we have

AT (u̇−Au) + ü−Au̇ = 0. (2.6)

To solve (2.6) using finite differences we replace u with
û = [û(t0, x0), . . . û(t0, xNx−1), û(t1, x0), . . . û(tNt−1, xNx−1)]T ∈ RNt×Nx representing the
approximate solution at Nt×Nx discrete space-time points. We next replace the derivative
operators with first and second order finite difference operators in time, which we denote
with Bt and Ct respectively. Finally, for the 1D advection problem we replace A with As,
a first order finite difference operator in space.

This leaves us with a linear system to solve.

(ATs (Bt −As) + Ct −AsBt))ûinterior = 0. (2.7)

2.1. Boundary conditions. Equation (2.7) only holds for the interior time steps.
Time steps on and near the boundary obey different equations. Initial conditions in the
sequential formulation become Dirichlet boundary conditions for û at and near t = 0 in this
parallel-in-time formulation. The boundary at t = T is governed by a natural boundary
condition,

u̇(T )− f(T ) = 0 (2.8)

with a corresponding finite dimensional approximation

(Bt −As)ûNt−1 = 0. (2.9)

where ûNt−1 = [û(tNt−1, x0), . . . , û(tNt−1, xNx−1)]T .

2.2. Amenability to PinT approaches. We believe that the system 2.5 is more
amenable for PinT solvers than the standard formulation (2.1) — particularly when the
system (2.1) emerges from the spatial discretization of a hyperbolic set of equations — as it
results in a two-point boundary value problem that is parabolic-like in structure; we refer
the interested reader to Appendix 1 for more details on this concept within the context of
the 1D advection equation. As highly effective parallel iterative methods (such as multigrid)
exist to solve these types of systems, we believe that the system (2.5) is a promising starting
point for PinT solvers.

1For more details on the calculus of variations see Peter Olver’s excellent introduction to the topic.[4]
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3. Implementation. While the above derivation is general for linear functions f(t,u(t)),
we focus the implementation and numerical experiments on the 1D advection problem

whereby f(t,u(t)) = ∂u(t)
∂x .

3.1. Global and local system. The global system for the advection equation consists
of (ATs (Bt − A)s) + Ct − AsBt)) expanded to incorporate boundary conditions. Let us
denote the global system matrix with M . In general, M is block banded and with boundary
conditions we solve a system of the form

M û =



Eboundary
E0 . . . Ek−1 D F0 . . . Fj−1 0 . . . 0
0 E0 . . . Ek−1 D F0 . . . Fj−1 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 E0 . . . Ek−1 D F0 . . . Fj−1

Fboundary





û0

û1

...
ûl−k

...
ûl−1

ûl
ûl+1

...
ûl+j

...
ûNt−1



=



b̂0

b̂1

...

b̂l−k
...

b̂l−1

b̂l
b̂l+1

...

b̂l+j
...

b̂Nt−1



(3.1)

where the subscripts on û and b̂ index the Nt discrete times. The specific forms of D, E,
and F depend on the temporal and spatial stencils as these submatrices arise from sums of
Kronecker products of temporal and spatial finite difference matrices. Here, D is a square
submatrix of size Nx ×Nx where Nx is the spatial grid size, submatrix E = [E0 . . . Ek−1] is
of size Nx×kNx with k determined by the choice of temporal stencil, and F = [F0 . . . Fj−1]
is an Nx × jNx submatrix with j also determined by the choice of temporal stencil. The
kNx ×NtNx submatrix Eboundary enforces the initial condition. For the advection problem
it is simply the identity matrix. Submatrix Fboundary of size jNx ×NtNx accounts for the
possible use of different temporal stencils near time T and enforces the Neumann boundary
condition at time T .

3.2. Block-Jacobi solver. We used a relatively simple block Jacobi solver for our
initial investigation of this parallel-in-time formulation. Block Jacobi comprises an iterative
method which leverages the matrix splitting

M = LG +DG + UG

where DG comprises the block-diagonal of M and LG and UG are strictly lower-block and
upper-block matrices, respectively. The block Jacobi iteration then takes the form

DGûp = b̂− (LG + UG)ûp−1.

In the present context, the block Jacobi iteration reduces to performing the following iter-
ation in p at each time step l

Dûpl = b̂l − E

ûl−k
...

ûl−1


p−1

− F

ûl+1

...
ûl+j


p−1
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with E = [E0 . . . Ek−1] and F = [F0 . . . Fj−1]. This system can be solved using SciPy’s splu
function among other methods.

This decomposition allows the solver to be easily parallized. We assign each processor
to solve a contiguous subset of time steps of size ceil(Nt/nranks) with the final process given
a smaller block if Nt is not perfectly divisible by nranks. With time steps divided in this
way, the local solution for most time steps can be solved using only local data. Only at the
boundaries of a rank’s local set of timesteps does information need to be exchanged. A loop
over all nt local time steps generates a local solution ûplocal = [ûpl , . . . , û

p
l+nt−1]T .

To solve the global system, we incorporate the local sparse solve inside a Jacobi loop
that also performs a halo exchange and checks the solution for convergence. While the inner
for-loop in Algorithm 1 is presented with matrix-vector (BLAS2) operations for clarity,
better performance is achieved by implementing the equivalent operation using matrix-
matrix (BLAS3) operations. Since the D matrix is invariant, it can be prefactored outside
of the loop for an additional performance improvement. Our implementation uses both of
these optimizations.

Algorithm 1 Parallel global solve

1: procedure Global Jacobi iteration
2: initialize û0

3: initialize max diff to large value
4: p← 1
5: while max diff > tol do
6: for local timesteps l do
7: rpl ← b̂l − Eûp−1

l−k:l−1 − F ûp−1
l+1:l+j

8: ûpl ← solve(D, rpl )

9: diff← ‖ûplocal − ûp−1
local‖/‖û

p
local‖

10: max diff← global max(diff)
11: ûplocal ← exchange boundary data(ûplocal)
12: p← p+ 1

return ûplocal

3.3. Finite difference stencils. The above method is detached from any particular
finite difference stencils. For the purposes of this paper, we construct As with a second
order central difference stencil and Bt with a second order Crank-Nicolson upwind stencil.
We use a modified second order upwind stencil for the second temporal derivative. The
derivation for this stencil follows.

Let ut = du
dt , utt = d2u

dt2 , and so forth for higher derivatives. We begin with Taylor
expansions around t.

u(t− h, x) = u(t, x)− ut(t, x)h+
utt(t, x)h2

2
− uttt(t, x)h3

6
+
utttt(t, x)h4

24
+ ...

u(t− 2h, x) = u(t, x)− ut(t, x)2h+
utt(t, x)4h2

2
− uttt(t, x)8h3

6
+
utttt(t, x)16h4

24
+ ...

We multiply the first equation by 8, subtract the second equation, and solve for utt(t, x)
to obtain
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utt(t, x) =
8u(t− h, x)− u(t− 2h, x)− 7u(t, x) + 6hut(t, x)

2h2
+
utttt(t, x)h2

6
+ ....

For the advection problem, ut(t, x) = −∂u(t,x)
∂x so we can substitute the spatial derivative

for the temporal derivative. After simplification this gives

utt(t, x) =
8u(t− h, x)− u(t− 2h, x)− 7u(t, x)

2h2
− 3

h

∂u(t, x)

∂x︸ ︷︷ ︸
retained terms

+
utttt(t, x)h2

6
+ ....

If we approximate ∂u(t,x)
∂x with second order finite differences in space (central differences

for instance), then the second derivative approximation is O(∆x2) +O(h2). Since the first
derivative stencils are second order we expect the entire solver to be second order convergent
in space and time. This formulation reduces the required number of known initial time
steps from three in the typical second order upwinding formulation to two in this modified
formulation.

3.4. Forming the local system. The local system may be formed straightforwardly
from basic (i.e. 1D) finite difference matrices using Kronecker products.

As = It ⊗ Âs

Bt = B̂t ⊗ Is

Ct = Ĉt ⊗ Is +
3

dt
As

where Âs is the finite difference matrix for the first derivative in space, B̂t is the finite
difference matrix for the first derivative in time, and Ĉt is the finite difference matrix

for the second derivative in time corresponding to the stencil 8u(t−h,x)−u(t−2h,x)−7u(t,x)
2h2 .

Local temporal boundary conditions may be enforced by masking out matrix entries on the
boundary and adding a matrix G = Ĝ⊗ Is that enforces the boundary conditions such that

Mlocal = mask(ATs (Bt −As) + Ct −AsBt)) +G

4. Numerical experiments. We implemented the parallel-in-time solver in Python
with use of SciPy’s sparse matrix library. Parallelism and data exchange was implemented
with MPI for Python.

We tested the parallel-in-time solver on a 1D advection problem with an initial condition
(i.e. a temporal Dirichlet boundary) of û(x, 0) = sin(πx)10 with x ∈ [0, 1] and a periodic
boundary condition in space. For the temporal domain we used t ∈ [0, T ] with T = 1 (i.e.
one period). We used a central difference stencil for the first derivative in space, a second
order upwind stencil for the first derivative in time and the modified second order upwind
stencil for the second derivative in time. The solver tolerance for these tests was 10−6. This
scheme is theoretically second order in space and time and the results shown in 4.1 verify
this is the case.
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Fig. 4.1: Parallel-in-time solver convergence experiment using the block Jacobi solver. Error
here is measured in the two-norm. The black dotted line shows a reference slope for O(dt2)
error scaling.

Figure 4.2 shows the results of a block-Jacobi strong-scaling experiment with a varying
number of MPI ranks on one Lassen node. A Lassen node comprises two sockets, each with
twenty-two 3.8 GHz IBM Power9 cores, and 256 GB of CPU memory with a peak bandwidth
of 170 GB/s. Times in this chart are the average over all MPI ranks. The number of of
global solve iterations was invariant of the number of processors, requiring 1024 iterations to
reach the specified tolerance. Excluding the setup time, most of the time in the global solve
is spent within the local sparse solve (SciPy’s splu which uses the SuperLU library) with
an increasing fraction of time spent in inter-rank communication as the decreasing amount
of work per rank allows the latency cost to become relatively large. Figure 4.3 shows very
good strong scaling is retained up to eight MPI ranks with decreasing efficiency thereafter.
While communication accounts for some of this loss of efficiency, the amount of time spent
in the sparse solve also ceases to halve as the number of MPI ranks doubles above eight
ranks and the amount of work per rank becomes small. The cause of the relatively high
communication cost for two ranks and four ranks is unclear.

The above result suggests this parallel-in-time formulation has potential for strong scale.
However, with a Block-Jacobi solver the parallel-in-time strategy is not competive with time
sequential solvers. A serial Crank-Nicolson solver computing the solution for 512 spacial
grid points and 1024 time steps on a single Lassen core completes in about 0.06 s, about
two orders of magnitude smaller than the fastest time measured in the parallel-in-time
experiments above. This is expected theoretically. If we denote the sparse solve time for a
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Fig. 4.2: A strong scaling experiment using the block Jacobi solver on one Lassen node.

Fig. 4.3: Parallel efficiency plot for the same strong scaling experiment.

single time step as tsolve(Nx) then the expected speedup (ignoring communication costs) is

Speedup =
Tserial
Tparallel

= Θ

(
Nttsolve(Nx)

Nitertsolve(Nx)Ntp

)
= Θ

(
p

Niter

)
.

This tells us speedup greater than one is generally only possible when the number of global
solver iterations is less than the number of processors. Block-Jacobi, requiring one iteration
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per time step, is not ideal for this problem. A multigrid-based solver may reduce the number
of iterations and make this approach competitive against a serial code.

5. Conclusions. We have shown the feasibility of solving the advection equation using
a parallel-in-time solver derived from the Euler-Lagrange equations. The approach may be
a viable method of strong scaling for higher dimensional problems. In future work we plan
to explore the performance of the solver in higher space dimensions, on problems other than
the advection equation, coupled with other methods like multigrid, and on GPUs. We also
plan to explore this approach within a Galerkin context rather than finite differences and
to investigate the effects of this formulation on the conditioning of the problem.

Appendix A. Parabolic form of the normal equations for the 1D advection
equation. In this section we demonstrate that the normal equations associated with the
1D advection equation comprise a parabolic system. For the 1D advection equation, the
system differential operator is given by

L =
∂

∂t
+ c

∂

∂x
.

The standard adjoint of the differential operator is given as

L∗ = − ∂

∂t
− c ∂

∂x
.

The differential operator associated with the normal equations is given by

L∗L = −
(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
.

The above simplifies to

L∗L = − ∂2

∂t2
− 2c

∂2

∂x∂t
− c2 ∂

2

∂x2
.

Following standard terminology we write the above as

L∗L = A
∂2

∂t2
−B ∂2

∂x∂t
− C ∂2

∂x2

with A = −1, B = −2c, and C = −c2. The above describes an elliptic operator if B2 −
4AC < 0, a hyperbolic operator if B2−4AC > 0, and a parabolic operator if B2−4AC = 0.
In the present context we get

B2 − 4AC = 4c2 − 4(−1)(−c2) = 0

and thus L∗L is parabolic.
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PARTITIONED SOLUTION OF A COUPLED REDUCED ORDER MODEL
- FINITE ELEMENT MODEL (ROM-FEM MODEL) FOR A

TRANSMISSION PROBLEM

AMY DE CASTRO† , PAUL KUBERRY‡ , AND PAVEL BOCHEV§

Abstract. Application of reduced order modeling (ROM) on select subdomains can help to increase
the computational efficiency of multiphysics simulations. We develop a partitioned scheme for a model
interface problem which couples a ROM with a conventional finite element method. The proper orthogonal
decomposition (POD) approach is implemented to construct a low-dimensional reduced basis on half the
domain and solve the subdomain problem in terms of this basis using POD/Galerkin projection. The ROM
solution is then coupled to the FEM solution using a Lagrange multiplier representing the interface flux. The
multiplier at the current time step can be expressed as an implicit function of the state solutions through a
Schur complement. As a result, application of an explicit time integration scheme decouples the subdomain
problems, allowing their independent solution for the next time step.

1. Introduction. In this report, we formulate a new explicit partitioned scheme for a
transmission problem that combines a Reduced Order Model (ROM) with the conventional
Finite Element Model. The scheme extends the approaches in [2] and [3] which start from
a monolithic formulation of the transmission problem and then use a Schur complement to
obtain an approximation of the interface flux that serves as a Neumann boundary condition
for each subdomain problem. In other approaches for ROM couplings, such as [1], domain
decomposition is used as a tool to accelerate or improve the generation of ROMs. The
method presented in this paper is a coupling method for multiphysics problems in which
different parts of the domain are discretized by different schemes, such as a ROM.

2. Interface Problem. We consider a bounded region Ω ⊂ Rd, d = 2, 3 with a
Lipschitz-continuous boundary Γ. We assume that Ω is divided into two non-overlapping
subdomains Ω1,Ω2. Let γ denote the interface shared between the two subdomains, and let
Γi = ∂Ωi\γ for i = 1, 2, as illustrated in Figure 2.1.

Fig. 2.1: Non-overlapping subdomains

We take nγ to be the unit normal on the interface pointing toward Ω2.

We consider a model transmission problem given by the advection-diffusion equation:

ϕ̇i −∇ · Fi(ϕi) = fi on Ωi × [0, T ]

ϕi = gi on Γi × [0, T ], i = 1, 2
(2.1)
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where the unknown ϕi is a scalar field, Fi(ϕi) = εi∇ϕi − uϕi is the total flux function,
εi > 0 is the diffusion coefficient in Ωi, and u the velocity field. We augment (2.1) with
initial conditions:

ϕi(x,0) = ϕi,0(x) in Ωi, i = 1, 2 . (2.2)

Along the interface, we enforce continuity of the states and continuity of the total flux, i.e.,
our interface conditions are:

ϕ1(x, t)− ϕ2(x, t) = 0 and F1(x, t) · nγ = F2(x, t) · nγ on γ × [0, T ] (2.3)

We note that one also has the option to enforce only equilibrium of the diffusive flux ex-
changed between the two subdomains. We do not consider this option here as the resulting
partitioned scheme will be similar to that obtained by enforcing continuity of the total flux.

In contrast to conventional partitioned schemes our approach starts from a well-posed
monolithic formulation. To obtain this formulation we use a Lagrange multiplier to enforce
continuity of states, i.e., the first condition in (2.3). Specifically, the monolithic problem
is given by the following weak formulation of the transmission problem: seek {ϕ1, ϕ2, λ} ∈
V := H1

Γ(Ω1)×H1
Γ(Ω2)×H−1/2

Γ (γ), such that

(ϕ̇1, ν)Ω1 + (ε1∇ϕ1,∇ν)Ω1 − (uϕ1,∇ν)Ω1 + (λ, ν)γ = (f1, ν)Ω1 ∀ν ∈ H1
Γ(Ω1)

(ϕ̇2, η)Ω2
+ (ε2∇ϕ2,∇η)Ω2

− (uϕ2,∇η)Ω2
− (λ, η)γ = (f2, η)Ω2

∀η ∈ H1
Γ(Ω2)

(ϕ1, µ)γ − (ϕ2, µ)γ = 0 ∀µ ∈ H−1/2(γ)

(2.4)

It is easy to see that the Lagrange multiplier λ is the flux exchanged through the interface,
i.e., λ = F1 ·nγ = F2 ·nγ . This observation is at the core of our partitioned method formu-
lation. Indeed, if we could somehow determine λ, then each subdomain problem becomes a
well-posed mixed boundary value problem with a Neumann condition on γ provided by λ:

ϕ̇i −∇ · Fi(ϕi) = fi on Ωi × [0, T ]

ϕi = gi on Γi × [0, T ]

Fi(ϕi) · ni = (−1)iλ on γ × [0, T ]

, i = 1, 2 . (2.5)

In other words, knowing λ allows us to decouple the subdomain equations and solve them
independently. Of course, this cannot be done within the framework of (2.4), which is a
fully coupled problem in terms of the states φi and the Lagrange multiplier λ. However, an
independent estimation of λ may be possible in the context of a discretized version of this
coupled problem.

2.1. A semi-discrete monolithic formulation. Let V h ⊂ V be a conforming finite
element space spanned by a basis {νi, ηj , µk}; i = 1, . . . , N1; j = 1, . . . , N2; k = 1, . . . , Nγ .
A finite element discretization of (2.4) yields the following Differential Algebraic Equation
(DAE) system:

M1Φ̇1 +GT1 λ = f1(Φ1)

M2Φ̇2 −GT2 λ = f2(Φ2)

G1Φ1 −G2Φ2 = 0

(2.6)

where for r = 1, 2, Φr are the coefficient vectors corresponding to ϕr, Mr are the mass
matrices, the right hand side vector fr(Φr) = fr − (Dr +Ar)Φr with Dr, Ar corresponding
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to the diffusive and advective flux terms, respectively, and Gr are the matrices enforcing
the (weak) continuity of the states. Assembly of these matrices is standard, for example,
(M1)ij = (νj , νi)Ω1 , (D2)ij = ε2(∇ηj ,∇ηi)Ω2 ; (G1)i,j = (νj , µi)γ ; (G2)i,j = (ηj , µi)γ , and so
on. We note here that the space for the Lagrange multiplier λ can be taken to be the trace
of the finite element space on either of Ω1 or Ω2; either choice will be stable. In practice
using the coarser of the two interface spaces for the Lagrange multiplier space improves
accuracy; see [2] and [3] for details and discussion.

Our approach is predicated on the ability to express λ as an implicit function of the
subdomain states. This, however is not possible for (2.6) because it is an Index-2 Hessenberg
DAE. Following [2] we reduce the index of (2.6) by differentiating the constraint equation
in time to obtain the following Index-1 Hessenberg DAE:

M1Φ̇1 +GT1 λ = f1(Φ1)

M2Φ̇2 −GT2 λ = f2(Φ2)

G1Φ̇1 −G2Φ̇2 = 0

(2.7)

Assuming the initial data are continuous across γ, the new constraint (ϕ̇1, µ)γ−(ϕ̇2, µ)γ = 0
is equivalent to the original one, i.e., (2.7) is equivalent to the original monolithic problem
(2.6). In what follows we refer to (2.7) as the FEM-FEM model.

3. Explicit partitioned scheme for FEM. The coupled system (2.7) defining the
FEM-FEM model can be written in matrix form as:M1 0 GT1

0 M2 −GT2
G1 −G2 0

Φ̇1

Φ̇2

λ

 =

f1(Φ1)

f2(Φ2)
0

 (3.1)

A partitioned scheme for this problem can be realized by solving a Schur complement system
for the Lagrange multiplier and then applying an explicit time integration scheme [2], or
alternatively by applying a time integration scheme before solving the Schur complement
system [3]. We briefly review both methods here; for more details and stability analysis, see
[2] and [3]. Then, in Section 5 we extend the first scheme to include a ROM on one of the
subdomains.

3.1. “Eliminate then discretize” partitioned scheme. Following [2] we refer to
this scheme as the Implicit Value Recovery (IVR) method. To explain IVR it is convenient
to write (3.1) in the canonical DAE form:

ẏ = f(t, y, z)

0 = g(t, y, z)
(3.2)

where y = (Φ1,Φ2) is the differential variable, z = λ is the algebraic variable,

f(t, y, z) =

M−1
1

(
f1(Φ1)−GT1 λ

)
M−1

2

(
(f2(Φ2) +GT2 λ

) (3.3)

and

g(t, y, z) = Sλ−G1M
−1
1 f1(Φ1) +G2M

−1
2 (f2(Φ2) . (3.4)

The matrix S = G1M
−1
1 GT1 +G2M

−1
2 GT2 in (3.4) is the Schur complement of the upper left

2× 2 block submatrix of the matrix in (3.1).
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It can be shown that the Schur complement S is nonsingular; see Proposition 4.1 in [2].
This implies that the Jacobian ∂zg = S is also nonsingular for all t. As a result, the equation
g(t, y, z) = 0 defines z as an implicit function of the differential variable. After solving this
equation for the algebraic variable and inserting the solution into (3.1) we obtain a coupled
system of ODEs in terms of the states:[

M1 0
0 M2

] [
Φ̇1

Φ̇2

]
=

[
f1(Φ1)−GT1 λ
f2(Φ2) +GT2 λ

]
(3.5)

The IVR scheme is based on the observation that application of an explicit time integration
scheme to discretize (3.5) in time effectively decouples the equations and makes it possible
to solve them independently.

The IVR algorithm for solving the coupled system is now as follows. Let Dn
t (Φ) be a

forward time differencing operator such as the Forward Euler operator Dn
t (Φ) = (Φn+1 −

Φn)/∆t. For each time step tn:
1. Compute modified forces: For i = 1, 2 use Φn

i to compute the vector

f̃
n

i := f i(Φ
n
i ) = fi − (Di +Ai)Φ

n
i

2. Compute the Lagrange multiplier : Solve the Schur complement system(
G1M

−1
1 GT1 +G2M

−1
2 GT2

)
λn = G1M

−1
1 f̃

n

1 −G2M
−1
2 f̃n2

for λn. Compute GT1 λ
n and GT2 λ

n.
3. Update the state variables: For i = 1, 2, solve the systems

MiD
n
t (Φi) = f̃

n

i + (−1i)GTi λ
n (3.6)

3.2. “Discretize then eliminate”. We will now describe an alternative method in
which we discretize in time first before forming and solving the Schur complement system.
Following [3] we refer to this scheme as the Interface Flux Recovery (IFR) method. The
advantage of the IFR scheme is that it does not require an index reduction step and an
explicit time integration to decouple the subdomain equations. Thus, the starting point for
the development of the IFR scheme is the original Index-2 DAE system (2.6).

To derive the IFR scheme we first move the advective and diffusive terms from the right
hand side vector f i into the left hand side of (2.6) and write this DAE as:

M1Φ̇1 +GT1 λ+K1Φ1 = f1(t)

M2Φ̇2 −GT2 λ+K2Φ2 = f2(t)

G1Φ1 −G2Φ2 = 0

(3.7)

where Kr = Dr + Ar, r = 1, 2. This system is now discretized using the θ-method for
θi ∈ [0, 1] as follows:

M1(Φn+1
1 −Φn

1 )/∆t+GT1 λ
n+1 +K1(θ1Φ

n+1
1 + (1− θ1)Φn

1 ) = θ1f1(tn+1) + (1− θ1)f1(tn)

M2(Φn+1
2 −Φn

2 )/∆t−GT2 λn+1 +K2(θ2Φ
n+1
2 + (1− θ2)Φn

2 ) = θ2f2(tn+1) + (1− θ2)f2(tn)

G1Φ
n+1
1 −G2Φ

n+1
2 = 0

(3.8)

Following the approach in [3], define the matrix Wi = Mi + ∆tθiKi, and define a new right
hand side vector as:

gi(Φ
n
i ) = ∆t(θifi(t

n+1) + (1− θi)(fi(tn)−KiΦ
n
i )) +MiΦ

n
i .
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Then, the fully discrete problem (3.8) is equivalent to the system of equations:W1 0 ∆tGT1
0 W2 −∆tGT2
G1 −G2 0

Φn+1
1

Φn+1
2

λ

 =

g1(Φn
1 )

g2(Φn
2 )

0

 (3.9)

Note that if we discretize (3.7) in time using the θ-method with θi = 0 on both subdomains
then the system in (3.9) reduces toM1 0 ∆tGT1

0 M2 −∆tGT2
G1 −G2 0

Φn+1
1

Φn+1
2

λ

 =

g1(Φn
1 )

g2(Φn
2 )

0

 (3.10)

In the case of a consistent mass matrix, the Schur complement system is closely related
to the system from the IVR scheme.

∆t
(
G1M

−1
1 GT1 +G2M

−1
2 GT2

)
λ = G1M

−1
1 g1(Φn

1 )−G2M
−1
2 g2(Φn

2 ) (3.11)

For now, we assume explicit time integration schemes; the procedure here can be eas-
ily extended to implicit schemes. Assuming that Φn

1 ,Φ
n
2 are known at time tn, compute

Φn+1
1 ,Φn+1

2 as follows:
1. Set θi = 0 for i = 1, 2, and compute the vector

g̃ni := gi(Φ
n
i ) = ∆t(fi(t

n)−KiΦ
n
i ) +MiΦ

n
i

2. Compute the Lagrange multiplier : Solve the Schur complement system

∆t
(
G1M

−1
1 GT1 +G2M

−1
2 GT2

)
λ = G1M

−1
1 g̃n1 −G2M

−1
2 g̃n2

for λ. Compute ∆tGT1 λ and ∆tGT2 λ.
3. Update the state variables: For i = 1, 2 solve explicitly the equations

MiΦ
n+1
i = g̃ni + (−1)i∆tGTi λ

4. ROM Construction. We now extend the partitioned schemes described in Section
3 to the case where a reduced order model (ROM) on one of the subdomains is coupled
with a traditional finite element scheme on the other subdomain. Since the main practical
difference in our scenario between the IVR and IFR methods presented in Sections 3.1 and
3.2 is in the order of the time discretization and the Schur complement (elimination) steps
we will explicitly present the ROM-FEM coupling only for the IVR case. In this section, we
describe the construction of a reduced order model using Galerkin projection, a technique
to deal with Dirichlet boundaries, and then the implementation of the partitioned scheme
to include this ROM.

Without loss of generality, we choose to implement the reduced order model on Ω1.
First, a new, reduced order basis matrix Ũ is determined such that Φ1 = ŨϕR, where ϕR is
the vector of solution coefficients for the reduced order model. The matrix Ũ has dimensions
N1 ×NR, with NR � N1.

To compute Ũ , we obtain m snapshots in time of the original finite element solution on
Ω1, letting the boundary corresponding to the interface γ have Neumann instead of Dirichlet
conditions. For problems with low advection, the full order model can be run on only Ω1;
however, it is our experience that for highly advective problems it is best to use a full order
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model obtained on the entire domain Ω. This can be either a FEM solution across Ω or a
coupled FEM-FEM solution obtained as described in Section 3. For the numerical results
shown in Section 6, we use the FEM solution across Ω. Define tk = k(∆st), for k = 1, . . .m
and let ∆st be the size of the timestep chosen for obtaining the snapshots. Let X be the
resulting N1 × m snapshot matrix, with the kth column corresponding to the coefficient
vector Φ1(tk) of the full finite element solution at tk.

To deal with the Dirichlet boundary condition, we consider removing the rows of the
snapshot matrix X that correspond to Dirichlet nodes on Γ1 to obtain the adjusted snapshot
matrix X0. This matrix contains solution coefficients corresponding to the free nodes, that
is the interior and the Neumann nodes that correspond to the unknowns in our problem.
Let N1,0 denote the number of these free nodes. Then, we compute the singular value

decomposition of the adjusted matrix, X0 = U0Σ0V
T
0 . The new basis matrix Ũ0 is obtained

by retaining the columns of U0 corresponding to the NR largest singular values. Thus, the
matrix Ũ0 is N1,0×NR, instead of N1×NR. Note that the new basis functions, the columns

of Ũ0, are globally supported rather than locally supported as is the case with traditional
finite element basis functions. Most commonly, we choose a tolerance level δ so that we
remove columns corresponding to singular values which are less than δ. Once we have the
final reduced order solution vector ϕR, we can recover the full finite element vector by
computing Φ1,0 = Ũ0ϕR. However, the coefficients in Φ1,0 correspond to the free nodes
and so, this vector does not contain the information about the imposed Dirichlet boundary
condition. We recover a full state coefficient vector Φ1 by augmenting Φ1,0 with the values
at the Dirichlet nodes.

5. Extension of IVR and IFR to a ROM-FEM coupling. Since we now have
the reduced basis matrix Ũ0, we can use ŨT0 to project the equations over Ω1 into the
smaller space. However, since Ũ0 only has the information from the non-Dirichlet nodes,
the other matrices need to be adjusted correspondingly so that only the non-Dirichlet rows
and columns are used. Let the matrices M̃1, G̃1, D̃1, Ã1 represent the FEM matrices with
rows and columns corresponding to Dirichlet nodes removed. Substituting Ũ0ϕR for Φ1 into
the constraint and the first equation in the system (2.7), multiplying the first equation by
ŨT0 , and expanding its right hand side yields the following ROM-FEM monolithic problem:

ŨT0 M̃1(Ũ0ϕ̇R) + ŨT0 G̃1
T
λ = ŨT0 f̃1 − ŨT0 (D̃1 + Ã1)Ũ0ϕR

M2Φ̇2 −GT2 λ = f2(Φ2)

G̃1(Ũ0ϕ̇R)−G2Φ̇2 = 0

(5.1)

Note that the first equation is now of size NR. Let y = (ϕR,Φ2) be the differential
variable, and z = λ the algebraic variable. As in Section 3, the ROM-FEM monolithic
system (5.1) is an index-1 DAE having the same canonical form as (3.2) but with:

f(t, y, z) =

(ŨT0 M̃1Ũ)−1
(
ŨT0 f1(Ũ0ϕR)− ŨT0 G̃1

T
λ
)

M−1
2

(
(f2(Φ2) +GT2 λ

)  (5.2)

and

g(t, y, z) = S̃λ− G̃1Ũ0(ŨT0 M̃1Ũ)−1ŨT0 f1(Ũ0ϕR) +G2M
−1
2 f2(Φ2) (5.3)

where S̃ = G̃1Ũ0(ŨT0 M̃1Ũ0)−1ŨT0 G̃1
T

+ G2M
−1
2 GT2 is the Schur complement of the upper

2 × 2 block of the ROM-FEM monolithic problem. At this juncture, we point out that we
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may safely expect the matrix ŨT0 M̃1Ũ0 to be invertible because M1, and therefore M̃1 are
full rank. Multiplication by the orthogonal matrix Ũ0 preserves the rank of the matrix.
Now, the system (5.1) can be equivalently written as:

ẏ = f(t, y, z)

0 = g(t, y, z)
(5.4)

Extension of the IVR scheme to the ROM-FEM system (5.1) requires the Jacobian
∂zg = S̃ to be non-singular for all t. In the case of the FEM-FEM coupled system (3.1)
conditions on the Lagrange multiplier space were given in [2] that correspond to properties
of the matrices G1, G2, and ensure that the FEM-FEM Schur complement is symmetric
and positive definite. In the case of the ROM-FEM coupled problem we have observed
numerically that the corresponding Schur complement S̃ is nonsingular. A formal proof and
a sufficient condition for S̃ to be symmetric and positive definite is in progress and will be
reported in the journal version of this paper.

Extension of the IFR scheme to the ROM-FEM coupling proceeds along the same lines
presented for the IVR extension. Specifically, in (3.8) we substitute Ũ0ϕ

n+1
R and Ũ0ϕ

n
R for

Φn+1
1 and Φn

1 , respectively and then multiply the first equation in this system by ŨT0 . This
will result in a ROM-FEM version of (3.8) in which the first equation has dimension NR.

5.1. Algorithm. In this section, we present the extension of the IVR partitioned
scheme to the ROM-FEM monolithic system (5.1). Extension of the IFR scheme is very
similar and is omitted for the sake of brevity.

Note that once Ũ0 is computed, the reduced size matrices ŨT0 M̃1Ũ0, ŨT0 D̃1Ũ0, ŨT0 Ã1Ũ0

can all be precomputed. For the explicit time-stepping methods, we set Dn
t (ϕ) = (ϕn+1 −

ϕn)/∆t.
The IVR ROM-FEM partitioned algorithm has two phases: an offline phase to compute

the reduced order model and an online phase where the ROM is used in the partitioned
scheme to solve the coupled system. For example, in the context of a PDE-constrained
optimization algorithm that requires multiple solutions of the coupled problem, the first
phase would be conducted offline before the optimization loop, and then the second phase
would run at each optimization iteration.

Computation of the reduced order model (Offline)
1. Solve an appropriate full order model, either FEM on Ω1 with Neumann conditions

on γ or the full FEM on Ω, to collect samples for the snapshot matrix X. Compute
the SVD X0 = U0Σ0V

T
0 of the modified snapshot matrix X0 containing the non-

Dirichlet rows of X.
2. Given a threshold δ > 0 define the reduced basis matrix Ũ0 by discarding all columns

in U0 corresponding to singular values less than δ.

Solution of the coupled ROM-FEM system for t ∈ [0, Tf ]. (Online)

1. Use ϕnR to compute the vector

f̃
n

1 := ŨT0 f1(Ũ0ϕ
n
R) = ŨT0 f̃1 − ŨT0 (D̃1 + Ã1)Ũ0ϕ

n
R

2. Use Φn
2 to compute the vector f̃n2 := f2(Φn

2 ) = f2 − (D2 +A2)Φn
2

3. Solve the Schur complement system(
G̃1Ũ0(ŨT0 M̃1Ũ0)−1ŨT0 G̃1

T
+G2M

−1
2 GT2

)
λn =

G̃1Ũ0(ŨT0 M̃1Ũ0)−1f̃
n

1−G2M
−1
2 f̃n2

for λn. Compute ŨT0 G̃1
T
λn and GT2 λ

n.
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4. Solve the system (ŨT0 M̃1Ũ0)Dn
t (ϕR) = f̃

n

1 − ŨT0 G̃1
T
λn

5. Solve the system M2D
n
t (Φ2) = f̃n2 +GT2 λ

n

6. Numerical examples. Let Ω be the unit square divided in half vertically by the
line x = 0.5. Denote by Ω1 the left side of the domain and Ω2 the right side of the domain;
see Figure 6.1(b). Let γ denote the interface (x = 0.5) between the two sides, and let
Γi = ∂Ωi\γ for i = 1, 2. We take nγ to be the unit normal on the interface pointing toward
Ω2.

In this section, we present select results for solving the model advection-diffusion inter-
face problem (2.1) by coupling a ROM on Ω1 with a traditional FEM on Ω2. The coupled
ROM-FEM problem is then solved by using the extension of the IFR partitioned scheme.

We impose Dirichlet boundaries conditions on the non-interface boundaries Γi, i = 1, 2.
Results are shown for models with higher diffusion (εi = 0.01) and lower diffusion (εi = 10−5)
as well as pure advection (εi = 0). RK4 is used as the explicit time discretization method,
as it is a more accurate method than Forward Euler. The ROM is developed as described
in Section 4.

Our experience suggests that for highly advective problems the best practice to obtain
the m snapshots required to define the ROM on Ω1 is to use a full order solution obtained on
the entire domain Ω rather than on the target subdomain Ω1 where we desire to construct
the ROM. There are two options from this point. First, one can compute the SVD of the
full snapshot matrix X and extract only the entries from U that correspond to the degrees
of freedom from Ω1. The second method is to first extract the rows from X that correspond
to the desired degrees of freedom, and then compute the SVD of that reduced matrix. In
practice, both methods tend to give similar results. We implement the second method in
order to reduce the computational expense of solving the SVD.

(a) Initial conditions (b) Uniform meshes in both domains

Fig. 6.1: Initial conditions and mesh

The initial conditions for our test problem, a combination of a cone, cylinder, and a
smooth hump, are seen in Figure 6.1(a). We apply a rotating advection field (0.5−y, x−0.5)
and allow two full rotations. The results below are obtained using the IFR method described
in Section 3.2, extended to the ROM-FEM coupling. In Ω, the spatial discretization is 1/64
in both the x and y directions, yielding 4225 DOFs in Ω and 2145 DOFs in each of Ω1,Ω2.
In the following results, we have retained a relatively large basis (roughly 150 modes) for
the low diffusion and pure advection cases. Since our goal is to test the coupling method,
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we do not focus here on the ROM development and basis size. However, trials have been
run with a significantly smaller number of snapshots (m) as well as a smaller basis (down
to NR = 22), and the ROM and FEM solutions continue to show strong agreement on the
interface.

First we examine the case with low diffusion, εi = 10−5 for i = 1, 2. For the FEM-FEM
and ROM-FEM couplings, ∆t = 3.367× 10−3, but for the ROM snapshot construction, we
set ∆st = ∆t/3 = 1.123 × 10−3. This creates a snapshot matrix X of size 4225 × 5597.
Truncating all singular values less than δ = 10−10, the resulting basis is of size NR = 151.
Results for the FEM-FEM coupling in Figure 6.2(a) are compared with the ROM-FEM
coupling in Figure 6.2(b)

(a) FEM-FEM coupling for εi = 10−5 (b) ROM-FEM coupling for εi = 10−5

Fig. 6.2: Comparison of FEM-FEM and ROM-FEM IFR couplings for model with low
diffusion

For high diffusion, εi = 0.01 for i = 1, 2 the snapshot matrix X is of size 4225 × 6862
due to ∆t = 1.83× 10−3 and ∆st = ∆t/2 = 9.16× 10−4. The resulting reduced basis size is
NR = 59. Results for the FEM-FEM coupling are seen in Figure 6.3(a) and the ROM-FEM
coupling in Figure 6.3(b). If the tolerance for the singular values is increased from δ = 10−10

to δ = 10−4, the ROM basis size is now 32 and the solution looks the same as results with
a basis of size 59.

We see in Figures 6.4(a) and 6.4(b) that the ROM solution in Ω1 and the traditional
FEM solution in Ω2 align well on the interface for both low and high diffusion. Next, we
examine the pure advection case (εi = 0) for i = 1, 2. For the FEM-FEM and ROM-
FEM couplings, ∆t = 3.367 × 10−3, and we set ∆st = ∆t/2 = 1.684 × 10−3 for the ROM
snapshot construction. This produces a snapshot matrix X with dimensions 4225 × 3732.
With δ = 10−10, the size of the reduced basis is NR = 147. Results in Figures 6.5(a) and
6.5(b) closely resemble those of the low diffusion case in Figures 6.2(a) and 6.2(b). For pure
advection, we may compute errors using the FEM-FEM coupling solution as a reference. Let

Φh
FF (t) =

[
Φh

1,FF (t) Φh
2,FF (t)

]T
denote the finite element solution over Ω of the coupled

FEM-FEM model at time t. Likewise, let Φh
RF (t) =

[
Φh

1,RF Φh
2,RF (t)

]T
denote the finite

element solution over Ω of the coupled ROM-FEM model at time t. In both, let the value



A. de Castro, P. Bochev, and P. Kuberry 33

of the function on the interface come from the solution on Ω1. The errors are as follows:

||Φh
FF (2π)−Φh

RF (2π)||0 = 7.595× 10−5

||Φh
FF (0)−Φh

FF (2π)||0 = 7.4940× 10−2

||Φh
RF (0)−Φh

RF (2π)||0 = 7.4942× 10−2

||Φh
FF (2π)−Φh

RF (2π)||1 = 4.072× 10−3

||Φh
FF (0)−Φh

FF (2π)||1 = 8.28143

||Φh
RF (0)−Φh

RF (2π)||1 = 8.28137

Lastly, we display results for low diffusion on a non-uniform mesh. For the fine mesh,
we leave the spatial discretization at 1/64 in the y direction and 1/32 in the x direction
in Ωi. The coarse mesh is obtained by setting the spatial discretization to 1/32 in the y
direction and 1/16 in the x direction in the other subdomain. In Figures 6.6(a) and 6.7(a),
we implement the coarse mesh on Ω1 where the ROM is constructed and the fine mesh on
Ω2. The degrees of freedom on the interface are always set as the degrees of freedom from
Ω2; thus in this example there are 65 degrees of freedom on the interface. In Figures 6.6(b)
and 6.7(b), we set the fine mesh on Ω1 and the coarse mesh on Ω2. In this case, there are 33
degrees of freedom on the interface. For both of these non-uniform meshes, there is strong
agreement between the ROM and FEM solutions on the interface, but the results are a bit
more diffused than the results from implementing the fine mesh on both Ω1 and Ω2.
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(a) FEM-FEM coupling for εi = 0.01 (b) ROM-FEM coupling for εi = 0.01

Fig. 6.3: Comparison of FEM-FEM and ROM-FEM IFR couplings for model with high
diffusion

(a) ROM-FEM interface solution for εi = 10−5 (b) ROM-FEM interface solution for εi = 0.01

Fig. 6.4: Interface solutions for low and high diffusion ROM-FEM IFR coupling
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(a) Advective FEM-FEM coupling (b) Advective ROM-FEM coupling

Fig. 6.5: Comparison of FEM-FEM and ROM-FEM IFR couplings for the pure advection
case

(a) Coarse mesh on Ω1 for εi = 10−5 (b) Coarse mesh on Ω2 for εi = 10−5

Fig. 6.6: Comparison of non-uniform mesh results for low diffusion
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(a) Coarse mesh on Ω1 for εi = 10−5 (b) Coarse mesh on Ω2 for εi = 10−5

Fig. 6.7: Comparison of non-uniform mesh results on interface for low diffusion
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7. Conclusions. We presented an explicit partitioned scheme for a transmission prob-
lem that extends the approaches developed in [2] and [3] to the case of coupling a reduced
order model with a traditional finite element scheme. In particular, the scheme begins with
a monolithic formulation of the transmission problem and then employs a Schur complement
to solve for a Lagrange multiplier representing the interface flux as a Neumann boundary
condition. We constructed a reduced order model from a full finite element solution and
then presented an algorithm to couple this reduced model with a traditional finite element
scheme. Our numerical results show that the ROM-FEM coupling produces solutions which
strongly agree with those produced by a FEM-FEM coupling. Implementing the reduced
order model reduces the time and computational cost of solving the coupled system. In
principle, this coupling method should extend to other discretizations such as finite volume;
this will be studied in future work. Additionally, extensions to nonlinear problems and pre-
dictive runs can be considered. In a follow up work, we plan to study the coupling of two
reduced order models.
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A SURVEY OF THE KOOPMAN OPERATOR AND MOMENT
PROPAGATION

THOMAS Z. DEAN∗ AND EDGAR GALVAN†

Abstract. This article surveys several techniques and results that make use of the application of
the Koopman operator to the study of dynamical systems. Close attention is paid to the study of the
spectrum of the Koopman operator and the propagation of moments for uncertainty quantification. The
Koopman Operator theoretic approach described in this article is an alternative formalism for the study
of nonlinear dynamical system that provides unique advantages, especially in data-driven analysis. The
Koopman operator is a linear transformation on a space of observables of the nonlinear dynamical system
that evolves the system with time. The state space is lifted to the space of (possibly infinite) observables via
functions belonging to the Koopman invariant subspace of functions. The surveyed data-driven techniques
have a background in the mathematical field of Operator Theory where spectral and Hilbert Space theory
are applied to the Koopman operator. We include examples to show the advantage of working with several
Koopman operator theoretic methods.

1. History and Development of the Koopman Operator. Dynamical systems,
and in particular nonlinear dynamical systems, have been intensively studied in physics and
math literature since the late 1800s. The classical geometric perspective, originating with
Poincaré, has been a powerful tool in aiding our understanding of linear systems and the local
behavior of nonlinear systems (through linear approximation in a neighborhood of a fixed
point). Recently, this classical perspective is being supplemented by a operator-theoretic
perspective. In a seminal paper written in 1931, B.O. Koopman [4] made a connection
between the spectrum of the Koopman (composition) operator and various dynamical system
properties and demonstrating that it is possible to represent a nonlinear dynamical system in
terms of an infinite-dimensional composition operator acting on a Hilbert space of state space
observables (also called measurements). In 1932, Koopman and von Neumann extended this
theory to dynamical systems with a continuous spectrum. It is notable that Koopman’s 1931
paper led to the proofs of the ergodic theorem by von Neumann and Birkhoff. [9]

Recently, the Koopman approach to the study of dynamical systems has led to data-
driven techniques to understand the nonlinear dynamics of the system by recovering the
spectrum of the Koopman operator [5], [13]. This approach lifts the original nonlinear dy-
namical system (state space), denoted byM, to a new dynamical system, denoted by F , for
which the Koopman operator governs the evolution of observables as a linear transformation.

These observables are functions defined in the state space (a Hilbert space). The evolu-
tion of the observables provide an understanding of the evolution of the dynamical system.
The Koopman view of dynamical systems is again gaining interest due to the seminal work
by Rowley, Mezic et al. demonstrating Koopman operator theoretic data-driven methods
to analyze nonlinear dynamical systems [11]. Several authors have since investigated this
Koopman view of dynamical systems which has been at the forefront of many data-driven
methods, such as dynamic mode decomposition (DMD) and extended mode decomposition
(EDMD) [1],[13].

The methods of DMD and EDMD are implemented through a finite dimensional ap-
proximation of the Koopman operator to understand the behavior of dynamical systems,
which we will discuss in detail in this survey. We will also address the Koopman expec-
tation, which does not require the explicit construction of the Koopman operator nor a
finite-dimensional approximation of the Koopman operator [2]. This method, along with
the method discussed in [6], is used to calculate higher-order statistics (e.g., calculate cen-
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tral moments). The advantage of the Koopman approach to nonlinear dynamical systems
is that we are able to utilize the richness of the mathematical field of Operator Theory in a
linear setting to recover the spectrum and moments of a given dynamical system.

The purpose of this survey is to provide an updated review of the current state of the
Koopman operator as it pertains to the use of the Koopman operator to study spectral prop-
erties and moment propagation of dynamical systems. In this survey we will discuss the
data-driven techniques of DMD, EDMD, the Christoffel function, and Generalized Laplace
Analysis. These data-driven techniques allow the approximation and recovery of the spec-
trum of the Koopman operator, which govern the nonlinear dynamical system. Lastly, we
present the Koopman expectation and Koopman moment propagation which allow for the
calculation of higher order statistics of a given nonlinear dynamical system. The appli-
cations of the Koopman operator are vast and this survey only touches upon a handful
of these. Throughout this survey, citations to relevant works will be provided for further
reading when needed.

2. Overview of the Koopman Operator. Consider dynamical systems of the form

ẋ(t) = F (x) (2.1)

where x ∈ Rn and F : M → M is the flow map defined on the state space M. It is
important to note that M is a measure space. For finite-dimensional systems, we take
M ⊂ Rn and for infinite-dimensional systems we take M to be a subset of a Banach space.
We can also include an input (forcing) function u such that our dynamical system may be
of the form

ẋ(t) = F (x, u) (2.2)

Dynamical systems of the form (2.1) and (2.2) are continuous dynamical systems. When im-
plementing the data-driven methods in section 4, snapshots of the data are used to construct
a discrete representation of the dynamical system. This is expressed as follows:

xn+1 = F (xn)

That is, the flow map moves the state xn one timestamp ahead to xn+1. The Koopman
operator U acting on observables behaves as

Ufn = fn+1

Throughout this article, we assume that we are in an invertible measure preserving
setting. That is, M is endowed with a Borel sigma algebra Σ and a measure ν such that

ν(F−1(A)) = ν(A), ∀A ∈ Σ

The Koopman operator is a composition operator U : H → H where H is an arbitrary
Hilbert space. We define U for all h :M→ C and h ∈ H by

(Uh)(x) = [h ◦ F ](x) = h(F (x)) (2.3)

where h is referred to as an observable function. Furthermore, note that the Koopman
operator is a composition operator. The composition operator acts as a change of basis,
which is precisely what we are doing by lifting the dynamical system from the state space to
the observable space. If we choose H = L2(ν), the space of complex-valued functions that
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are square integrable for two arbitrary functions f and g with respect to the given measure
ν have the following standard inner product.

〈f, g〉 =

∫
M
fgdν (2.4)

With the assumption that we are in a measure-preserving setting, U is a unitary opera-
tor. That is, U−1 = U∗. Thus, a spectral representation of U exists and we can gain insight
into the spectrum of U which we will denote by σ(U). That is,

U =

∫
T
zdE(z) (2.5)

where σ(U) ⊂ T since U is unitary and its spectrum lies on the unit circle. Here, E represents
the projection-valued measure which defines a real-valued positive spectral measure µf on
T.

µf (A) = 〈E(A)f, f〉 (2.6)

By working with the spectral measure, we can understand the decomposition of the spec-
trum. That is,

σ(U) = σpp(U) ∪ σac(U) ∪ σsc(U)

where the subscripts pp, ac, and sc denote the pure point, absolutely continuous, and singular
continuous spectrum respectively. More will be discussed on the recovery of the spectrum
of U in section 3 of this survey.

The power of the Koopman operator when studying nonlinear dynamical systems is that
the Koopman operator is a linear operator in the lifted (observable) space. The problem
setting consists of a flow map F that evolves the states to a future state in a nonlinear
manner. As with most nonlinear problems, our goal is to develop a way to manipulate the
problem such that we can work in a linear setting and use the vast knowledge of solving
linear problems. We define the observable space for which the linear Koopman operator
behaves according to equation (2.3). To achieve this, we find the spectrum of the Koopman
operator in order to represent the states as observables which the Koopman operator acts on.
More precisely, we calculate the Koopman tuple which consists of the Koopman eigenvalues,
eigenfunctions, and modes. The Koopman eigenfunctions and modes are the “bridges”
between the nonlinear state-space and linear observable space that we aim to construct.
This can be shown through a commutative diagram as in figure 1 in [13]. In the literature,
the observable space is often referred to as the lifted space or the measurement space. The
importance of DMD and EDMD is that they allow for an approximation of the Koopman
tuples. These two techniques allow for a deeper analysis of nonlinear dynamical systems,
which we will discuss in the proceeding sections.

2.1. Eigenfunctions of Dynamical Systems and the Koopman Operator. Let
ϕ(x) denote a Koopman eigenfunction with its corresponding eigenvalue λ. Note the fol-
lowing equation.

ϕ(xn+1) = Uϕ(xn) = λ(xn) (2.7)

If we work in a continuous time dynamical system, we have a Lie operator eigenfunction.
We will not discuss this case in this survey since our focus is on discrete time systems.
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For further reading of the Lie operator eigenfunction, [1] discusses this topic and provides
additional resources for further reading.

An important property of Koopman eigenfunctions is that they can be used to generate
more eigenfunctions. That is,

Uϕ1(x)ϕ2(x)) = ϕ(F (x))ϕ2(F (x)) = λ1λ2ϕ1(x)ϕ2(x)

where λ1λ2 is an eigenvalue given by the eigenfunction ϕ1(x)ϕ2(x). The literature on the
Koopman operator, and especially on the algorithms such as DMD and EDMD, has an
intense focus on recovering or approximating the associated eigenfunctions of the Koopman
operator. This is because if observables can be constructed as linear combinations, then
the observables have a linear evolution with respect to the Koopman operator. That is, to
understand a nonlinear dynamical system we study observables g. If g ∈ span{ϕi(x)} for
i = 1, ...,m for some m, then the evolution of g is linear and can be expressed as follows:

g(x) =
∑
m

vmϕm, Ug(x) =
∑
m

vmλmϕm (2.8)

where vm is a coefficient matrix, which is referred to as a Koopman mode. Thus, the subspace
spanned by the Koopman eigenfunctions is an invariant subspace with respect to the action
of the Koopman operator U . As we can see, by recovering the so-called Koopman tuples we
can recover the observables of the system which behave linearly with respect to the action
of U . The problem of solving for Koopman modes is extensively studied and is mentioned
in section 3 of this survey and for further reading we refer to [8].

Ideally, the Koopman eigenfunctions are solved for analytically, but in practice this is
rarely the case except for the simplest systems. The motivation behind the calculation of
eigenfunctions is to provide the necessary coordinates for which the dynamics of the system
behave linearly. Within the past decade, algorithms have been developed for discrete-time
systems to approximate eigenfunctions such that we can often approximate the observables
that live in the invariant subspace and behave linearly. Several prominent algorithms that
aim to approximate or recover the eigenfunctions are subsequently discussed in this survey.

3. A Data-Driven Application. Data analysis and data science have shown in-
creased interest due to the abundance of data that is available in a wide variety of problems.
With this abundance of data, as it pertains to dynamical systems, the natural questions
arises of what do we do with this data and how do we use the data to gain a deeper un-
derstanding of the system? A more recent and common approach has been to construct
dynamical systems from data and then analyze, predict, and control the system [12]. This
is exactly where the Koopman operator, and more specifically the spectrum of the Koopman
operator, has been shown to be of importance. In [1], Kutz et al. state the following five
application of Koopman analysis when working with dynamical systems.

1. Diagnostics. Use σ(U) to understand complex dynamical systems. That is, systems
that are nonlinear and high-dimensional.

2. Prediction. Understand how the system evolves as time moves forward. The Koop-
man operator can make the prediction easier to solve for certain observables because
of linearity.

3. Estimation and control. This is at the forefront of studying dynamical systems and
the fact that the Koopman method can linearize the system makes estimation and
control easier.

4. Uncertainty quantification and management. There are various methods where the
Koopman operator is used to quantify uncertainty. These include, but are not
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limited to, the Koopman expectation and the use of EDMD which will be discussed
later.

5. Understanding. The Koopman operator provides a more intuitive framework to
understand complex dynamical systems.

The connection between data-driven methods and Koopman have been especially pow-
erful in the methods of DMD and EDMD. The Koopman approach of solving a nonlinear
system is to redefine the state space in terms of observables. That is, where the state space
is nonlinear we apply a function g such that we obtain a linear system.

DMD Koopman
X and X ′ are the data matrices,
which we take to be observables.

Let g be a function such that
g(X), g(X ′)→ Y, Y ′

A = X ′X†

y AY = Y ′Y †

yDMD

xk+1 = Axk g(xk+1) ≈ Ug(xk)
U = AY

Note that for the Koopman approach we need to be able to define the function (observable)
g so that we can approximate the nonlinear dynamics of the system. The key fact to
remember is that g is in the span of the eigenfunctions of U as is expressed in (2.8). One
drawback of DMD is that we are limited in the observables we choose, which are the data
matrices X and X ′. For some cases, DMD proves to be an inaccurate data-driven method
to apply to nonlinear systems. To mitigate this problem, we can make use of observables (a
dictionary function) to apply to the data matrices to gain a more accurate approximation
of the nonlinear system. This method is EDMD, which will be discussed in detail in this
section.

It is important to note that both DMD and EDMD are methods of providing finite-
dimensional approximation of the infinite-dimensional Koopman operator U . Because of
this, DMD and EDMD only provide insight into the point spectrum while neglecting the
continuous part of the spectrum of U . Subsection 3.4 provides an example detailing the
DMD and EDMD method. The method discussed in subsection 3.4 provides an algorithm
of recovering the full spectrum (i.e. point, absolutely continuous, and singular continuous) of
the Koopman operator. The Lorenz system is an example where by neglecting the continuous
spectrum we lose all understanding of the dynamical system. Examples will provided in this
section to show the reader the power and effectiveness of applying data-driven methods to
understand nonlinear dynamical systems.

3.1. Dynamic Mode Decomposition (DMD). The goal of DMD is to build a lin-
ear dynamical system ẋ = Ax that best approximates a nonlinear dynamical system. To
do so, the work involved is with constructing a matrix A that is a best fit approximation of
the Koopman operator. The key fact here is that while the Koopman operator is infinite
dimensional, A is a matrix for which we can find the corresponding eigenvalues and eigen-
functions. To make the DMD algorithm computationally efficient, we also discuss how to
reduce the rank of A as it is common for A to be a large matrix which results in computing
its eigenvalues and eigenfunctions to be inefficient.

Let ẋ = f(x, u) be the nonlinear dynamical system of interest. Our goal is to approx-
imate f(x, u) with the best linear dynamical system where best is meant in a least squares
sense. Let x ∈ Rn be a state and xn be the nth snapshot of the system. A snapshot is a
measurement of the state of a system at a fixed time step that captures all the necessary
physical and mathematical information at that instant in time. Our first goal is to find the
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matrix A that advances our snapshots forward in time ∆t as follows:

Axn = xn+1

where xn := x(tn). The data-driven aspect of DMD, as well as with all the algorithms
mentioned in this section, comes from taking snapshots (i.e. measurements) to build a
model. From these snapshots of data we can construct two high-dimensional m×n matrices
X and X ′.

X =
[
x1

∣∣∣ x2

∣∣∣ · · · ∣∣∣ xn

]
as the state matrix that denotes contains each snapshot at time tn for each of its columns.
Furthermore, denote

X ′ =
[
x2

∣∣∣ x3

∣∣∣ · · · ∣∣∣ xn+1

]
which represents the shifted matrix of X by one snapshot. From these two large data
matrices, we can express their relation to each other as follows:

X ′ ≈ AX (3.1)

The goal of DMD is to find a best fit operator in a least squares sense. That is, to find such
an A that

A = argminA‖X ′ −AX‖ = X ′X†

where X† represents the pseudo-inverse (Moore-Penrose) of the data matrix X. To calculate
X†, we implement the singular value decomposition (SVD) method as

X = UΣV ∗ =⇒ X† = V Σ−1U∗

While we want to use SVD to calculate X†, it is also important in creating a low-rank
matrix A that still holds the information of the dynamics of the system. It is common for X
and X ′ to be large data matrices such that A = XX ′ will be too large a matrix to efficiently
apply spectral analysis. This rank reduction is known as rank−r truncation. To do this, we
look at the singular values of Σ and project A onto the first r modes in U and approximate
X†. Implementing this gives the following:

X ≈ UrΣrV ∗r =⇒ X† ≈ VrΣ−1
r U∗r

While A is of dimension m × m, we can construct an approximation of A that is of
dimension r × r with r << m. We can express this as follows:

Ã = U∗rAUr = U∗X ′V Σ−1

which is our reduced matrix of A of dimension r×r. The purpose of constructing the matrix
Ã is to capture the nonlinear dynamics of the system and allow for the application of linear
techniques to understand the corresponding eigenvalues and eigenfunctions of Ã. Let W
be a matrix where the columns are eigenvectors and Λ a diagonal matrix with eigenvalues
along its diagonal. Then,

ÃW = ΛW (3.2)
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Given the eigendecomposition of Ã, x(t) can be expressed in a succinct manner such
that we can understand the behavior of the states at an arbitrary time t. This is done by
the DMD modes Φ [1],

Φ = X ′V Σ−1W (3.3)

Once the DMD modes and eigenvalues are computed, we can express the state as follows:

xk = ΦΛk−1b =

r∑
i=1

ϕiλ
k−1
i bi (3.4)

where b = Φ†x1 represents the mode amplitudes. The DMD method allows for the matrix
approximation of the Koopman operator so that we can accurately approximate the states
xk of the nonlinear dynamical system.

3.2. Extended Dynamic Mode Decomposition (EDMD). The strength of the
DMD algorithm is that we are able to build a regression model from the state X from
one snapshot to the next. This is also a computationally efficient method which is why
it is popular for data-driven applications. However, it can fail to be accurate for even
moderately nonlinear systems. The EDMD algorithm has been developed to understand
the eigenfunctions of nonlinear systems.

The EDMD method can be broken down into three steps.
1. Construct a data set of snapshot pairs.
2. Choose a dictionary of observables.
3. Use a least-squares method to approximate U by a finite-dimensional matrix.

As with DMD, snapshot matricies are used to construct the Koopman approximation. We
begin with

X =
[
x1

∣∣∣ x2

∣∣∣ · · · ∣∣∣ xn

]

X ′ =
[
x2

∣∣∣ x3

∣∣∣ · · · ∣∣∣ xn+1

]
where xn+1 = F (xn), F is our flow map of the state space, and each xn, x

′
n ∈M.

The dictionary of observables (i.e. basis function) is given by the set {ϕ1, ..., ϕN} while
the vector-valued dictionary function

Ψ(x) = [ϕ1(x), ..., ϕK(x)]

is a mapping Ψ : M → C1×K . The dictionary function is needed to extend the state X
in order to contain the nonlinear measurements. Because of this, applications of EDMD
typically involve higher dimensional data sets (observables) than DMD to approximate the
Koopman operator. While EDMD can be used for more complex dynamical systems, the
difficulty is in choosing the correct dictionary function, ones that span the Koopman invari-
ant subspace. The most common dictionary functions to choose from are polynomials of
degree n ∈ N and radial basis functions (RBF). Even with using a polynomial dictionary
function, we need to choose a degree such that we obtain an accurate approximation while
also not resulting in a computationally expensive process.

As with DMD, the goal is to construct a matrix Ũ ∈ RK×K , which is a finite dimensional
approximation of the Koopman operator. Consider an arbitrary function f which can be
expressed as a linear combination of the dictionary function.
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f =

K∑
k=1

akϕk(x) = Ψ(x)Ta

where a ∈ RK is a weight. Recall that in an exact sense, the Koopman operator propagates
an observable forward in time. That is, Ug(xn) = g(xn+1) where g is an arbitrary observable.
However, since our dictionary of observables {ϕ1, ..., ϕK} are not, in general, an invariant
subspace of U , we may not have this exact relation. Thus, the Koopman operator is related
by the following equation:

Uf = (Ψ ◦ F )a = Ψ(Ũ) + r (3.5)

where r is a residual term since Ũ ∈ RK×K is a finite-dimensional approximation of U . The
purpose of EDMD is to find Ũ and minimize the residual term r. That is, find Ũ such that

Ũ = argminŨ‖GŨ −A‖ (3.6)

where

G =
1

N

N∑
k=1

Ψ(xk)Ψ(yk)T , A =
1

N

N∑
k=1

Ψ(xk)Ψ(xk)T

This yields the analytical solution Ũ = G†A, where G† is the Moore-Penrose inverse of
G. The finite-dimensional (matrix) approximation of Ũ minimizes r at each data snapshot
pair. Since Ũ is a matrix, we are able to calculate the corresponding eigenfunctions with
its respective eigenvalue. As we will see in the next section, the EDMD method is used to
propagate the expected value of nonlinear dynamical systems. For further reading on the
choice of dictionary functions, we refer the reader to the following paper [13].

It is important to note that both DMD and EDMD are trying to solve the same min-
imization problem. However, the major difference is that for EDMD we now have lifting
functions from the state space to the observable space for a more accurate approximation
of the Koopman operator. While EDMD may be more accurate method compared to DMD
for nonlinear systems, there are a few drawbacks. The first one is choosing the dictionary
basis that accurately approximates the Koopman operator while also being computation-
ally tractable. Furthermore, there are cases when EDMD fails due to closure issues. That
is, if the nonlinear system has multiple fixed points or attractors we can get inaccurate
dynamics since linear models only contain one such fixed point or attractor. This effect
happens because the eigenfunctions are inaccurately projected onto the finite-dimensional
subspace. Perhaps, the most important fact to note is the possibility of over-fitting the data
with EDMD. This happens when one does not use enough training data on the model and
compare it to test data. By neglecting this, a seemingly accurate Ũ can fail to predict fu-
ture states of the system given novel conditions. Now that we have covered two data-driven
methods, DMD and EDMD, to recover the spectrum we will discuss how we can recover the
full spectrum in the following subsection.

3.3. A Full Spectral Analysis of the Koopman Operator. The DMD and EDMD
algorithms are effective methods of approximating the Koopman operator and corresponding
eigenfunctions in a finite-dimensional space. While these two methods are proven to be
effective, the continuous spectrum of the Koopman operator is not considered. Recall that



46 A Survey of the Koopman Operator and Moment Propagation

the Koopman operator U is an infinite-dimensional operator. Thus, we cannot assume
that it only consists of a point spectrum (i.e. eigenvalues). However, with the DMD and
EDMD method we develop finite-dimensional approximations of U which has a spectrum
that consists of only eigenvalues. To entirely understand the nonlinear dynamics of the
system we need an algorithm to recover the continuous and singular parts of the spectrum
of U . For this purpose we turn our attention to the Christoffel-Darboux kernel (CD-kernel)
and Christoffel function as discussed in [5]. We should note at the outset that if only the
eigenvalues of a dynamical system are of interest, the DMD and EDMD methods will be
more efficient than the CD-kernel approach without losing accuracy. The advantage of the
CD-kernel method is that we recover the full spectrum as well as it being a mathematically
interesting method as it pertains to the spectrum of infinite-dimensional unitary operators.

The CD-kernel method, requires two independent assumptions discussed in further de-
tail in [5]

1. The measure ν is ergodic. That is, the data lie on a single trajectory such that
xi+1 = F (xi).

2. The samples are independently drawn from the measure ν.
As in the DMD and EDMD algorithms, we begin with snapshots of the observable.

However, the goal here is to estimate the first N + 1 moments from the given data. First,
we define the moments of U with respect to the spectral measure as defined in (2.6). The
nth moment mn of the spectral measure µf with respect to the observable f ∈ H is defined
as follows:

mn :=

∫
T
zndµf (z), n ∈ Z (3.7)

Furthermore, mn satisfies

mn = 〈Unf, f〉 (3.8)

The importance of (3.8) lies in its use to compute moments from data.
As is the common theme with all data-driven methods, we need to take snapshots of

the data. For this method we take snapshots of the observables f ∈ H such that

yi = f(xi), i = 1, ..., N

Note the following:

mn = 〈Unf, f〉 =

∫
M

(f ◦ Fn)fdν, k = 0, ..., N (3.9)

Recall equation (3.8).

mn =

∫
M

(f ◦ Fn)fdν = lim
N→∞

1

N − n
N−n∑
i=1

(f ◦ Fn(xi))f(xi) (3.10)

Using the fact that yi = f(xi), we arrive at the following approximation of mn for large N .

mn ≈
1

N − n
N−n∑
i=1

yi+nyi (3.11)

This approximation of mn can be computed directly from data which is more efficient than
using a numerical integration technique to calculate (3.9). The purpose of approximating
the moments from data is that we can now recover the spectral measure µf .
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The overarching problem that we are trying to solve is the moment problem. That is,
given the moments of an operator we want to recover the spectral measure associated with
the given operator. For the purposes of [5], we have a truncated moment problem. We will
show how to recover the point and continuous spectrum from the CD-kernel and Christoffel
function.

Definition 1: For each N ∈ N and z, s ∈ C, we define the Christoffel-Darboux kernel as
follows:

KN (z, s) =

N∑
i=0

ϕi(z)ϕi(s)

where ϕi’s are orthonormal polynomials associated to the spectral measure µf .

We can also define the CD-kernel as follows:

KN (z, s) = ψN (z)HM−1
N ψN (s) (3.12)

where ψN (z) = [1, z, z2, ..., zN ]T , ψN (z)H is the Hermitian transpose of ψN (z), and

MN =

∫
T
ψNψ

H
N =



m0 m1 m2 · · · · · · mN

m1 m0 m1
. . . mN−1

m2 m1
. . .

. . .
. . .

...
...

. . .
. . . m1 m0 m1

mN · · · · · · m2 m1 m0


(3.13)

is the Hermitian Toeplitz moment matrix. The entries of MN are populated by the estimated
moments from (3.11). Note that the (3.12) depends on the invertibility of MN . To guarantee
this, we construct the CD kernel by the modified moment

m̃n =

{
mn + 1 if n = 0

mn if n > 0

So, we replace mn by m̃n such that we define

K̃N (z, s) = ψN (s)M̃−1
N ψN (z) (3.14)

Now we define the Christoffel function which is used to recover both the point and
continuous spectrum of the Koopman operator. This is done by approximating µf and

choosing diagonal values K̃N (z, z) on the unit circle such that z = e2πiθ.

Definition 2: The Christoffel function, ζN (z0, z0), is defined as follows for all z0 ∈ C and
polynomials pN ∈ span{1, z, ..., zN} of degree at most N :

ζN (z0, z0) =
1

K̃N (z0, z0)
= min

{∫
C
|pN (z)|2dm̃(z) : pN (z0) = 1, deg(pN ) ≤ N

}
This definition leads us to the following two theorems.

Theorem 1: Recovery of Point Spectrum
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If µf is a positive measure on T, then for all θ ∈ [0, 1]

lim
N→∞

[
ζN (e2πiθ, e2πiθ)− 1

N + 1

]
= µ({e2πiθ}) = µpp({e2πiθ}) (3.15)

Theorem 2: Recovery of Absolutely Continuous Spectrum
If µ = µpp+µac+µsc with dµac = ρdθ is a positive measure supported on [0, 1] and (mk)Nk=0

its Fourier coefficients, then for Lebesgue almost all θ ∈ [0, 1].

lim
N→∞

[
(N + 1)ζN (e2πiθ, e2πiθ)− 1

]
= ρ(θ) (3.16)

While theorem 1 provides a way of recovering the point spectrum, theorem 2 provides a
method of recovering the density ρ. The Christoffel function is at the heart of both of these
theorems and the CD-kernel is necessary in order to define the Christoffel function. The
reason why this approach is considered a data-driven problem because the moment matrix
consists of moments computed from snapshots of our data.

The main focus of this survey, as it pertains the CD-kernel and the Christoffel function,
are the theorems of the recovery of point and absolutely continuous spectrum. We refer
the reader to [5] for a detailed discussion. These theorems are equivalent to showing that a
distribution function µN ([0, t]) converges pointwise to µ([0, t]) at every point of continuity.
The two methods of constructing such a distribution function involve Cesàro sums and
Quadrature. We have introduced two theorems that allow for the recovery of the point
and absolutely spectrum of U . However, there is still the singular continuous spectrum
to consider if we want to fully recover the spectral measure µf . The singular continuous
part of the spectrum is defined by ∆N (tk) in [5]. The last important result from Korda et
al. is that they develop a method of approximating the Koopman operator from spectral
projections PN . The advantage of this approach is that we also retain information on the
continuous spectrum while DMD and EDMD lose this information of the spectrum. The
one drawback of the methods discussed in this subsection is that it is limited to data from
a single trajectory.

3.4. Generalized Laplace Analysis (GLA). As has been extensively discussed in
the data-driven techniques in this section so far, calculating the spectrum of the Koopman
operator is one of the main goals in Koopman analysis to understand nonlinear dynamical
systems. The DMD and EDMD methods provide approximations of the Koopman operator
while the CD methods discussed in [5] provide an additional recovery of the continuous
spectrum, albeit more computationally intensive. Another method to recover the continuous
spectrum is the Generalized Laplace Analysis (GLA) method. In this subsection we provide
a brief overview of the GLA method and refer the reader to [8] and [7] for more details into
GLA.

The Koopman modes, v(x) are projections of the vector-valued observable g(x) ϕi(x)
of U at the corresponding eigenvalue λi. Recall, that ϕi(x) behave linearly with respect to
the invariant subspace. We will discuss the following theorem stated in [8]. We denote an
arbitrary vector-valued observable f(x, z), where z ∈ A ⊂ Rn and z ∈ M where M is a
manifold. In general, we take M to be a compact metric space, which is our state space.

Theorem 3: Generalized Laplace Analysis
Let λ0, ..., λK be simple eigenvalues of U such that |λ0| ≥ |λ1| ≥ · · · ≥ |λK |, and there are
no other points λ ∈ σ(U) with |λ| ≥ |λK |. Let ϕk be the kth eigenfunction of U associated
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with λk, for k ∈ {0, ..., L}. Then, the Koopman mode associated with λk is obtained by
computing

fk = lim
n→∞

1

n

n−1∑
i=0

λ−ik

f(F ix, z)−
k−1∑
j=0

λijϕj(x)vj(z)


= lim
n→∞

1

n

n−1∑
i=0

λ−ik

f i(z)− k−1∑
j=0

λijfj



where fk = ϕk(x)vk(z), ϕk is an eigenfunction of U such that |ϕk| = 1, and vk is the kth

Koopman mode.

As discussed in [11], the GLA approach again computes Koopman modes from snap-
shots. The Arnoldi algorithm in this data-driven method is used to provide approximations
to the Koopman eigenvalues and corresponding modes.

4. Moment Propagation.

4.1. The Koopman Expectation. The Koopman expectation is proposed in [2],
where the authors utilize the duality between the Perron-Frobenius and Koopman operators.
It is important to recall that the Perron-Frobenius operator, P , acts measure spaces and U
acts on observables in a function space. Let f be a pdf and g an observable. Then, we have
the following relation between P and U ,

〈Pf, g〉 = 〈f, Ug〉 (4.1)

This is known as the duality relation of P and U .
The key contribution of [2] is that they introduce the relationship of the inner product

representation in terms of expectations. We follow their notation and define the following
expectations.

E[g(X)|X ∼ Pf ] = E[Ug(X)|X ∼ f ]

where

E[g(X)|X ∼ Pf ] =

∫
Ω

[Pf(x)]g(x)dx = 〈Pf, g〉

and X is a random variable and E[·] represents the expectation. As discussed earlier, it is
easier to calculate the action of U on an observable rather than P on a measure. However,
intuitively the latter is more appropriate for understanding the behavior of the pdf as the
dynamical system progresses forward in time. Rather than of working with P where we
need to find the pre-image of the flow map, we can utilize the duality as expressed in (4.1).

The power of the Koopman expectation is that it allows us to compute higher-order
moments with relative ease. For example, if we want to compute the second central moment
of a random variable X, then we calculate

mn = E[(X − E[X])2]
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where E[X] is the first raw moment. Note that in this method we do not have to explicitly
define the Koopman operator nor construct a finite-dimensional approximation as before.
While using the Koopman expectation to calculate higher-order central moments is not as
direct as above, we can still simplify the process of calculating higher order central moments
for a given dynamical system by careful selection of observables.

First, we define the expected value operator as follows:

mn = E
[
(X − µ(X))n

]
= E

[
n∑
k=0

(
n

k

)
(−1)n−kµ(X)n−kXk

]

=

n∑
k=0

(
n

k

)
(−1)n−kµ(X)n−kE[Xk]

where we utilize the linearity property of the expected value operator and the fact that the
mean µ(X) is a constant. Thus, in order to calculate a higher order moment, we need to
be able to calculate µ(X), which is the first raw moment, and E[Xk]. To relate this to the
Koopman expectation and the Koopman approach of dynamical systems with observables,
we are interested in observables g(X) rather than random variables X. As describe in [2],
first define define a vector-valued observable

g̃(x) = [g(x), g(x)2, ...g(x)n]T

and then we can express the Koopman expectation as follows:

E
[
g̃(F (x, α))|f

]
=

∫
Ω

g̃(F (x, α))f(α)dα

where α is a parameter where we have uncertainty and Ω is the domain of integration for
which the uncertainty is contained within.

As we can see, the calculation of higher-order moments with the Koopman expectation
condenses to a problem of integration. When solving a data-driven problem, the difficulty
lies in accurately approximating the integral such that we can accurately calculate the
nth central moment with respect to the given observable. In [2], an example is done to
show how the Koopman expectation is used to calculate the expected value of a dynamical
system along with higher-order moments. Note that for most applications, the first four
moments are of concern since they contain statistical importance. i.e. the second central
moment is the variance of the data. Furthermore, this example compares the Koopman
expectation to the Monte-Carlo method and a significant speedup occurs when working
with the Koopman expectation. The main difficulty with the Koopman expectation is the
selection of observables when one wants to calculate higher-order central moments. However,
the benefits of this method is that we never have to explicitly define the Koopman operator
or construct a finite-dimensional approximation of the Koopman operator such as with the
DMD and EDMD methods.

4.2. Koopman Matrix Moment Propagation. Another method to quantify uncer-
tainty in a dynamical system using the Koopman operator is by the propagation of moments
as discussed in [6]. The authors study a nonlinear dynamical system and develop the tech-
nique to propagate the moments by the approximate Koopman operator, which we will
denote by Ũ . From the propagation of moments, we are able to reproduce the resulting pdf
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at a future time. In order to propagate the moments of the system, the EDMD method
is used to arrive at an approximate Koopman matrix. We provide a brief summary and
implications of [6] and refer the reader to this paper for further reading if needed.

In this method, we make use of EDMD to construct the Koopman matrix Ũ that will
be used to propagate the moments mt forward in time. That is,

Ũmt = mt+1 (4.2)

Note that mt ∈ RK and Ũ ∈ RK×K , where K represents the number of basis functions
that compose of Ψ. E.g., if Ψ is a degree-two polynomial in a dynamical system with two
variables then K = 5 if we ignore the polynomial equal to 1.

Define gt(x) = Ψ(x)Twt where wt ∈ RK . gt represents the projection of the current
observable at time t onto the basis function Ψ(x)T with the weight vector wt. From this,
we define the moment at an arbitrary time t

mt = 〈ϕk, gt〉 (4.3)

Note that the inner product is an inner product in the Hilbert space which we assume is L2

with respect to a measure. Thus, we have

mk
t =

∫
X

f0(x)ϕk(x)dx = 〈ϕk(x), f0(x)〉, for k = 1, ...,K

where f0(x) is a pdf and Ψ(x) = [ϕ1(x), ..., ϕK(x)]. Furthermore, mk
t denotes the moment

at time t corresponding to the kth component of the dictionary function Ψ(x).
In equation (4.2) we see how to propagate the moment mt to the moment in the next

time stamp at time mt+1. What we need to understand is how to calculate mt. We can
look at equation (4.3), but there is a more succinct way of expressing mt that the authors
of [6] mention. That is,

mt = Λwt

where mt, wt ∈ RK and Λ = Ψ(x)Ψ(x)T . Now, we show the implementation of this method
of propagating moments.

5. Numerical Examples.

5.1. Analytical Koopman Operator. The following example taken from [1] demon-
strates a case where the Koopman operator can be determined analytically and in finite
dimensional space. We refer the reader to the original paper for a deeper analysis on the
spectrum of the finite dimensional approximation of the Koopman operator. The nonlinear
dynamical system we will study is as follows:

ẋ1 = µx1

ẋ2 = λ(x2 − x2
1)

where we choose µ = .05 and λ = −1. Note that when λ < µ < 0, the system shows a
slow attracting manifold given by x2 = x2

1. For a further discussion on the slow attracting
manifold, we refer the reader to [1]. This is the key observation to make in order to define
new coordinates such that the dynamics can be expressed as a linear system. We choose
the observables (x1, x2, x

2
1) and thus can redefine the dynamical system as a linear system:
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ẏ1

ẏ2

ẏ3

 =

µ 0 0
0 λ −λ
0 0 2µ

y1

y2

y3



where

y1

y2

y3

 =

x1

x2

x2
1



are the “new” variables that we use in order to represent the problem as a linear dynamical
system that fully captures the nonlinear behavior of the original system in state space, see
Figure 5.1

Fig. 5.1: Demonstration of an analytically determined Koopman operator for a simple
nonlinear system

In general, the appropriate lifting function is considerably more difficult to discover.
This analytical example is intended to demonstrate the intuition behind Koopman analysis.

5.2. DMD and EDMD. We can make use of the same example to demonstrate
important performance differences between DMD and EDMD. A straightforward application
of DMD to the previous example (recall that DMD does not make use of a lifting function)
find a system that unsurprisingly does not capture well the nonlinearity in x2, see Figure
5.2a. In contrast, the EDMD method is able to capture the nonlinearity using a second
order polynomial dictionary, see Figure 5.2b.
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Fig. 5.2: Results from the application of (a) DMD and (b) EDMD with a second order
polynomial to the example from the previous section. The higher order measurements are
transparent to more easily see the states corresponding to x1, and x2

With the Koopman approximation found using EDMD, we can vary the initial condi-
tions to graph the evolution of the variables x1 and x2. The three initial conditions (distinct
from the training data, which is a single trajectory) that we chose are as follows:

IC1 = (1.5,−1), IC2 = (1,−1), IC3 = (2,−2)

The results are depicted in Figure 5.3. The solid lines in the figure above represent
the solution of the nonlinear dynamical system using an ode solver. The dotted lines are
the data points created from the EDMD algorithm to show us the future states of the
system. As we can see, any error that exists is negligible and the EDMD algorithm provides
an accurate approximation of the evolution of this simple nonlinear dynamical system for
which we know we are using an appropriate dictionary.

Fig. 5.3: Results from simulations at three initial conditions distinct from the training data.
The figure shows the results in the original state space rather than the space of observables.
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5.3. EDMD with Inputs. An extension to DMD to incorporate the effects of a
control input is derived in [10]. Consider a discrete system such that

xk+1 ≈ Axk + Buk

for which we’ll record snapshots as usual. We’ll additionally record snapshots of the input
function

Υ =

 | | |
u1 u2 . . . um−1

| | |


Such that

X′ ≈ AX + BΥ

We can solve for A and B as

G = [A B] = X′
[

X
Υ

]†
or the projection

G = X′ṼΣ−1Ũ∗

And finally, the dynamic modes are

Φ = X′ṼΣ̃−1Ũ∗Ûw

Such an extension can be applied readily to EDMD as well. To demonstrate, we consider
another simple nonlinear system from ”Model Order Reduction of Nonlinear Dynamical
Systems” by Chenjie Gu [3] with a sinusoidal input.

d

dt

 x1

x2

x3

 =

 −10 1 1
1 −1 0
1 0 −1

 x1

x2

x3

−
 0

0
x2

1

+

 1
0
0

u(t) (5.1)

The results in Figure 5.4 demonstrate the performance of the EDMD method on this
nonlinear system. The left most figure depicts the training data while the middle and right
figures compare the predicted response to “test” inputs, namely a more complex sinusoidal
input and a step input. Again, note that the EDMD results are depicted in the original
state space rather than the space of observables.

5.4. Koopman Expectation Example. Here, we include an example of using the
Koopman expectation to understand higher order moments. The example that we choose to
show the propagation of moments is example 1 from [6]. We have a 2−D system governed
by the following nonlinear system.

ẋ1 = x2

ẋ2 = −3

2
x1 − x2 +

x3
2

9
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Fig. 5.4: The training data with a sinusoidal input is depicted in the left most figure. The
middle and right figures compare the responses to varying inputs. The results of the EDMD
simulation as dotted lines

We incorporate uncertainty in the system by allowing the initial conditions of the system
to be a uniform random distribution in a region of interest. For our study we choose this
region of interest to be the square (−1.5,−1.1)× (0.5, 0.8). The phase plot is shown below:

Using the Koopman expectation as described in [2], we can propagate higher-order
moments and understand higher-order statistics at an arbitrary time in the future. We
show the propagation of the expected value (first raw moment) in the following figure:



56 A Survey of the Koopman Operator and Moment Propagation

Here, we compare the Koopman method to the Monte-Carlo. We take snapshots every
half second from zero to ten seconds. While we know the Monte-Carlo method works in
propagating moments, it can suffer in the time it takes to run. While the dynamical system
we consider in this example is small and straightforward, we can already see a dramatic
speedup. It takes the Koopman expectation 1.57 seconds while it takes Monte Carlo with
100, 000 trajectories 2.55 seconds. When we change the snapshots to every 0.1 seconds, the
speedup of the Koopman expectation is more apparent due to more data being captured.
Here, Monte-Carlo takes 17.38 seconds while the Koopman expectation takes 2.69 seconds
and is still an accurate approximation of the expected value. Another example, with more
detail, is explained in [2] where they work with a more complicated dynamical system and
show the accuracy of calculating higher-order moments compared with the Monte-Carlo
method. With the Koopman expectation method shown, we will show another method of
propagating moments which we refer to as the Koopman matrix moment propagation.

5.4.1. Koopman Matrix Moment Propagation Example. We will use the same
example as shown for the Koopman expectation. This is to show that both methods are
effective in propagating moments. Recall that we have a 2−D system governed by the
following nonlinear system.

ẋ1 = x2

ẋ2 = −3

2
x1 − x2 +

x3
2

9

The region of interest where our uncertainty lives is the square (−1.5,−1.1) × (0.5, 0.8).
The phase plots of the training and test data is shown below. We can see that there is an
equilibrium point at the origin.

Following the method discussed in [6], we construct the Koopman matrix Ũ , by the EDMD
algorithm, that propagates the moments forward in time. i.e. mt+1 = Ũmt. First, we
choose the dictionary function to be polynomials of degree 2 with a scaling factor of 3.

Φ(x) =

[
x1

3
,
x2

3
,
x2

1

9
,
x1x2

9
,
x2

2

9

]T
We choose 500 initial points in a uniform random distribution so that we can construct

trajectories of the system for our training and test data. From here, we arrive at the
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propagation of the first four moments, which provide statistical insight into the dynamical
system.
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It can be seen that for the propagation of the first moment, the propagation of moments
by the Koopman matrix is a near exact match to that of the Monte-Carlo method. The
advantage of working with the Koopman matrix to propagate moments is that the computa-
tion involved is matrix multiplication, which is more efficient than the Monte-Carlo method.
The reader may note that for the propagation of higher moments, specifically the second
moment, the accuracy does not match as well. To solve this problem, we can use a higher
order polynomial for our dictionary function. If we choose the degree to equal 3, then we
get the following:

While there is still noticeable error, we have decreased the error compared to the previous
dictionary function. In theory, we can increase the degree of the polynomial for the dictio-
nary function to increase the accuracy. However, by doing this we increase the computation
time because with an increase in the degree we have an increase in computations needed to
construct the Koopman matrix Ũ . For more complex dynamical systems, choosing polyno-
mials for our dictionary function may not be accurate. A common dictionary function to
choose when this is the case is the radial basis functions (RBFs). This is shown in example
3 in [6].

Here, it may be useful to directly compare the Koopman matrix propagation approach
to the Koopman Expectation approach of the previous section. For this, we consider a phase
plot of the first three moments in Figure 5.5. For this example, the Koopman expectation
outperforms the Koopman Matrix propagation approach in terms of computational expense
as well as accuracy.
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Fig. 5.5: Comparison of Koopman Matrix propagation (MP) approach and Koopman
Expectation (KE) and MonteCarlo (MC). The figures show a phase plot of the first three
moments of the system.

6. Conclusion. In this survey paper, the mathematical foundations of the Koopman
operator are presented as it pertains to nonlinear dynamical systems. Alongside with the
mathematical theory, numerical examples implementing the methods of DMD, EDMD, mo-
ment propagation and the Koopman Expectation are demonstrated and compared to a
simple Monte Carlo method. To understand the power of these numerical methods, the
mathematical tools involved are discussed. The methods of DMD and EDMD rely heavily
on constructing an accurate finite dimensional approximation of the unbounded Koopman
operator. This is done by creating a large data matrix from snapshots of the data and
then implementing a least squares approach and the use of SVD. After obtaining such an
approximation, the recovery of the eigenvalues, eigenfunction, and modes of the dynamical
system is more accessible. The main difference between DMD and EDMD is that EDMD
implements the use of dictionary (basis) functions to lift from the state space to the observ-
able space. While EDMD is more accurate, it is not always the most desirable method since
there are instances where it fails. Furthermore, it is often a difficult task to choose the cor-
rect dictionary functions. By approximating the Koopman operator as a finite dimensional
matrix through the use of DMD or EDMD, one can understand and apply a proper analysis
of a nonlinear dynamical system.

The numerical methods of moment propagation [6] and the Koopman Expectation [2]
are useful tools in understanding how higher order statistics propagate through a dynam-
ical system. The numerical method propagates the nth moment, e.g., the first moment
is expected value, the second moment is variance, the third moment is skewness, and the
fourth moment is kurtosis, and so on. The moment propagation method utilizes EDMD
to construct a matrix approximation of the Koopman operator along with constructing a
vector that represents the nth moment at a given time t. Then, basic matrix multiplication
of the matrix and vector result in the nth moment at the next time stamp. The Koopman
Expectation satisfies a similar goal in that the authors develop a technique to calculate the
nth moment by the use of expectations. Following the representation of the expectation as
a Lebesgue integral, we are able to calculate higher order moments. The difficulty in this
approach is that we can encounter problems with accurately approximating the integral.
Despite the fact that both the moment propagation and Koopman Expectation approaches
are distinct methods, they both rely on the use of the Koopman operator. The moment
propagation method utilizes an approximation of the Koopman operator while the Koop-
man Expectation uses a more theoretical use of the unbounded Koopman operator to set
up the mathematical definition of a moment represented as a Lebesgue integral.

While we have discussed and provided examples of the numerical methods used to
understand nonlinear dynamical systems, it can be useful to understand the Koopman
operator at a more theoretical level. In [7], recovering the entirety of the spectrum of
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the Koopman Operator is discussed in detail. In the numerical methods such as DMD,
EDMD, and the moment propagation methods, we only recover the point spectrum (i.e.
eigenvalues) of the finite dimensional approximation of the Koopman operator. Since the
Koopman operator is unbounded, we have the spectral decomposition into the pure point,
absolutely continuous and singular continuous spectrum. These parts of the spectrum also
have interesting mathematical and physical implications. The numerical methods used to
recover the full spectrum of the Koopman operator are the CD-kernel and the Christoffel
function. To do so, one must construct a distribution related to the spectral measure. The
methods of Cesàro sums and Quadrature are used to construct such a distribution function.
In our survey paper, we do not go into detail on these methods and refer the reader to [7]
for further reading.

Throughout this survey paper, the main focus has been on discussing the mathematical
and numerical methods known to accurately and efficiently understand nonlinear dynamical
systems with the use of the Koopman operator. It is important to note that we have only
focused on a small subset of the applications of the Koopman operator. Thus, we refer the
reader to the references provided for further applications and details that were omitted in
this survey.
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MAJORIZE-MINIMIZE ALGORITHMS FOR GENERALIZED
CANONICAL POLYADIC TENSOR DECOMPOSITIONS

KYLE GILMAN∗ AND ERIC PHIPPS †

Abstract. In this work, we propose accelerated majorization-minimization (MM) algorithms for com-
puting the generalized canonical polyadic (GCP) tensor decomposition from streaming multiway data. Our
algorithms enjoy first-order computational complexity, rapidly converge to a minimizer of each subproblem
in the GCP alternating schedule, and require no step-size hyperparameters to tune. We demonstrate our
algorithms have superior performance compared to stochastic gradient descent with ADAM for a variety of
nonnegative CP tensor factorization problems under non-Euclidean statistical losses. The success of these
algorithms permits more efficient and rapid computation in large-scale tensor problems.

1. Introduction. Multiway data analysis has flourished in the era of modern data
as data are increasingly collected over multiple modalities into multidimensional arrays
called tensors, from functional MRI data [15] to plant-pollinator data [6]. This tensor
data often exhibits low-dimensional latent structure describing the multilinear relationships
between its modes, which can be leveraged for exploratory data analysis, missing data
imputation, anomaly detection, data compression, and more. Hence, researchers have turned
their focus to tensor decompositions and generalizations of principal component analysis
(PCA) to higher-order data structures, the foremost methods being the Canonical Polyadic
decomposition (CPD) and Tucker decomposition. Recently, the CPD was extended beyond
least squares problems to fit models under losses of various statistical distributions called
Generalized CP (GCP) or Non-Euclidean CP [10, 12, 17]. Since many real data are non-
Gaussian, like sparse count data arising in computer network traffic monitoring [20], these
tensor factorizations find great utility in practical modern applications.

Despite the great progress in GCP, these methods require significant tuning of problem-
dependent hyperparameters like step sizes–nontrivial challenges especially in large data set-
tings where hyperparameter tuning itself is costly–and the number of iterations and sam-
plings of the tensor can be quite large in order to converge. In addition, tensor optimizers
usually require stochastic methods in order to subsample the data and to avoid forming and
storing the large matrices that arise in the original problem. Little work has gone towards
leveraging the geometry of these problems and stochastic methods to more efficiently factor
tensors under generalized losses.

Many GCP problem seek nonnegative factorizations to recover interpretable factors in
practical applications, and the statistical losses are either convex or a difference of con-
vex functions. We utilize these key properties to develop accelerated majorize-minimize
algorithms for nonnegative generalized tensor factorization problems in both the batch and
streaming settings. Our algorithms rapidly converge in fewer iterations than GCP with
ADAM, and with similar first-order complexity per iteration. Importantly, our methods
require no hyperparameters like step sizes, and our methods can be easily combined with
stochastic sampling techniques for sparse tensor data. Extensive empirical results support
that MM methods are more robust and efficient at recovering the tensor factors.

∗University of Michigan, kgilman@umich.edu
†Sandia National Laboratories, etphipp@sandia.gov
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1.1. Organization of this paper.
• Section 3 details related work in tensor decompositions for general losses and MM

algorithms for nonnegative matrix and tensor factorization.
• Section 4 proposes our GCP tensor decomposition optimization algorithms using

MM methods for statistically-motivated losses. We discuss the various root-solving
strategies for obtaining the minimizers of the constructed surrogate functions.

• Section 5: Experimental results are given for synthetic data showing significant
speedup of factor recovery in streaming GCP iterations compared to state-of-the-
art ADAM optimizers.

• Section 6: We conclude the paper and outline next steps to finish the results as well
as possible future directions.

2. Notation & Background. We shall denote all scalar quantities as s, vectors as
v, matrices as A, and tensors as XXX . The (complex conjugate) transpose of a matrix A is

denoted as A′. We denote the Frobenius norm of a matrix as ‖A‖F :=
√∑

ij |Aij |2. The

slice/hyperslice of XXX at time t is denoted as XXX t := XXX [:, . . . , :, t], where will assume in this
paper that time is the last tensor dimension. The n-mode unfolding of a N -way tensor
XXX ∈ RI1×···×IN into a In ×Πd

k 6=nIk matrix is written as X(n).
The Kronecker product is denoted as ⊗, the Khatri-Rao product as �, and ◦ as the outer

product. The mode-n product of a tensor XXX with matrix A is denoted as (XXX ×n A)(n) =

AX(n). Refer to [11] for more on these products and their properties and identities.
We use the notation in [11] to express a N -way rank-r CP model as

MMM∈ RI1×···×IN = [[λ,A(1), . . . ,A(N)]] =

r∑
j=1

λja
(1)
j ◦ · · · ◦ a

(N)
j (2.1)

for weights λ ∈ Rr and factors {A(n) ∈ RIn×r}Nn=1 where [a
(n)
1 · · ·a(n)

r ] are the unit-norm

column vectors of the nth factor matrix A(n). With unit-norm factors, λ contains the

column norms, i.e. λj = ‖a(1)
j ‖2‖a

(2)
j ‖2 · · · ‖a

(N)
j ‖2; otherwise, we can also just express

the CP factorization in terms of the (unnormalized) factors and omit λ. For a 3-way CP
tensor XXX with factors A,B,C, Fig. 2.1 illustrates the CP decomposition in the sum-of-
outer-products form.
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Fig. 2.1: CP Decomposition of XXX ∈ Rd1×d2×d3 .

3. Related Work. The work in [4] developed an MM algorithm for sparse count ten-
sor data; in fact, their work is a special case of ours. After originally proposing GCP, Kolda
& Hong [12] then developed stochastic gradient sampling techniques with ADAM for solving
the GCP problem, including stratified sampling that significantly improves stochastic gra-
dient methods on sparse tensor data. Their SGD method with ADAM draws data samples
from the tensor XXX either uniformly at random or by their stratified sampling technique and

estimates the gradients GGG(n)
t in each mode n from current factor estimates A

(1)
t , . . . ,A

(N)
t .

Then they jointly update the factors simultaneously at each iteration for each mode, i.e.

A
(n)
t+1 ← A

(n)
t − αG̃GG(n)

t n = 1, . . . , d,

where G̃GG(n)

t = MMM(n)
t /((

√
VVV(n)
t + ε), MMM(n)

t and VVV(n)
t are the momentum terms in ADAM

computed from the gradients GGG(n)
t , α > 0 is a step size, and arithmetic operations are

elementwise.

Pu et al. [17] then proposed SmartCPD using stochastic mirror descent for nonnegative
GCP with fiber sampling, which becomes an upper bounding MM surrogate given a certain
choice of Bregman divergence and step size. However, the authors do not consider the
inclusion of quadratic regularizers, which no longer make for closed-form solutions to the
factor updates without becoming standard stochastic gradient descent. While they show
fiber sampling performs well, in practice, sampling an entire tensor fiber may be cumbersome
for large dense data, or in cases where the tensor entries are sparse or even missing, we
wish to selectively sample only certain entries. In the work herein, we will propose tight
surrogates for the streaming GCP objective that is augmented with regularization terms, and
also discuss further exploiting the structure of sparse and dense tensors to more efficiently
subsample the data.

The works in [7,9,16,19] develop multiplicative update MM algorithms for nonnegative
matrix factorization with α-,β-, generalized KL, IS, and other divergences, but they do
not consider the Rayleigh, Bernoulli, or Negative Binomial losses, nor any losses with a
quadratic regularization penalty like in this work, which makes solving for the roots of
the resulting polynomials non-trivial. Zhao & Tan [21] unifed the large variety of MM
surrogates for nonnegative matrix factorization to classes of functions represented by h-
divergences, including the addition of `1 and `2 regularization terms. While their surrogates
are flexible to many different types of losses, they are not necessarily tight upper-bounding
surrogates. The work in [5] discusses multiplicative updates for difference of convex losses
in generalized tensor factorizations, but the methods therein are heuristics which are not
guaranteed to converge and do not necessarily form upper-bounding surrogates.

4. Methods.
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4.1. Objectives.
GCP. For N -way tensor XXX ∈ RI1×···×IN+ , we seek the rank-r nonnegative GCP factor-

ization for factors {A(n)}Nn=1 ∈ RIn×r+ under loss `(·) : R+ 7→ R:

L(XXX ,A(1), . . . ,A(N)) =

D∑
i=1

`(xi,mi) +
λ

2

N∑
n=1

‖A(n)‖2F , λ > 0. (4.1)

Here, xi is the ith linear index of the tensor data, and mi is the ith index of the GCP model
MMM := [[A(1), . . . ,A(N)]]. The loss `(·) usually represents the negative log-likelihood of the
data parameterized by the CP factors inMMM. The Tikhonov regularizers with regularization
parameter λ encourage low-rank factors and prevent the entries of factors from becoming
too large.

Streaming GCP. Computing the factorization over the batch tensor may be memory-
prohibitive or the data may be streaming in where we wish to update the model with
every new (hyper)slice. Given tensor slice XXX t ∈ RI1×···×IN , our goal is to compute a GCP
factorization for the entire tensor in a streaming way over T slices, i.e., we wish to factorize
XXX ∈ RI1×···×IN×T , but without revisiting or storing previous data. Each time a new data
slice/hyperslice XXX t arrives, we optimize the following problem for the non-temporal factors

{A(n)}Nn=1 and the temporal weights st ∈ Rr, which are the rows of the temporal factor
matrix S ∈ RT×r that is estimated sequentially in time:

L(XXX t,A(1), . . . ,A(N), st) =

D∑
i=1

{`(xit,mit) +
∑
h∈Ht

wh‖m̄ih −mih‖22}

+
λ

2

N∑
n=1

‖A(n)‖2F +
λ

2
‖st‖22,

(4.2)

where xit is the ith entry of the data slice/hyperslice XXX t, m̄ih is the ith entry of the hth

historical model M̄MMh = [[Ā
(1)
, . . . , Ā

(N)
, sh]] with previous estimates Ā

(1)
, . . . , Ā

(N)
, and

mih is the ith entry of the hth modelMMMh = [[A(1), . . . ,A(N), sh]]. The historical regularizer
sums a weighted combination of least squares losses with weights wh ≥ 0 to penalize the
model differences across time; this encourages fitting CP factors over the global tensor rather
than the most recent data like in subspace tracking algorithms and acts as a “forgetting
factor” to downweight older data. A memory bank of previously estimated GCP models
M̄MMh is stored in the set Ht, where the set membership is updated in some way to include the
most recently observed data and omit older data. The works in [1, 18] proposed a similar
objective function for fitting CP models with the Gaussian log-likelihood–that is, a least
squares objective. In that setting, the joint least squares problem permits efficient ADMM
algorithms with recursive updates of the temporal memory. The same does not apply here,
however, because of the mismatch between the loss `(·) and the least squares regularizer.

4.2. Problem for A(n). The GCP problem is nonconvex between the factors due
to their coupling, and algorithms can generally only be guaranteed to converge to a local
minimizer. Consequently, tensor factorization optimizers typically resort to block coordinate
descent or minimization in each factor A(n). The general optimization problem for A(n), or

equivalently a := vec(A(n)′) ∈ RInr, with all other factors and st held fixed can be recast
as

min
a∈RInr+

D∑
i=1

{`(xi, [Φta]i)}+ rH(a) +
λ

2
‖a‖22, (4.3)
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where Φt = IIn ⊗ (Z(n) � st). Here Z(n) = A(1) � · · · � A(n−1) � A(n+1) � · · · � A(N)

represents the Khatri-Rao product matrix of the other factors held fixed, and

rH(a) :=
∑
h∈Ht

wh
2

D∑
i=1

(m̄ih − [Φha]i)
2 (4.4)

is the historical regularizer re-expressed in terms of a. As [17] noted, all of general loss
functions of interest in [10] (except the Poisson and Gaussian losses, which are convex) are

difference of convex (DC) functions comprising of a function ˘̀(x,m) convex in m plus a con-

cave function ˆ̀(x,m). Furthermore, the most practically used losses employ link functions
constraining the variables to be nonnegative, since nonnegativity typically recovers more
interpretable CP factors. In other words, the loss in (4.3) is most commonly expressed as

`i(a) := ˘̀(xit, [Φa]i) + ˆ̀(xit, [Φa]i) for Φ ≥ 0, λ > 0. Note that the loss is not separable in
each coordinate of a, i.e., aj for j = 1, . . . , R, so (4.3) cannot be solved for aj in closed-form.
In this section, we develop additively separable majorizers of `(·), g(a;a(k)) : RR+ 7→ R for
DC losses that are minimized at each iteration. Given current iterate ak, the majorizers are
functions such that

D∑
i=1

`i(a) ≤ g(a;a(k)) =

R∑
j=1

gj(aj ; a
(k)
j ), ∀aj ≥ 0 (4.5)

D∑
i=1

`i(a
(k)) = g(a(k);a(k)). (4.6)

DC majorizers using Jensen’s inequality and first order Taylor expansions are well-
known in nonnegative matrix factorization literature for constructing majorizing surrogates
of non-Euclidean functions [7, 9, 16, 19]. The SmartCPD algorithm of [17] also leverages
this structure to derive MM/stochastic mirror descent updates for nonnegative GCP fac-
torization, but their methods do not have closed-form updates for problems like streaming
GCP that have historical and Tikhonov regularization terms. An important difference of
this work will be the inclusion of these regularization terms which makes solving for the
minimizers of the surrogates non-trivial.

We derive our majorizers in a similar fashion by upper-bounding ` with a DC surrogate
that first linearizes ˆ̀ and then majorizes ˘̀ using convexity and Jensen’s Inequality [8]. For
the Poisson loss where there is no concave term in the negative log-likelihood, this technique
specializes to a regularized version of the CP-APR algorithm [4]. We can also use Jensen’s
inequality and convexity to majorize rH, yielding surrogate functions

grHj (aj ; a
(k)
j ) =

∑
j

∑
h∈Ht

wh
2

D∑
i=1

(
φijha

(k)
j

[Φha(k)]i

)(
m̄ih −

[Φha
(k)]i

a
(k)
j

aj

)2

, (4.7)

where φij denotes the (i, j)th entry of the matrix Φ. Combining all of the above surrogates,
we obtain the composite upper-bounding surrogate

gj(aj ; a
(k)
j ) := gDC

j (aj ; a
(k)
j ) + grHj (aj ; a

(k)
j ), (4.8)

gDC
j (aj ; a

(k)
j ) :=

D∑
i=1

{αij ˘̀
i

(
xit,

aj

a
(k)
j

[Φa(k)]i

)
(4.9)

+ [∇ˆ̀
i(xt,Φa

(k))]j(aj − a(k)
j ) + ˆ̀

i(xt,Φa
(k))}+

λ

2
a2
j
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for nonnegative scalars αij =
φija

(k)
j

[Φa(k)]i
≥ 0 that sum to one by construction, i.e.

∑R
j=1 αij =

1.
At each iteration k, we minimize the surrogate functions for each aj as

minaj≥0 gj(aj , a
(k)
j ), which after setting the gradient equal to zero, requires solving the

following equations for each aj for j = 1, . . . , R:

D∑
i=1

φijt∇˘̀
i

(
xit,

[Φta
(k)]i

a
(k)
j

aj

)
+

D∑
i=1

φ′ijt∇ˆ̀
i(xit, [Φta

(k)]i))− ξj + µjaj = 0, (4.10)

where ∇˘̀ and ∇ˆ̀ denote the elementwise gradients of ˘̀ and ˆ̀, and

ξj :=
∑
h∈Ht

wh

D∑
i=1

φijhm̄ih (4.11)

µj :=

(
λ+

∑
h∈Ht

wh

D∑
i=1

φijh[Φha
(k)]i

a
(k)
j

)
. (4.12)

Importantly, we note the Φa(k) terms are implemented and computed as

vec(Z(n)A(k,n)′) since all Φ are block-diagonal. Continuing below, we derive the factor
updates in the individual cases for various statistical losses.

Rayleigh. For Rayleigh distributed data x > 0, `(x,m) = π
4 ( xm )2 +2 log(m), ∇˘̀(x,m) =

−π2 x2

m3 , and ∇ˆ̀(x,m) = 2
m . Solving (4.10) yields the following polynomial in the variable

zj = 1/aj : (
−π

2
a

(k)
j

3
D∑
i=1

φijx
2
i

[Φa(k)]3i

)
z4
j +

(
D∑
i=1

2φij
[Φa(k)]i

− ξj
)
zj + µj = 0. (4.13)

The above polynomial is a twice-depressed quartic polynomial z4
j + qjzj + rj = 0 since its

cubic and square terms are zero. Analyzing the signs of its coefficients reveals there is at
most one real positive root by Descartes’ rule of signs, which can be analytically computed
easily using Ferrari’s method.

Gamma. Gamma-distributed data x > 0 has loss `(x,m) = x/m + log(m). (4.10) is
then (

−a(k)
j

2
D∑
i=1

φijxi
[Φa(k)]2i

)
z3
j +

(
D∑
i=1

φij
[Φa(k)]i

− ξ
)
zj + µ = 0, (4.14)

which is a depressed cubic with at most one real positive root that can be analytically found
with Cardano’s formula.

Bernoulli. For Bernoulli distributed data where x ∈ {0, 1}, `(x,m) = log(m + 1) −
x log(m), ∇˘̀(x,m) = −x/m, and ∇ˆ̀(x,m) = 1/(m+ 1). (4.10) becomes(

−a(k)
j

D∑
i=1

φijxi
[Φa(k)]i

)
z2
j +

(
D∑
i=1

φij
[Φa(k) + 1]i

− ξ
)
zj + µ = 0, (4.15)

whose real positive root is given by the quadratic formula.
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Poisson. Similar to binary data, the gradient equations of the majorizers for count
data x ∈ N under a Poisson distribution are also described by quadratics, where `(x,m) =

m− x log(m), ∇˘̀(x,m) = −x/m, and ∇ˆ̀(x,m) = 1.(
−a(k)

j

D∑
i=1

φijxi
[Φa(k)]i

)
z2
j +

(
D∑
i=1

φij − ξ
)
zj + µ = 0. (4.16)

β-divergence (β = 1/2). Because of the quadratic regularizer, solving for the roots of
(4.10) becomes nontrivial. Here, we focus on the cases when β is a rational number to derive
polynomials with integer powers. For β ∈ (0, 1), (4.10) takes the form(

−a(k)
j

2−β D∑
i=1

φijxi

[Φa(k)]2−βi

)
aβ−2
j +

(
D∑
i=1

φij [Φa
(k)]β−1

i − ξ
)

+ µaj = 0. (4.17)

For β = 1/2, letting zj = a
−1/2
j yields depressed quintics with coefficients a ∈ R− and

b, µ ∈ R+ corresponding to the terms above:

az5
j + bz2

j + µ = 0. (4.18)

Polynomials of degree five and higher do not have analytic roots, but again by knowledge
of Descartes’ rule of signs, at most one real positive root exists. We use Julia’s Roots.jl
package and the find zero function with the bisection method to compute the roots. The
bisection method converges linearly, and the number of iterations can be further reduced by
restricting the algorithm’s initial search interval since we know the real positive root lies in
[0, 1 + max{−b/a,−µ/a}].

The key features of the majorizers obtained by our polynomial solvers include the reg-
ularization terms without upper-merging lower polynomial powers to become quadratic like
the work in [21]. Hence, our majorizers for fully-sampled data are tighter upper bounds,
as evidenced by plots of the loss and various surrogates in Fig. 4.1 for a one-dimensional
scalar factor problem. We also remark how the quadratic surrogate, equivalently gradient
descent, not only makes smaller progress with each iterate, but is highly sensitive to the
choice of step size that dictates the curvature of the upper bounding quadratic. Each of our
surrogates has only one unique minimizer, which in many cases can be found in closed-form
arithmetic. We summarize the losses, their associated minimizing surrogate polynomials,
and their solvers in table 4.1.

4.3. Optimization for st. We note here that the optimization for st is the same as
that for A(n), where st itself can be treated as a 1× r factor for the time mode, and wh = 0
for all h.

4.4. Stochastic Augmented Non-Euclidean Surrogates for Tensors Algo-
rithm (SANESTA). The original objective function involves a very large sum of D terms,

i.e. `(x,m) =
∑D
i=1 `i(xi,mi) and furthermore

f(m) = Ex[`(x,m)], (4.19)

where if the data samples are drawn i.i.d., each `(xi,m) is an unbiased estimate of the
objective function. The majorizers (in one block of variables, with the others held fixed)
described thus far also involve this very large sum over D gradients of the loss in (4.10)
that become the primary computational bottlenecks:

g(A(n);A
(n)
k ) :=

D∑
i=1

gi(A
(n);A

(n)
k ). (4.20)
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Loss Polynomial Solver
β = 1/2-divergence Thrice-depressed quintic Bisection method
Rayleigh Twice-depressed quartic Ferrari’s method*
Gamma Depressed cubic Cardano’s formula*
Poisson Quadratic Quadratic formula*
Bernoulli Quadratic Quadratic formula*
Neg. Binomial Quadratic Quadratic formula*

Table 4.1: Statistical losses, the polynomial gradient equations to minimize their surrogates,
and the solvers to obtain the minimizers. * = closed-form solution.

(a) β = 1/2-divergence (b) Gamma loss

Fig. 4.1: Upper bounding majorizers for a one-dimensional problem. The x-axis represents
the scalar variable, and xk represents the current iterate value. Unified MM uses the update
from [21]. The quadratic surrogate (i.e. gradient descent) is illustrated for a step size of 0.1.

This large sum requires forming and storing the entire Khatri-Rao product matrix of
factors Z(n), which itself is unfeasible for large tensor data. The works in [13] and [14]
showed that such MM algorithms defined over a large sum of surrogates can be solved
stochastically or incrementally, respectively. However, the work in [14] still requires storing
a memory of the previous surrogates, which for our problem is not feasible. Instead, we
perform stochastic updates like in [13] by drawing a random sample i ∈ D to form surrogate
gk(A;Ak, [i]) (where g(A;Ak,Ω) :=

∑
i∈Ω gi(A;Ak) denotes forming surrogate g(A;Ak)

from the samples in set Ω) and then only storing and recursively updating one extra surrogate
in memory:

A
(n)
k+1 = min

A(n)∈RIn×r
ḡk(A(n)), ḡk = (1− θk)ḡk−1 + θkgk(A(n);A

(n)
k , i), k ≥ 1. (4.21)

We use weights θk = 1/
√
k which satisfy the conditions for (θk)k≥1 in [13]. The MM updates

for (4.21) are very similar to stochastic gradient averaging, where the polynomial coefficients
in (4.10) become weighted gradient averages.

Rather than single sample updates, it is preferable to take small mini-batches of samples
to expedite convergence. Because our MM algorithms are first-order gradient methods, we
can form surrogates from unbiased stochastic gradients like Kolda & Hong [12]. Below we
describe two sampling strategies for incorporating unbiased gradients from mini-batches into
the stochastic MM approach.
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Uniform sampling is the simplest method to implement and works well with densely
distributed data, like Rayleigh or Gamma, where the s number of sampled gradients are
upscaled by D/s. For samples Ωs drawn uniformly at random, the surrogates are updated
as

ḡk = (1− θk)ḡk−1 +
D

s
θkgk(A(n);A

(n)
k ,Ωs), k ≥ 1. (4.22)

In the case of sparse data, the authors in [12] showed uniform sampling performs poorly
since it often misses the nonzero values, which are more important to the model and its
gradients. In that work, the authors proposed stratify sampling the gradients based on the
sets of nonzero and zero data indices, denoted Ωnnz and Ωz respectively (where |Ωnnz| +
|Ωz| = D). Here, the gradients corresponding to the p sampled nonzero indices out of
η := |Ωnnz| total nonzeros are uniformly chosen at random from Ωnnz and upscaled by η/p,
and the q gradients of the zeros are uniformly chosen from Ωz and upscaled by |Ωz|/q =
(D−η)/q. We note that choosing the zeros is done like described in [12] where we overdraw
a random sample of all tensor entries and then check and omit the samples if they are
nonzero. Adapting to the MM framework, the surrogates are updated as

ḡk = (1− θk)ḡk−1 +
η

p
θkgk(A(n);A

(n)
k ,Ωnnz) +

D − η
q

θkgk(A(n);A
(n)
k ,Ωz), k ≥ 1.

(4.23)

Forming the subsampled Z(n) can then done efficiently as described in [3] for com-
puting the subsampled-Khatri-Rao product matrix from the chosen Cartesian indices. We
emphasize special care must be taken in sampling, however, since the MM updates are multi-
plicative. If a gradient with respect to aj is zero, then the minimizing root to the polynomial
is also zero, and aj will be set as such. Since the MM updates are multiplicative, setting
any aj to zero will trap the algorithm at this stationary point. To avoid these scenarios, this
simply requires just sampling at least once on every row of the mode-n matricized tensor
X(n) to guarantee a gradient with respect to each element of A(n). Another important im-
plementation detail is that we prohibit any entry from being set exactly to numerical zero;
instead, we limit any entry to a minimum of 10−6; [4] gives more details on “scooching” the
entries away from numerical zero in the CP-APR algorithm.

4.4.1. Block-coordinate descent. Here, we put together all the pieces to express
the surrogates for each factor in an iteration of MM optimization. In the block-coordinate
descent framework of tensor optimization, our heuristic will be to update the surrogates in
an alternating way such that the most current surrogate is formed from the updated factors
of the previous iterations, the historical weights, the previous temporal weights, and the
current estimate of st. In the case of uniform sampling with samples Ω, now denote the
surrogate of the nth mode at MM iteration k as

g
(n)
k =

D

|Ω|g
(
A(n); {A(j)

k }Nj=1, st,k, {Ā
(j)}Nj=1, {wh, sh}h∈Ht ,Ω

)
(4.24)

where A
(n)
k is the current iterate of the factor being estimated to form the majorizer, A

(j)
k

for j 6= n and st,k are the current iterates for the factors and current temporal weights,

respectively, forming the Khatri-Rao product matrix, {Ā(j)}Nj=1 are the previous factor

estimates from the t− 1th streaming iteration, and {wh, sh}h∈Ht are the historical terms.

Then form the averaged surrogate ḡ
(n)
k = (1− θk)ḡ

(n)
k−1 + θkg

(n)
k and compute

A
(n)
k ← argmin

A(n)∈RIn×r+

ḡ
(n)
k (A(n)).
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The next mode for n+1 in the block coordinate descent scheduling will then use the updated

A
(n)
k .

The surrogates for stratified-sampled data, with nonzero samples Ωnnz and zero samples
Ωz, are similar:

g
(n)
k =

η

p
g
(
A(n); {A(j)

k }Nj=1, {Ā
(j)}Nj=1, {wh, sh}h∈Ht ,Ωnnz

)
+
D − η
q

g
(
A(n); {A(j)

k }Nj=1, {Ā
(j)}Nj=1, {wh, sh}h∈Ht ,Ωz

)
.

(4.25)

We detail SANESTA in algorithm 1.

4.5. Complexity analysis. SANESTA is a first-order optimization method with com-
putational complexity on par with gradient methods. For a CP rank-r tensor slice of sizes
I1×· · ·×IN , computing the first polynomial coefficient for each mode costs O(nnz(XXX t)Inr),
since the multiplication with the data only depends on the number of nonzero entries, so this
computation can be carried out efficiently with sparse arrays. Computing the second coeffi-
cient incursO(|Ωt|Inr) flops, where |Ωt| is the number of samples drawn. Solving for the root
of each polynomial costs K flops, where K is either the number of bisection iterations for β-
divergences or otherwise a small constant for algebraically computing the root. In total, the
computational cost of one SANESTA iteration is

∑N
n=1O((|Ht|+1)(nnz(XXX t)+|Ωt|+K)Inr),

where |Ht| = 0 when solving for st.

Algorithm 1 Stochastic Augmented Non-Euclidean Surrogates for Tensors Algorithm
(SANESTA)

Require: Previous factor estimates {Ā(n)}Nn=1, weights and previous temporal weights
wh, sh, ∀h ∈ H, number of samples S, maximum number of iterations K, tolerance
ε > 0, λ > 0.

Require: XXX t ∈ RI1×...×IN+ (data).

1: Initialize A
(n)
0 ∈ RIn×r+ for n = 1, . . . , N and st ∈ Rr+. D =

∏N
n=1 In

2: Initialize g
(n)
0 = 0, ∀n = 1, . . . , N

⋃
t.

3: while iterations k < K do
4: θk = 1/

√
k;

5: for n = 1, . . . , N
⋃
t do

6: if Uniform Sampling then
7: Draw S number of samples in Ω uniformly at random;

8: Form g
(n)
k in (4.24);

9: if Stratified Sampling then
10: Draw S number of samples in Ωnnz and Ωz uniformly at random;

11: Form g
(n)
k in (4.25);

12: ḡ
(n)
k = (1− θk)ḡ

(n)
k−1 + θkg

(n)
k ;

13: if n 6= t then

14: A
(n)
k ← argminA(n)∈RIn×r+

ḡ
(n)
k (A(n)) ;

15: else
16: st,k ← argminst∈Rr+ ḡ

(n)
k (st);

17: k ← k + 1

18: return {A(n)}Nn=1, st
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5. Experiments.

5.1. Setup. We synthetically generate tensor data observed under various probabil-
ity distributions to empirically test our algorithm SANESTA against stochastic gradient
descent with ADAM (SGD-ADAM) [12]. Each experiment generates non-temporal factors

A(1), . . . ,A(N) and temporal factor S ∈ RT×r+ . For densely-distributed tensor data, like
Rayleigh, Gamma, and β = 1/2, we generate sinusoidal factors whose columns are cosine
waves with different frequencies and a bias of 1.1. Using Julia indexing notation, the entries
of factor A(n) are

A(n)[t, c] = 1.1 + cos

(
2πc(t− 1)

D

)
, t = 1, . . . , In, c = 1, . . . , r, D = ΠN

j=1Ij .

We generate S in the same manner. From the synthetic factors, we form the full batch
CP model tensor MMM ∈ RI1×···×IN×T+ and draw samples under the chosen distribution to
obtain observations XXX . For the Gamma and β distributions, the data are scaled to be un-
normalized, since Julia’s Distributions.jl package generates data from the normalized
distribution.

For sparse Bernoulli and Poisson distributed tensor data, we follow the procedure in [4]
and in the TensorToolbox [2] for generating “spikey” factors with a small number of large
factor entries and the rest being a small positive constant. We formMMM from the factors and
either draw samples from a Poisson distribution, or for binary data, we convert the odds to
probabilities MMM/(1 +MMM) and draw binary samples as XXX i1,...,iN ,t = I{p <MMMi1,...,iN ,t} for
some random number p ∈ [0, 1] where I{·} ∈ {0, 1} is the indicator function.

Our synthetic experiments examine the recovery of non-temporal factors A(1), . . . ,A(N)

and temporal weights st for one iteration t of streaming GCP givenXXX t. For M̄MMh, we simulate

previous estimates of Ā
(j)

as noisy-perturbations of the planted model factors A(j) and sh
as the true rows of S for all h ∈ H, where we set H to be the most recent time indices.

We generate a 25 3-way tensor slices of sizes 30×30×30 from a CP rank-3 planted model
and estimate the factorization for the last slice under Rayleigh and β = 1/2 distributions.
We set wh = ω ∗ (0.9)(25− h) for h = 1, . . . , 24 and choose a small ω to recover factors that
interpolate between the previous factors and the factors that maximize the log-likelihood
for just the most current slice.

In a manner similar to how we estimate the gradients, we also estimate the log-likelihood
value at iteration k, Lk, from uniform or stratified samples as described in [Sec 5.1, [12]]. We
typically sample 10% of the entries to obtain a more reliable estimate that can differentiate
between the performances of the two algorithms. From the log-likelihood value estimate, we
normalize by the log-likelihood of the planted model, i.e. we compute Lk−L∗. In addition,
we track the CPD factor score εt ∈ [0, 1] given in algorithm 2. The CPD factor score
takes into consideration the scaling and permutation ambiguities in the CP factorization
to compute how aligned the estimated factors are to the planted model. The factor score
returns 1 as the best score and 0 as the poorest.

We implemented both SGD-ADAM [12] and SANESTA in Julia and ran our experiments
on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor. For each experiment,
we initialize both algorithms from the same set of nonnegative randomly-generated factors,
with 20 different initializations.

5.2. Results.

Dense data. We compare SANESTA and ADAM on performing one streaming iteration
to compute the tth factorization for dense Rayleigh and β = 1/2-distributed data. We set
ω = 0.01, µ = 0.01 and ω = 0.001, µ = 0.1, respectively. For ADAM, we found the learning
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Algorithm 2 CPD factor score

Require: Estimated factors {F (n)}Nn=1, true factors {A(n)}Nn=1 where A(n) ∈ RIn×r
1: scores = 1r

2: for n = 1, . . . , N do
3: for i = 1, . . . , r do . Normalize factors to have unit-norm columns.
4: F (n)[:, i]← F (n)[:, i]/‖F (n)[:, i]‖22
5: A(n)[:, i]← A(n)[:, i]/‖A(n)[:, i]‖22
6: scores = scores ∗max

{∣∣∣F (n)′A(n)
∣∣∣ ,dims = 1

}
. Compute inner products of

the factors.
7: return εt = 1

r

∑r
i=1 scores[i]

rates to be 0.1 and 0.01 for the two problems respectively to work best. Both algorithms
sample 0.1% of the samples uniformly at random, estimate the log-likelihood from 1% of
the samples, and execute for 400 iterations. We plot each of the individual trials’ statistics
by wall-clock time, as well as their medians in Fig. 5.1. The estimated log-likelihoods in
Fig. 5.1(a) show SANESTA rapidly converges whereas ADAM slowly makes progress with
large variance in its iterates. Fig. 5.1(b) reveals SANESTA’s iterates converge to estimates
far closer to the planted model in factor score, and Fig. 5.1(c) confirms this by visually
plotting the recovered factors for one the trials at the termination of optimization. These
plots are read as “Mode (n), factor: (j)” for referring to the jth column of the factor A(n).
The plotted factors’ interpolation between the planted model factors and the previous factors
demonstrate the streaming algorithm’s ability to modify upon the estimate from the previous
factors. Likewise, we observe similar results for β = 1/2-distributed data in Fig. 5.2.

Sparse binary data. We generate 30× 35× 40-size binary data from the “spikey” factor
planted model with 7 spike components in each factor, generating data that is just over
12% sparse. For ω = 0.0001, µ = 0.1, both algorithms optimize the streaming objective
for the Bernoulli log-odds likelihood and sample 420 nonzeros and zeros (equivalently 2%
of the total entries) for the gradients and 4200 nonzeros and zeros (equivalently 20% of
the total entries) for the log-likelihood estimate. We set ADAM’s learning rate to 0.01.
Fig. 5.3 displays our results, again demonstrating the superior optimization performance of
SANESTA over ADAM for the same sampling schedule with similar computation costs for
the gradients. Fig. 5.3(b)(c) show SANESTA’s estimates lie closer to both the previous and
planted model factors.
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(a) Estimated log-likelihood (b) Factor scores.

(c) Factor scores.

Fig. 5.1: Rayleigh-distributed 30× 30× 30 tensor slices.
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(a) Estimated log-likelihood (b) Factor scores.

(c) Factor scores.

Fig. 5.2: β = 1/2-distributed 30× 30× 30 tensor slices.
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(a) Estimated log-likelihood (b) Factor scores.

(c) Factor scores.

Fig. 5.3: Bernoulli-distributed 30× 35× 40 tensor slices.
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6. Conclusions. In this paper, we presented an algorithm, SANESTA, that minimizes
tightly majorizing surrogate functions of the streaming GCP problem, requires no tunable
optimization hyperparameters, can easily be adapted with stochastic sampling for large-scale
data, and achieve convergence in far fewer iterations with similar computational complexity
as ADAM.

Next, we anticipate testing both SANESTA and ADAM in a fully-streaming problem
to compare the CP factor estimates across time iterations. Each streaming iteration itself
takes considerable time to optimize, even with our algorithm that improves upon ADAM,
so studying how inexactly solving the problem for each iteration is of interest. Other future
work includes further understanding the interplay of the least squares historical regularizers
with the log-likelihood of the statistical loss, and how the choice of weights wh affect conver-
gence and quality of factor estimates. The effects of initialization also play an important role
in the optimization. In a practical application, one would likely initialize with the previous
factors, but how the optimum is characterized when the previous factors are far away from
the factors generating the slice at time t is not well-understood yet.
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SPACE-TIME REDUCED-ORDER MODELING FOR UNCERTAINTY
QUANTIFICATION

RUHUI JIN ∗, FRANCESCO RIZZI † , AND ERIC PARISH ‡

Abstract. This work focuses on the space-time reduced-order modeling (ROM) method for solving
large-scale uncertainty quantification (UQ) problems with multiple random coefficients. In contrast with
the traditional space ROM approach, which performs dimension reduction in the spatial dimension, the
space-time ROM approach performs dimension reduction on both the spatial and temporal domains, and
thus enables accurate approximate solutions at a low cost. We incorporate the space-time ROM strategy
with various classical stochastic UQ propagation methods such as stochastic Galerkin and Monte Carlo.
Numerical results demonstrate that our methodology has significant computational advantages compared
to state-of-the-art ROM approaches. By testing the approximation errors, we show that there is no obvious
loss of simulation accuracy for space-time ROM given its high computational efficiency.

1. Introduction. Quantifying uncertainties in physical systems plays an important
role in numerous fields, including climate modeling [6], hypersonic aerodynamics [4, 8] and
quantum mechanics [11]. It has long been a computational challenge to model and simulate
large-scale dynamical and control systems with high-dimensional parametric uncertainties.
Researchers have been developing model reduction methods [3, 10] to tackle this computa-
tional bottleneck. By building and working with a reduced-order model (ROM) as a quali-
fied approximation to the full-order model (FOM), the overall computational complexity is
reduced significantly.

Current ROM studies mostly consider the space ROM method and focus on only spa-
tial dimension reduction but maintain the full dimensionality of the temporal domain. As
a result, space ROMs can have limited computational savings for unsteady problems char-
acterized by, e.g., small required time steps or long simulation horizons. Regarding the
UQ approach, on one hand, Monte Carlo (MC) is by far the most popular method applied
in the ROM workflow [12, 13] due to its reliability and implementation simplicity. On the
other hand, other types of UQ propagation methods, for example, the stochastic Galerkin
(SG) technique [1,9] based on polynomial chaos expansion, have advantages of good spectral
accuracy and convergence over the classical MC.

In this work, we study the space-time ROM method [2,5] constructed via Galerkin pro-
jection and space-time proper orthogonal decomposition. This novel approach is considered
a variation of the space ROM. Its implementation simply stacks the space and time dimen-
sions to achieve the model reduction by finding a lower-dimensional representation for both
spatial and temporal domains. The method simultaneously approximates a large-scale PDE
model for all points in space and time within a much faster computing time compared to the
commonly used space ROM method. Additionally, the space-time ROM approach is often
equipped with more favorable error bounds and stability properties than space ROMs [5].

We apply various UQ propagation techniques such as Monte Carlo and stochastic
Galerkin in the space-time ROM framework. We test the described methodology on
advection-diffusion PDE problems with multi-dimensional parametric uncertainties. Our
numerical results show that the space-time approach can result in huge computational speed-
ups while maintaining accurate approximated solutions.

The main contributions of this work are:
1. We study the space-time ROM method and combine it with the well established

stochastic Galerkin (SG) technique. By constructing polynomial basis on the re-
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duced space-time domain, we demonstrate that the space-time ROM with SG has
good accuracy and a faster computing time as compared to traditional ROM tech-
niques (e.g., the space ROM with MC sampling).

2. We implement the proposed computational scheme for one and two-dimensional
advection-diffusion-reaction PDE problems.

3. We provide thorough numerical assessments for the space-time ROM with respect
to the computational time, approximation errors and convergence property given
increasing number of samples (MC) and polynomial degrees (SG).

2. Mathematical background.

2.1. Full-order model. We consider the numerical solution to the parametrized dy-
namical system:

u̇(t,µ) = f(u(t,µ), t,µ)), u(0,µ) = u0(µ) (2.1)

where
1. µ ∈ D ⊂ RNµ denotes uncertain parameters;
2. u : [0, T ] × D → RNs is the time-dependent, parametrized state as the solution to

problem (2.1);
3. f : RNs × [0, T ]×D → RNs is the velocity;
4. u0 ∈ RNs is the initial state.

We aim to understand how the system state u(t,µ) responds as a function of time t
and uncertain parameters µ. To this end, we apply numerical simulation techniques to solve
the UQ problem (2.1).

We now introduce the time-discretized form of the main problem (2.1). In particular,
we discretize the temporal domain [0, T ] into Nt time instances characterized by tn = n∆t
where ∆t denotes the time step. For example, one classical time-discretization method is
the Crank-Nicolson method which yields a sequence of discrete solutions un(µ) ≈ u(tn,µ) ∈
RNs as the implicit solution to the system of equations at each time step n = 1, . . . , Nt:

rn(un,un−1,µ) : RNs ⊗ RNs ⊗ RNµ → RNs

:=
un − un−1

∆t
− 1

2

(
f(un, tn,µ)− f(un−1, tn−1,µ)

) (2.2)

with initial condition u0 = u0(µ). Note the parametric dependence of the state has been
suppressed in the above for simplicity. Thus a discrete representation of the FOM system is

[u1(µ),u2(µ), . . . ,uNt(µ)] ∈ RNs ⊗ RNt .

2.2. Projection-based model reduction. The FOM solving process is computation-
ally expensive in practice when the spatial dimension Ns and temporal dimension Nt are
large. The reduced-order modeling technique is proposed to overcome this computational
challenge. It follows an offline-online paradigm. Please see the workflow Figure 2.1 below.

In the offline phase, we sample and plug in a certain number of uncertain parameter
instances into the full-order model and solve the system accordingly. The obtained sample
solutions are collected to form a snapshot matrix. We then identify a low-dimensional
subspace by performing proper orthogonal decomposition (POD) for the state snapshots.
The governing equation (2.1) is projected onto this trial subspace to create a reduced-
order model. The result of this process is a reduced-order model which can be solved more
efficiently.

2.3. Trial subspace and POD.
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Fig. 2.1: ROM workflow

2.3.1. Spatial trial subspace. Suppose in the offline training procedure, we obtain
a collection of snapshot solutions for Ntrain randomly drawn parameter instances :

Utrain =
[
u1(µ1), . . . ,uNt(µ1), . . . ,u1(µNtrain

), . . . ,uNt(µNtrain
)
]
∈ RNs×(NtNtrain).

The proper orthogonal decomposition method identifies a lower-dimensional trial sub-
space represented by an orthonormal matrix Φ from the above training solution set. In
particular, we consider the optimization problem in a least squares sense:

arg min
Φ∈RNs×K

‖ΦΦ>Utrain −Utrain‖22, subject to Φ>Φ = IK , (2.3)

where K is the subspace dimension. For the choice of K, we set a relative energy tolerance
threshold etol and compute K such that the selected basis Φ ∈ RNs×K preserves the amount
of energy for the training solution set Utrain that exceeds the threshold.

To solve (2.3), we compute the singular value decomposition of Utrain: L, s, =
SVD(Utrain). The subspace dimension K is determined by

K := arg min
K∈N

∣∣∣∣∣etol −
∑K
i=1 s

2
i

‖s‖22

∣∣∣∣∣ .
We then select the first K columns of the left singular vectors L to form the basis Φ ∈
RNs×K .
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2.3.2. Space-time trial subspace. In the space-time formulation, instead of express-
ing residuals of all time steps as in (2.2), we formulate the residual in just one system:

−→r (−→u (µ), t,µ) = 0 ∈ RNsNt , (2.4)

where we concatenate solutions and residuals of all time steps along one dimension, i.e.−→u (µ) = [u1(µ)>, . . . ,uNt(µ)>]> ∈ RNsNt .
Identifying a space-time trial subspace is rather similar to identifying the spatial sub-

space. To be more specific, given a collection of space-time training solutions

−→
Utrain = [−→u (µ1), . . . ,−→u (µtrain)] ∈ R(NsNt)×Ntrain ,

we apply POD to find a lower-dimensional subspace that captures most of the energy of the
above solution set.

2.4. Galerkin projection. After identifying a basis Φ of the training solution set, we
apply Galerkin projection to construct a reduced-order model. We denote the approximated
low-dimensional solution û(µ) ∈ RK . By the assumption of u(µ) ≈ Φû(µ), we impose the
residual of the full-order model to be orthogonal to the basis:

Φ>r(Φû(µ), t,µ) = 0 ∈ RK (2.5)

and solve the above reduced system for û(µ).
Note that the above general forms of state solution û and residual r in (2.5) can be

replaced by
−→̂
u ,−→r for the space-time ROM approach.

3. Uncertainty quantification methods. In the above section, we introduced the
spatial-Galerkin and space-time-Galerkin ROMs to reduce the computational cost associated
with solving the forward model. This section details how these ROMs can be combined with
several classical UQ propagation methods to solve the underlying UQ problem. In particular,
we consider Monte Carlo (MC) sampling and stochastic Galerkin projection.

3.1. Monte Carlo sampling. The MC methodology simply follows as:
1. draw samples of random parameters from certain probability distributions;
2. solve the system (2.1) based on these parameter instances;
3. compute quantities of interest (e.g., mean, variance) from the ensemble of solutions.

3.2. Stochastic Galerkin. We first provide some background of polynomial chaos
expansion (PCE) which the stochastic Galerkin approach is built upon. We consider a
parametrized linear system

A(µ)u(µ) = b(µ) ∈ RN , (3.1)

where the linear operators A : D → RN and b : D → RN are constructed correspondingly
from the residuals of spatial domain (2.2) (N = Ns) or space-time domain (2.4) (N = NsNt),
with initial condition given by u0 = u0(µ) ∈ RNs .

The idea is to approximate the numerical solution function u(·) : D → RN by using

a spectral approximation that lies in the span of a finite set of polynomials {ψj(·)}Nψj=1 ⊂
L2(D). The mathematical formulation is as follows:

u(µ) ≈ ũ(µ) =
(
ψψψ(µ)> ⊗ IN

)
m, (3.2)

where ψψψ(µ) = [ψ1(µ), . . . , ψNψ (µ)]> ∈ RNψ denotes the collection of the polynomial basis
and m ∈ RNNψ is the coefficient vector.
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Thus we can define the approximation residual with respect to polynomial coefficients
and uncertainty parameters,

r(m,µ) : RNNψ ⊗ RNµ → RN
:= A(µ)

(
ψψψ(µ)> ⊗ IN

)
m− b(µ)

=
(
ψψψ(µ)> ⊗A(µ)

)
m− b(µ).

(3.3)

We compute the unknown coefficients m by the residual formula.
We now formally introduce the stochastic Galerkin approach to solve for the coefficients

m in (3.3). Given a density function ρ for the probability space D, we define the inner
product:

〈g(µ), h(µ)〉ρ =

∫
D
g(µ)h(µ) ρ(µ)dµ, (3.4)

where g, h ∈ L2(D) are functions. The expectation of a function g is given by:

E[g] =

∫
D
g(µ) ρ(µ)dµ. (3.5)

To solve for the coefficients in (3.3), the stochastic Galerkin method asks to impose
orthogonality on the residual of the system (3.3) with respect to the inner product 〈·, ·〉
(3.4). That is to say, we restrict the residual to be orthogonal to the polynomial bases, i.e.

〈ψj , ri(m)〉ρ = E[ψj ri(m)] = 0,

for all residual dimensions i = 1, . . . , N, and stochastic dimensions j = 1, . . . , Nψ. An
alternative vector expression is

E[ψψψ ⊗ r(m)] = 0 ∈ RN Nψ .

From the PCE residual formula given in (3.3), we end up with solving

E[ψψψψψψ> ⊗A] m = E[ψψψ ⊗ b] (3.6)

and form an approximating function solution ũ(·) by (3.2) at each time step t = 1, . . . , Nt.
Similarly, for the stochastic Galerkin ROM solution û(·) : D → RK , based on the

Galerkin projection approach shown in (2.5), we solve coefficients m̂ ∈ RKNψ in a reduced
system:

E[ψψψψψψ> ⊗Φ>AΦ] m̂ = E[ψψψ ⊗Φ>b] (3.7)

and formulate û(·) by
(
ψψψ(µ)> ⊗ IK

)
m̂.

We would like to remark that, for SG space ROM method, we solve (3.7) for function
û(·) at each time step, while in the SG space-time ROM scheme, we solve (3.7) and obtain

function solution
−→̂
u (·) for all time steps at once. We additionally remark that both the SG

space ROM and SG space-time ROM methods result in significantly smaller solution vectors
than the standard SG approach and are thus significantly more computationally tractable.

4. Numerical experiment I: 1D parametrized advection-diffusion problem.
We focus on the numerical solution of the one-dimensional parametrized advection-diffusion
problem with initial and boundary conditions:

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
,

u(0, t, (c, ν)) = 0, ∀ t ∈ [0, 1], (c, ν) ∈ D

u(x, 0, (c, ν)) = 0, ∀ x ∈ [0, 1], (c, ν) ∈ D

(4.1)
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where the state u : [0, 1] × [0, 1] × D → R. Here, the wave speed c ∼ N (1, 0.15) and
the diffusion coefficient ν ∼ U [0.01, 0.02]. We set the initial condition to be û0 = 0 for
the space ROM, which exactly enforces the homogeneous initial conditions of the original
problem (4.1). The homogeneous initial conditions are trivially satisfied for the space-time
ROM. It is noted that more complex initial conditions can be handled by building an affine
trial subspace centered about the initial conditions.

We apply the backward difference scheme for spatial discretization withNs = 255 spatial
degrees of freedom. For time discretization, we employ the Crank-Nicolson method with
uniform time step ∆t = 0.001 and implicitly solve results for all Nt = 1/∆t = 1000 time
instances. For consistency, we use the same time step in the online phase of both FOM
and space ROM approaches and solve the system iteratively at each time step. For the
space-time ROM method, we directly obtain the solution at all time steps.

In terms of the ROM solving workflow — see Figure 2.1, we set the number of training
samples to be 20 in the offline phase and select a trial subspace that captures at least
99.9999% of the energy in the original snapshot solution set.

4.1. Numerical results. We first consider ROMs equipped with the Monte Carlo
sampling approach for the UQ problem (4.1). In what follows, we discuss the computational
efficiencies of space ROM and space-time ROM methods in comparison with the FOM
solutions. The computation time of a ROM method is calculated as the total running time
of:

finding trial subspace + building ROM system + solving ROM system. (4.2)

We test FOM and ROM methods on 10, 000 MC samples and give a detailed time
assessment for space and space-time ROMs in Table 4.1. From the table, we can see that
the actual solving time (the third column) of the space-time ROM method is 8000 times
lower than the time of space ROM, which shows the computational advantages of the space-
time ROM approach.

Table 4.1: Computation time for each step in the workflow (unit: second).

find trial subspace build ROM solve ROM

space ROM 0.606 0.005 245.507

space-time ROM 0.197 0.370 0.323

To evaluate ROM methods’ efficiency, we employ the speed-up metric, i.e., the result
of FOM’s computation time divided by ROM’s computation time given the same number
of Monte Carlo samples. These time results are obtained by the same experiment for Table
1. It is shown in Figure 4.1 that the MC space-time ROM method has much greater (3000
times) speed-up compared to the space ROM method.

We proceed to investigate the convergence of the space and space-time ROM methods.
Given a certain number of Monte Carlo samples, we plot the relative errors of solution mean
and variance respectively for FOM, space ROM and space-time ROM methods. The relative
errors for solution mean and variance are defined as follows:

‖E[u]− sample mean[Φû]‖2
‖E[u]‖2

,
‖var[u]− sample variance[Φû]‖2

‖var[u]‖2
,

where E[u], var[u] are the expectation and variance of true solution obtained by 12 million
FOM MC samples. sample mean[Φû] and sample variance[Φû] denote the empirical eval-
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Fig. 4.1: Monte Carlo ROM speed-up.

uation for approximated solutions by MC sampling. Note that in the FOM setting, the
projection basis Φ is simply the identity matrix.

Regarding the reproducibility of the experiment, we set a random seed and draw 10, 000
pairs of random samples to run the test. The errors shown in Figure 4.2 are averaged results
from 5 different repetitions of the experiment.

(a) solution mean (b) solution variance

Fig. 4.2: Monte Carlo convergence: relative error versus number of samples.

In Figure 4.2, all three methods converge well as the number of MC samples increases.
The MC FOM method achieves the lowest solution errors, while the MC space-time ROM
method in general has the largest errors, especially for the solution variance. We emphasize
that the accuracy of both the space and space-time ROMs can be improved by using more
basis vectors. Moreover, from the observation on the curves’ tendency, the stability of the
three methods are rather similar. These numerical results imply space-time approach in
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general owns good accuracy and stability properties.
Another important UQ propagation method is stochastic Galerkin based on polynomial

chaos expansion (PCE) — see Section 3.2 for details. Following the same layout in the Monte
Carlo case, we are interested in the computational speed-ups and convergency properties of
stochastic Galerkin ROM approaches.

In order to demonstrate the computational efficiency, we plot the space and space-time
ROM methods’ speed-ups depending on various SG approximation polynomial degrees in
Figure 4.3. The speed-up gradually increases as the polynomial degree grows. Moreover,
the space-time ROM method achieves greater speed-ups than the space ROM.1

Fig. 4.3: stochastic Galerkin ROM speed-up.

We discuss the convergence performances of SG FOM and ROM methods. Similarly, we
plot the relative errors of solution mean and variance as quantities of interests in Figure 4.4.
The relative errors in the SG setting are defined as:

‖E[u]− E[Φû]‖2
‖E[u]‖2

,
‖var[u]− var[Φû]‖2

‖var[u]‖2
,

where the expectation and variance of the true solution obtained by 12 millions FOM MC
simulations. We use integrations like (3.5) to calculate the expectation and variance for
approximated solution function Φû.

Figure 4.4 shows that FOM, space ROM and space-time ROM implemented by the
stochastic Galerkin strategy all converge smoothly as the approximation polynomial degree
increases. Similar to the MC case, space-time SG ROM has slightly larger errors than the
other two methods. We again emphasize that the accuracy of the space and space-time
ROM can be improved by including more basis vectors.

1Computational times are reported from one run only. We expect that averaging over multiple runs will
smooth the observed trends; in particular, the space ROM at polynomial degree 5.
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(a) solution mean (b) solution variance

Fig. 4.4: stochastic Galerkin convergence: relative error versus maximal polynomial degrees.

5. Numerical experiment II: 2D parametrized advection-diffusion problem.
In this section, we consider a rather similar advection-diffusion problem to (4.1), but in
higher dimensions and with more parameters. Specifically, we consider the following two-
dimensional parametrized system with initial and boundary conditions:

∂u

∂t
+ b cos(

π

3
)
∂u

∂x
+ b sin(

π

3
)
∂u

∂y
+ σu = ν

(
∂2u

∂x2
+
∂2u

∂y2

)
,

u((0, y), t, (b, σ, ν)) = 0, ∀ y ∈ [0, 1], t ∈ [0, 2.5], (b, σ, ν) ∈ D

u((x, 0), t, (b, σ, ν)) = 0, ∀ x ∈ [0, 1], t ∈ [0, 2.5], (b, σ, ν) ∈ D

u((x, y), 0, (b, σ, ν)) = 0, ∀ (x, y) ∈ [0, 1]× [0, 1], (b, σ, ν) ∈ D

(5.1)

where the state u : [0, 1] × [0, 1] × D → R. Here, the speed b ∼ N (0.5, 0.1), the reaction
coefficient σ ∼ U [0.003, 0.005] and the diffusion coefficient ν ∼ U [0.9, 1.1].

Similarly, we apply the second-order backward difference scheme for spatial discretiza-
tion with Nsx = 63, Nsy = 63 nodes respectively in the x and y directions, hence total
Ns = Nsx × Nsy = 3969 degrees of freedom on the spatial domain. We still apply the
Crank-Nicolson method with uniform time step ∆t = 0.005 and implicitly solve results for
all Nt = 2.5/∆t = 500 time instances.

We set the number of training samples to be 20 in the offline phase and select a trial
subspace that captures at least 99.9999% of the energy in the original snapshot solution set.

We first show the computational efficiencies of the MC space ROM and space-time ROM
methods. The computation time of a ROM method is calculated as same as in (4.2).

In order to identify a spatial trial subspace for the numerical solution of (5.1), one
needs to do a singular value decomposition on a Ns × NtNtrain = 3969 × 10000 snapshot
matrix that has a large number of columns. This procedure is so expensive that it may even
exceed the actual computation time of solving the reduced system. Therefore, we propose
the random range finder (RRF) method [7] for the spatial subspace finding to reduce this
overhead complexity. The methodology of RRF is introduced as follows:

1. fix the number of truncated columns K̂;
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2. right multiply a Gaussian testing matrix G ∼ N (0, 1)NtNtrain×K̂ on the training
solutions Utrain ∈ RNs×NtNtrain ;

3. compute the svd for the resulting matrix with a much reduced number of columns

UtrainG ∈ RNs×K̂ and keep the left singular vectors to be the basis.

5.1. Numerical results. In Table 5.1, we test FOM and ROM methods on 2000 MC
samples and provide a time report for space and space-time ROMs. For the setup of RRF,
we pick the number of truncated columns to be K̂ = 20 versus Ktrue = 12 applying a
conventional svd on Utrain.

Some important observations from Table 5.1 are: (1) The solving time (the third table
column) of the space-time ROM method is 300 times lower than the time of space ROM;
(2) Applying RRF for spatial trial subspace reduces almost 1000 times of the computation
time compared to the conventional spatial subspace finding — see the first table column.

Table 5.1: Computation time for each step in the workflow (unit: second).

find trial subspace build ROM solve ROM

space ROM 77.908 0.006 63.059

space ROM (RRF) 0.822 0.007 76.351

space-time ROM 4.016 1.055 0.227

From the same experiment for Table 5.1, we report the ROM speed-ups in Figure 5.1.
The speed-up’s metric is the same as in Figure 4.1. We again observe that the space-time
ROM method is the fastest among the three methods.

Fig. 5.1: Monte Carlo ROM speed-up.

We next discuss the convergence property. Figure 5.2 shows the convergence of the FOM
and ROM methods with respect to the number of MC samples. Similar to the presentation
in Figure 4.2 for the 1D UQ problem, we make the y-axis to be the solution errors for
relative mean and variance with respect to the number of MC samples in the x-axis. The
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experiment runs on a total 2000 random instances of (b, σ, ν) ∈ D in eq. (5.1). The errors
are averaged results from 3 repetitions of the test based on different random seeds.

In general, all four MC solving methods converge with the same trend. MC space-time
ROM is the least accurate method and has the largest error means and variances. This can
be considered as a trade-off of its computational efficiency and accuracy. The error results of
FOM and both two variants of space ROM methods are very close and almost overlapping,
which proves the high accuracy of MC space ROM.

(a) solution mean (b) solution variance

Fig. 5.2: Monte Carlo convergence: relative error versus number of samples.

We employ stochastic Galerkin ROM methods for the 2D advection-diffusion problem
(5.1). Please note that it is commonly recognized that running a full-order model with
stochastic Galerkin is too time consuming, especially in large-scale problems, thus we skip
its implementation in this subsection.

We are interested in the computation time of space and space-time ROMs implemented
with the stochastic Galerkin strategy. In Figure 5.3, we report the ROM solving times (the
last step in the workflow Figure 2.1) — other workflow steps are already studied above in
the MC case. We use the space ROM implemented by conventional subspace finding as the
representative space ROM approach.

Figure 5.3 demonstrates the time comparisons of the SG space and space-time ROM. It
is clearly shown that SG space-time ROM method is roughly 40− 800 times faster than SG
space ROM. As the approximating polynomial degrees grows, this solving time discrepancy
becomes more pronounced.

We finally discuss the convergence and accuracy properties of the SG ROMs. From
Figure 5.4, we can observe that space ROM, space ROM with random range finder and
space-time ROM methods all converge very smoothly as the approximating polynomial
degree tends to increase. In terms of accuracy, the SG space ROM method with conventional
trial subspace finding achieves the highest precision, while the SG space-time ROM overall
has bigger error means and variances than space ROMs.
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Fig. 5.3: stochastic Galerkin ROM solving time.

(a) solution mean (b) solution variance

Fig. 5.4: stochastic Galerkin convergence: relative error versus maximal polynomial degrees.

6. Conclusions and future directions. In this work, we have studied and showed
the significant computational advantages of the space-time ROM method incorporated with
Monte Carlo and stochastic Galerkin techniques. By testing our proposed method on
parametrized 1D and 2D advection-diffusion problems, we provided thorough numerical
experiments to demonstrate both computational and convergence properties of the space-
time ROM method and compared them with the FOM and space ROM methods. The
numerical performance showed that the space-time ROM method achieved remarkably high
efficiency compared to the other two approaches. However, it also suffered a small loss of
solution accuracy as suggested in convergence plots.

We finally lay out the remaining future works.
1. We hope to directly compare the computational cost and theoretical performance

of SG ROMs to MC ROMs.
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2. Since stochastic Galerkin is an intrusive method, implementing the space-time ROM
by other non-intrusive UQ propagation methods such as stochastic collocation could
be a promising direction.

3. We also want to extend the proposed method to challenging nonlinear systems where
explicitly forming reduced operators is more difficult.

4. Developing theoretical error bounds for the proposed method is another sound fu-
ture plan.

5. It is interesting to explore the advanced sparse grid strategy to further reduce the
computational complexity.
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STUDY OF THE RECOVERY DISCONTINUOUS GALERKIN METHOD
AND ITS APPLICATION TO EMPIRE

MEGAN F. MCCRACKEN∗ AND SEAN MILLER†

Abstract. The recovery discontinuous Galerkin method recovers a smooth local solution that is weakly
equal to the discrete discontinuous solution of the diffusive flux terms. This method can be applied to both
structured and unstructured grids and is used to resolve the smooth solution between the union of two
cells. This project focuses on the implementation of a recovery algorithm for the diffusive fluxes seen in the
Navier-Stokes equation set, as well as the application of RDG in EMPIRE the relevant viscous terms. Tests
on the achieved accuracy and stability are conducted to see improvements made over previous calculation
methods.

1. Introduction. The recovery method for computing diffusive fluxes was first de-
scribed in van Leer [5] in 2007. It uses a method in which the fluxes between cells are
approximated by a smooth, locally recovered solution based on the weak equality of the
discontinuous Galerkin method (DGM) [1] [3] [4] [8]. The recovery method is used to over-
come previous deficiencies in DGM by taking the conventional advection-diffusion scheme
and making it into a 2k+1 order of accuracy in an advection dominated problem and a 2k,
where k is polynomial order, regime in a diffusion dominant problem [7]. Using the recovery
algorithm for systems such as the compressible Navier-Stokes equations allows for higher or-
der accuracy to be achieved while retaining the smooth components through discontinuities
[6].

The recovery-based discontinuous Galerkin (RDG) method [2] has been proven to be a
stable scheme for smooth elements within the DGM. This method uses a projection method
to generate an interpolation function representing the gradient of a degree of freedom on
the mesh [6].

One of the main drivers for exploring the recovery-based discontinuous Galerkin method
is to address diffusive terms that occur in parabolic equations, which a standard DG does
not address well. Using an interface-centered recovery scheme will allow the underlying
DG algorithm to better handle the diffusive terms better than previous methods. Some of
the benefits of this scheme include higher-order accuracy, weaker time-stepping restrictions
given the methods need to only have information from the adjacent cells and relative ease
of implementation into existing code. In order to test the ability of the recovery method as
applied to the Navier-Stokes equations a Blasius solution will be explored.

To describe the recovery method used it is necessary to define the weak equality for the
recovery algorithm we say that two functions f and g are weakly equal across some interval
I if : ∫

I

(f − g)Ψkdx = 0, ∀k = 1, . . . , N (1.1)

where Ψk are test functions spanning a polynomial space P. The weak equality can be
written as f

.
= g.

To handle a 1-D diffusion equation for the DG approach we define the test function Ψk

for:

∫
I

ψk
∂uki
∂t

dx = −
∫
∂I

ψk(G(ũ)D)dx+

∫
I

∇ψk(G(u)D)dx+

∫
I

ψkSdx (1.2)

∗Megan McCracken, Department of Aerospace and Ocean Engineering, meganfm@vt.edu
†Sandia National Laboratories, seamill@sandia.gov
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Fig. 1.1: The figure above represents the recovery interface where qL is the left interface,
qR is the right interface, and q̃ is the recovered solution across the interface (represented by
the blue line).

where u are the conserved variables to be passed, G is the general function form being
solved for (e.i. the advection-diffusion, or Navier-Stokes), ψk is the test function of order k,
D is the diffusion coefficient, and S is a given source term [2]. Below is a more in depth look
at the application of the recovery algorithm in the context of a 1-D example with polynomial
order of 1.

1.1. Recovery Algorithm. In this section the implementation of the recovery al-
gorithm for a 1-D representation will be introduced. In order to apply the 1-D recovery
solution it is necessary to define a representation of the solution in terms of qL, or the left
state at the cell interface, represented by KL, and qR, the right state of the interface, rep-
resented by KR. A representation of these states can be seen in Fig. 1.1. The recovered
state q̃ is a continuous function satisfying the recovery definition in equation 1.1, using as
the recovered state (1.3) and (1.4).

q̃(x)
.
= qL(x), x ∈ KL (1.3)

q̃(x)
.
= qR(x), x ∈ KR (1.4)

For the 1D case at polynomial order 1, the orthonormal Legendre basis functions are defined
as:

ψ1(η) =
1√
2

(1.5)

ψ2(η) =

√
3η√
2

(1.6)

Using this set of basis functions the recovery must be shifted to both the left and the right
of the cell in order to recover the polynomial across the cell-interface. The basis set must
first be shifted to the left at KL = [−2, 0], and to the right at KR = [0, 2]. The basis set
now takes on a form:
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ψL1(η) = ψR1(η) =
1√
2

(1.7)

ψL2(η) =

√
3(η + 1)√

2
(1.8)

ψR2(η) =

√
3(η − 1)√

2
(1.9)

Given the shifted polynomial basis set the qL and qR functions can now be defined as:

qL(η) =
1√
2
qL1 +

√
3(η + 1)√

2
qL2, η ∈ [−2, 0] (1.10)

qR(η) =
1√
2
qR1 +

√
3(η − 1)√

2
qR2, η ∈ [0, 2] (1.11)

Next, the solution state is projected onto onto a monomial basis set centered on the
interface between cells. At p=1 there are 2 degrees of freedom in each of the cells making
the the recovered polynomial 4th order:

q̃(η) = q̃1 + q̃2η + q̃3η
2

+ q̃4η
3

(1.12)

Giving a system of four equations with four unknowns:∫ 0

−2

(q̃(η)− qL(η))ψL1(η)dη = 0, (1.13)∫ 0

−2

(q̃(η)− qL(η))ψL2(η)dη = 0, (1.14)∫ 2

0

(q̃(η)− qR(η))ψR1(η)dη = 0, (1.15)∫ 2

0

(q̃(η)− qR(η))ψR2(η)dη = 0. (1.16)

We can invert this projection to define the solution to the monomial expansion coefficients
in terms of the modal coefficients in the left and right cells:

q̃1 =

√
2
(
−2
√

3qR2 + 2
√

3qL2 + 3qR1 + 3qL1

)
12

, (1.17)

q̃2 = −
√

2
(
5
√

3qR2 + 5
√

3qL2 − 9qR1 + 9qL1

)
16

, (1.18)

q̃3 = −
√

3 (qL2 − qR2)
√

2
5 , (1.19)

q̃4 =

√
2
(
5
√

3qR2 + 5
√

3qL2 − 5qR1 + 5qL1

)
32

. (1.20)
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This recovery form is referred to as a 2-cell recovery and it is used to recover the
solution on an interface between two cells. In order to extend this to a two-dimensional
system the recovery cells increase from 2 to 6, in which the solution is recovered not only
across the x-direction but also the y-direction. A further explanation of this method is found
in section 1.2. A representation of the recovery algorithm in 1D can be seen in Fig. 1.2.
Here the original polynomial is represented in red, the projection in green, and the recovered
polynomial in blue. In Fig. 1.2(a) the red line in fully recovered and thus is hidden beneath
the blue.

(a) P = 2 (b) P = 3

Fig. 1.2: 2-cell recovery. Red line is the original polynomial, green are the projections of
the polynomial to the P=1 representation in each cell, and blue is the recovered 4th order
polynomial spanning the left and right cells.

1.2. Multi-dimensional Recovery. For multi-dimensional recovery there are a few
methods that can be explored in order to achieve a full recovery in two or three dimen-
sions1.The first way is building a recovery solution traditionally by forming a multidimen-
sional polynomial, as well as a systems of equations analogous to 1.13-1.16. For p = 1 in
2D such a polynomial would look like equation 1.21 below2

q̃(η, ξ) = q̃1 + q̃2η + q̃4η
2 + q̃4η

3 + q̃5ξ + q̃6ηξ + q̃7η
2ξ + q̃8η

3ξ. (1.21)

Using the representation above an equation system such as 1.22-1.23 can be established.

∫ 0

−2

∫ 1

−1

(q̃(x, y)− qL(η))ψL,k(x, y)dydx = 0, (1.22)∫ 2

0

∫ 1

−1

(q̃(x, y)− qR(η))ψR,k(x, y)dydx = 0. (1.23)

This method can require a large amount of computing power, since it creates 8 equations
for each face, therefore the RDG allows for an alternate solution to multi-dimensionality.
In the second method the recovery can be accomplished in 1D and the spatial variations
on the other dimensions can be constructed separately since they are in an orthogonal

1Here it is meant that a recovered polynomial is across one face but using data for multiple dimensions.
2η and ξ are in logical space, which was chosen instead of writing ηx or ηy
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Fig. 1.3: In the figure above fTL,TC,TR and gTL,TC,TR represent the Top left, center and
right expansion coefficient f and g, and fBL,BC,BR, gBL,BC,BR are the Bottom Left, Center,
and Right representations respectively. The blue arrows represent a 2-cell recovery in the
y-direction. The highlighted line in the center is the section where we evaluate the recovered
solution.

dimension. This is niot restricted to Cartesian meshes, however for simplicity the algorithm
is represented as such in this research. This representation can be better visualized in figure
1.3, where a multidimensional recovery can be seen as a system of 9, 2-cell recoveries, one
recovery at each edge. As shown previously, the recovered polynomial is given in terms of
the expansion coefficients of the DG representation

q̃1 =

√
2
(
−2
√

3q1D
R2 + 2

√
3q1D
L2 + 3q1D

R1 + 3q1D
L1

)
12

, (1.24)

q̃2 = −
√

2
(
5
√

3q1D
R2 + 5

√
3q1D
L2 − 9q1D

R1 + 9q1D
L1

)
16

, (1.25)

q̃3 = −
√

3
(
q1D
L2 − q1D

R2

)
√

2
5 , (1.26)

q̃4 =

√
2
(
5
√

3q1D
R2 + 5

√
3q1D
L2 − 5q1D

R1 + 5q1D
L1

)
32

. (1.27)

where q1D
R,L:1,2 represent the monomial coefficients to the right or the left respectively in a

single dimension(1D).
The 2D representation can then be taken as,

∑
i=1,...,4 q

2D
i ψ2D

i (x, y), and projected onto 1D

basis function3,

q1D
k (y) =

∫ 1

−1

 ∑
i=1,...,4

q2D
i ψ2D

i (x, y)

ψ1D
k dx. (1.28)

3Here the mass matrix is an identity
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Here, the 1D expansion coefficient is still a function of y, therefore for p = 1, the following
basis coefficients can be represented as:

q1D
1 (y) =

√
3q2D

3 y + q2D
1√

2
, (1.29)

q1D
2 (y) =

√
3q2D

4 y + q2D
2√

2
. (1.30)

Substituting these expansion coefficients into the 1D recovered polynomial then produces
the same result as directly solving Eq. 1.22. Working through multiple 1D recoveries as
opposed to solving for one large matrix allows for more manageable equation sets. In higher
dimensions the recovery solution is still represented by a large matrix, but each recovery is
more simply represented and calculated. for an unstructured grid the recovery algorithm
requires solving for a local matrix system as well, and is not discussed in this research.

2. Results. Below are the initial tests run on the python script for the test recovery
algorithm. Test cases are run in 1D but will be extended to 2D with the addition of the
recovery algorithm for the diffusive terms, as well as the 2D Navier-Stokes equation set.
Initial testing shown in Fig. 2.1 shows a test of a smooth advection wave, represented below
in equations 2.1 and 2.2.

∂f

∂t
+
∂f

∂x

.
= 0 (2.1)∫

∂f

∂t
ψt +

∫
∂f

∂x
ψt︸ ︷︷ ︸

[fψt]−
∫
f
∂ψt
∂x

= 0 (2.2)

Fig. 2.1 shows the advection wave run over 100 iterations on the top and a single
iteration on the bottom, comparing the initial wave to recovery flux algorithm, central flux
algorithm and the upwind flux algorithm to show a comparison between the most common
methods of handling diffusive terms.

A second one-dimensional test run on the heat equation represented here in equation
2.3. The test simulated the heat flow as distributed across a uniform metal plate, where
the boundary conditions were taken as a zero gradient. In Fig. 2.2 we see the convergence
results with the calculated analytical solution for this test and that of the recovered solution.
Here, we see good agreement between the first and second order polynomials for this test
case. The heat equation is defined as:

∂u

∂t
= κ

∂2u

∂x2
(2.3)

where κ = K0

cρ represents thermal diffusivity, t is time, and u are the conserved quantities.

2.1. Blasius solution testing. The recovery algorithm is tested in 2D by solving the
Navier-Stokes equations for the semi-analytic Blasius solution.In order to test the recovery
algorithm in two dimensions a simple Blasius solution selected. The flow over a plate
problem for aerodynamics was selected since it is one of the most simplistic cases available.
The goal of the flow over a flat plate solution is to analyze the basis solution for flow over
a plate as the pressure gradient and suction velocities vary. In order to do this a viscosity
was calculated using Sutherland’s Law and ideal gas constants were assumed. For other
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Fig. 2.1: Comparison of classical methods for DG (p = 1) 1D advection. Plotted are results
after 100 periods (top) and 1 period (bottom) for different resolutions.

Fig. 2.2: Convergence study of the heat equation in 1D for P1 and P2 as compared to the
exact.

constants the thermal conductivity of air, cp = 0.3, as well as the specific heat of air,
k = 0.02, were assumed. A non-dimensional form of the 1D Navier-Stokes equations are
represented below. These were extended to the 2D form and are the main equation set used
in the set up of the Blasius solutions.
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∂ρ

∂t
+
∂ρu

∂x
= 0 (2.4)

∂ρu

∂t
+
∂(ρu2 + p)

∂x
− 1

Re

∂

∂x
(
4

3

µ̃

µref

∂u

∂x
) = 0 (2.5)

∂E

∂t
+
∂(u(E + p))

∂x
− 1

Re

∂

∂x
(
4

3
u

µ̃

µRef

∂u

∂x
)− 1

ReEcPr

∂

∂x
(
k̃

kRef

∂T

∂x
) = 0 (2.6)

Using these equations the free-stream flow constants are defined as ue = 10 m/s, Re =
63750.0, Pr = 0.003 and δ = 0.00396 (m). Where ue is the free stream velocity, Re is the
Reynolds’s number, Pr is the Prandtl number, and δ is the boundary layer height with a
plate length, L, of 1. In order to initially test the Blasius solution for laminar flow a semi-
infinite flat plate boundary layer must first be established, this is done using the Blasius
equation below:

u = Ug(η) (2.7)

where η is defined as

η =
y

δ(x)
(2.8)

with,

δ(x) = (
νx

U
)(1/2), (2.9)

Establishing the basis structure of the Blasius solution used to test the recovery al-
gorithm, a simplified case for the Navier-Stokes equations were chosen, where a stream
function, defined here as Ψ(x, y) with velocities u, and v.

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
(2.10)

Other Laminar flow parameters needed to establish the boundary layer expressions are
defined below:



98 Recovery Algorithm

u

U
= f ′(η) (2.11)

v =

√
νue(x)

(2− β)x
[(1− β) · ηf ′ − f(η)] (2.12)

δ = 0.994 · f ′(η) · x
√

2

Rex
(2.13)

δ∗ = x

√
2− β
Rex

lim
η→inf

η − f(η) (2.14)

δ∗∗ = x

√
2− β
Rex

f”(0, β)− β limη→inf η − f(η)

1 + β
(2.15)

τp = ρ · u2
e(x) · f”(0, β)

√
m+ 1

2 ·Rex
(2.16)

cf =
τp

1
2 · ρ · u2

e(x)
(2.17)

Nu =
qp · x

k · (Tp − Tinf)
= −

√
Rex

2− β (
dΘ

dη η=0

) (2.18)

Where eq. 2.5 is the Horizontal velocity, 2.6 is the vertical velocity, 2.7 is the boundary
layer thickness, 2.8 is the boundary layer displacement thickness, 2.9 is the boundary layer
momentum thickness, 2.10 is the shear stress at the wall, 2.11 is the skin friction coefficient,
and 2.12 is the Nusselt number. The flow over a plate problem, also known as a Blasius
problem, has no closed form analytical solution for calculating the boundary layer. Instead
it requires solving for a set of nonlinear differential equations that are then used to interpret
the final result. The above expressions were used to calculate the final analytical result of the
Blasius solution being tested. Fig. 2.3 shows the analytical and convergence results from the
Blasius solution testing. The convergence results seen in Fig. 2.3b show the L2 error norm
results between the analytical and the recovery simulation results for the Blasius solution.
These results show that the recovery and the analytical forms have good agreement.
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Fig. 2.3: (a) Analytical solutions to the Blasius solutions. (b) Convergence of the recovery
solution as compared to the Blasius solutions. Here simulation is the order achieved by the
simulation and exact is the convergence order.
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3. Conclusions. The main focus of this project was to establish the recovery-based
discontinuous Galerkin algorithm as a viable option in calculating the diffusive terms in
a discontinuous system. Tests were run in one and two dimensions on a structured mesh
framework using python scripting to establish the ability of RDG to handle an advection
wave, the heat equation, and Blasius solution test cases. Given the complexity of EMPIRE
some changes in the structure of the prototypes are necessary. The tests run in this pa-
per used a structured mesh, while EMPIRE is an unstructured mesh code with only face
connectivity level support, as opposed to nodal support required by the structured mesh
version of RDG. These are all factors that need to be taken into account when developing
the recovery method in EMPIRE. This research shows that the recovery solution allows for
diffusive fluxes to be captured accurately in a DG algorithm, and that extending this method
to EMPIRE would be beneficial to the code by establishing a relatively simple method to
handle the diffusive flux terms in a discontinuous system. Future work will include the
establishments of the recovery algorithm in EMPIRE with both the surface and volume
integrals to be recovered for the viscous terms.
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DATA-DRIVEN MODEL REDUCTION FOR PHYSICS-CONSTRAINED
OPTIMIZATION

SHANE A. MCQUARRIE§ , JOSEPH HART¶, BART VAN BLOEMEN WAANDERS‖, AND

KAREN WILLCOX∗∗

Abstract. Harnessing the full power of physics-based models for decision making is challenging but
critical in many engineering analyses. Accordingly, surrogate models with reduced computational complexity
are necessary to combat the prohibitive costs of high-fidelity simulations. Operator Inference has recently
emerged as a data-driven paradigm of constructing physics-based reduced-order models non-intrusively. In
this work, we use Operator Inference as a cost-effective surrogate for dynamical constraints in a control
setting. We improve the effectiveness of the reduced-order model by directly augmenting the underlying
low-dimensional representation with known information from the objective function. The framework is
demonstrated on two control problems constrained by convection-diffusion dynamics.

1. Introduction. Many critical problems in computational science and engineering ap-
plications may be solved as an optimization problem constrained by a physics-based model.
In large-scale applications, governing physics modeled by partial differential equations or sys-
tems of ordinary differential equations present a computational challenge because solving
such equations at high fidelity is often prohibitively expensive. Further, efficient optimiza-
tion algorithms require access to derivatives of the constraint to determine search directions
in high-dimensional spaces [1,5,6,9,13]. Such calculations demand access to the underlying
physics models, which is not always feasible for complex application codes.

Model reduction seeks to alleviate the computational burden of solving large dynami-
cal systems by identifying latent low-dimensional structure in the system of interest, then
exploiting that structure to construct a representative dynamical system in the identified
low-dimensional space. The new system, called a reduced-order model (ROM), is less compu-
tationally expensive to solve than the original problem due to the dimensionality reduction.
Our objective in this article is to use Operator Inference, a data-driven model reduction
technique introduced in [15], to generate computationally efficient surrogates for the dy-
namical constraints of an optimization problem. We focus on a particular structure in the
constraint equations, but the framework is highly generalizable and applies to a wide class
of physics-constrained optimization problems.

Classical model reduction methods are intrusive, meaning they make a direct reduction
of high-fidelity numerical solvers [2]. In contrast, Operator Inference is a non-intrusive
(data-driven) model reduction strategy: the form or structure of the reduced model is
dictated by the known governing dynamics, but the actual operators defining the ROM are
learned through a residual-based regression on a set of observed states [9,15]. This capability
is essential for reducing systems for which we have a computationally expensive numerical
solver for the original dynamics but no internal access to the solver code. To extend the
Operator Inference framework to the control setting, we also consider the hybrid setting in
which some (but not all) elements of the high-dimensional dynamics are known; in particular,
we explicitly construct control terms through intrusive projection while learning reduced
state operators through Operator Inference. Additional problem-specific information can
be injected into the ROM by augmenting the intrinsic low-dimensional representation with
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¶Sandia National Laboratories, joshart@sandia.gov
‖Sandia National Laboratories, bartv@sandia.gov
∗∗Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, kwill-
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desirable states. To derive a ROM that is tailored to a particular optimization problem,
we ensure that target states defined by the objective function can be well represented by
the reduced state. Thus, our contribution leverages Operator Inference in a goal-oriented
fashion through physics-constrained optimization.

The remainder of the article is organized as follows. Section 2 outlines the traditional
projection-based approach to model reduction and the Operator Inference framework. In
Section 3, we accelerate constrained optimization problems by substituting the physics con-
straints with an appropriate ROM learned through Operator Inference. The methodology
is demonstrated in Section 4 with two prototypical convection-diffusion control problems.
Concluding remarks and an outline for future work are given in Section 5.

2. Projection-based Model Reduction. Our first objective is to construct a
physics-based, computationally efficient surrogate model for a complex physical process.
Such a surrogate will serve as a cost-effective constraint in an optimization problem of inter-
est. Consider an ordinary differential equation (ODE)—obtained by spatially discretizing a
partial differential equation (PDE)—that is linear in both the state and control,

d

dt
u(t) = Au(t) + Bz(t), u(0) = u0, t ∈ [t0, tf ], (2.1)

where u(t) ∈ Rm is the dynamic state with initial condition u0 ∈ Rm, z(t) ∈ Rn is a control
vector, and A ∈ Rm×m and B ∈ Rm×n are the finite-dimensional operators that define
the dynamics of the system. Our approach is general, and more complicated ODEs can be
considered.

A reduced-order model of (2.1) is an ODE of reduced dimension which approximates
its dynamics. The goal is to construct a ROM that achieves a computational speedup but
with minimal accuracy loss in the state over the range of admissible controls. To do so, we
require samples of the state solution space, which we will make precise shortly. We assume
that a) the ODE (2.1) has a unique solution for all admissible controls z(t) ∈ Rn, and b)
we have a numerical solver for (2.1) that we can use to generate solutions, albeit at high
computational cost.

2.1. Intrusive Galerkin Projection. Projection-based model reduction methods
approximate the state variable u(t) as a linear combination of r � m vectors [2]. To
that end, let V =

[
v1 · · · vr

]
∈ Rm×r be a matrix with orthonormal columns and

û(t) =
[
û1(t) · · · ûr(t)

]> ∈ Rr be a time-dependent vector such that the state can be
approximately represented as

u(t) ≈ Vû(t) =

r∑
i=1

ûi(t)vi. (2.2)

We call vi the basis vectors and V the basis matrix. Inserting this approximation into (2.1),
multiplying both sides by V>, and using the orthogonality of V yields the low-dimensional
system

d

dt
û(t) = Âû(t) + B̂z(t), û(0) = V>u0, t ∈ [t0, tf ], (2.3)

where Â = V>AV ∈ Rr×r and B̂ = V>B ∈ Rr×n. The ODE (2.3) is the (well-known)

projection-based Galerkin ROM for (2.1) and is intrusive because computing Â and B̂
requires explicit access to A and B.

The basis matrix V can be computed in a variety of ways [2]; in this work, we use
proper orthogonal decomposition (POD) [4, 10, 17], which takes the dominant left singular
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vectors of an observed state space as the orthogonal basis. That is, given a set of state
vectors {uj}kj=1 ⊂ Rm, we compute the singular value decomposition (SVD) of the states,

ΦΣΨ> =
[

u1 u2 · · · uk
]
∈ Rm×k, and set V to the first r columns of Φ. The integer

r is typically determined by the decay of the singular values (σ1, . . . , σk) = diag (Σ), for
example by choosing the minimal number of singular values such that

k∑
i=r+1

σ2
i

/
k∑
j=1

σ2
j < ε (2.4)

for some ε > 0. The left-hand side of (2.4) is interpreted as the amount of residual energy
in the system that is neglected by truncating to r basis vectors.

2.2. Non-intrusive Operator Inference. As an alternative to intrusive projection,
Operator Inference [15] seeks to learn a ROM of the form (2.3) by inferring Â and/or

B̂ from the same data that is required to compute the POD basis. This kind of data-
driven approach is needed when the high-dimensional operators A and/or B are unknown
or otherwise unavailable for computation. See [16, 19] for examples of Operator Inference
applied to more general (nonlinear) systems.

Let {(zj ,uj , u̇j)}kj=1 ⊂ Rn × Rm × Rm be a set of k control-state-derivative triples
satisfying u̇j = Auj + Bzj , which we obtain by solving the high-dimensional system (2.1).
Since the u̇j ∈ Rm represent the time derivative of the states, they may be estimated by
finite differences if they are not provided by the numerical solver. The states {uj}kj=1 ⊂ Rm
are used to compute the POD basis V ∈ Rm×r, then the states and the corresponding time
derivatives are projected to the r-dimensional subspace defined by the basis as

ûj = V>uj , ˙̂uj = V>u̇j .

The projected data and the controls drive the learning of the ROM operators.
Consider first the task of learning both Â and B̂, which is the standard problem in

the Operator Inference literature. The learning problem is posed as the following minimal-
residual regression:

min
Â,B̂

k∑
j=1

∥∥∥Âûj + B̂zj − ˙̂uj

∥∥∥2

2
. (2.5)

This is an ordinary least-squares problem with standard form

min
Â,B̂

∥∥∥∥D̃ [ Â B̂
]>
− R̃>

∥∥∥∥2

F

,

where ‖ · ‖F is the Frobenius matrix norm and

D̃ =

[
û1 û2 · · · ûk
z1 z2 · · · zk

]>
∈ Rk×(r+m),

R̃ =
[

˙̂u1
˙̂u2 · · · ˙̂uk

]
∈ Rr×k.

As long as D̃ has full column rank, the solution can be written explicitly as[
Â B̂

]>
=
(
D̃>D̃

)−1

D̃>R̃>.
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Tikhonov regularization may be introduced to avoid overfitting in (2.5); we refer to [14,15,19]
for details.

In optimization settings, the control B is often known a priori. To infer Â while making
use of a known B, we set B̂ = V>B ∈ Rr×n as in the intrusive case and consider the
regression problem

min
Â

k∑
j=1

∥∥∥Âûj + B̂zj − ˙̂uj

∥∥∥2

2
. (2.6)

Note that (2.6) is identical to (2.5), except that Â ∈ Rr×r is the only unknown. The
standard form of this problem is

min
Â

∥∥∥DÂ> −R>
∥∥∥2

F
,

where now

D =
[

û1 û2 · · · ûk
]> ∈ Rk×r,

R =
[

˙̂u1 − B̂z1
˙̂u2 − B̂z2 · · · ˙̂uk − B̂zk

]
∈ Rr×k.

Similar to the previous case, the solution is explicitly given by

Â> =
(
D>D

)−1
D>R>,

provided D has full column rank. Incorporating the known B in this fashion makes the size
of the regression problem independent of the control dimension n, which is important for
problems with high dimensional controls (as frequently occurs when controls are spatially
distributed in PDEs).

3. Optimization with Reduced-order Constraints. Reduced-order models yield
the greatest benefit in situations where the high-cost model of interest must be evaluated
many times with various initial conditions or control schemes. Modern constrained opti-
mization routines require multiple forward and adjoint solves of the constraint equations to
make progress [1,5,6,9,13]; if this is computationally expensive, it is highly advantageous to
replace the constraint with an efficient ROM. This approach is not new (see, e.g., [3,7,8,20]),
but our use of Operator Inference to construct a ROM of the constraint in an optimization
formulation is novel. In this section, we consider the constrained optimization problem

FullOpt

{
min

u∈Rm,z∈Rn
J(u, z) (3.1a)

s.t. d
dtu(t) = Au(t) + Bz(t), (3.1b)

where J is a scalar-valued function of the dynamic state and control. For demonstration
purposes we write the constraint the same form as (2.1), but we emphasize again that the
framework can be generalized to more complicated ODE structures [14,16,19].

To overcome computational limitations associated with the high-dimensional constraint
equations, we replace (3.1b) with a ROM of the form (2.3). This yields the new problem

RomOpt

 min
û∈Rr,z∈Rn

J(Vû, z) (3.2a)

s.t. d
dt û(t) = Âû(t) + B̂z(t), (3.2b)
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which we solve to approximate the solution of the original problem FullOpt. This sub-
stitution introduces model form error from the ROM that then propagates through the
optimization process; part of our ongoing work is to explore how to mitigate this error
through the use of post-optimality sensitivity analysis [11].

If the objective function J has an explicit representation, we can incorporate known
information from J into the basis V a priori so that the resulting Operator Inference problem
is cognizant of the optimization goal. There are several ways to manage this; we elect to use
the follow strategy and leave alternatives to future work. Suppose J measures the similarity
of the state to a target profile,

J(u, z) =

∫ tf

t0

1

2
‖g(t)− u(t)‖2 +

β

2
‖Bz(t)‖2 dt, (3.3)

where g : R → Rm is the target function, β > 0 is a regularization constant, and the
norm ‖ · ‖ encodes a quadrature rule on the spatial mesh. The cost reduction of the ROM
(3.2b) comes from expressing the state as the linear combination of relatively few elements
in (2.2). For RomOpt to be an accurate approximation of FullOpt with J as in (3.3),
it is critical that the reduced state be able to represent the target function g(t). In other
words, it is desirable that g(t) ∈ range(V). Since g(t) is known, we can augment the basis
matrix V obtained through POD by adding orthonomal components of g(t) to the column
space. We first compute the principle components of the target profile by computing the
SVD ΦgΣgΨ

>
g =

[
g(t0) g(t1) · · · g(tf )

]
, then appending the first few columns of Φg

to V in orthonormal fashion using the Gram-Schmidt procedure. An appropriate number
of columns can be selected, for example, as in the strategy of (2.4). The resulting basis is
then used to construct the ROM (3.2b) via Operator Inference as described in Section 2.2.

4. Numerical Examples. We now demonstrate the methodology on two source con-
trol problems constrained by convection-diffusion physics. Though relatively simple, these
problems are ideal prototypes for more complicated applications.

4.1. Convection-Diffusion in One Dimension. We consider the problem FullOpt
with objective function (3.3), target profile g(x, t) = t cos(2πx), and constrained by the
following PDE in one spatial dimension:

∂

∂t
u(x, t) = κ

∂2

∂x2
u(x, t)− α ∂

∂x
u(x, t) +

n∑
j=1

zj(t)bj(x), x ∈ [0, 1], t ∈ (0, 1],

u(x, 0) =
∂

∂x
u(x, t)

∣∣
x=0

=
∂

∂x
u(x, t)

∣∣
x=1

= 0,

where κ > 0 and α ∈ R are diffusion and convection constants, respectively. The functions
bj(x) = exp

(
−10(x− xj)2

)
are Gaussian source terms with associated control coefficients

zj(t), where 0 = x1 < x2 < · · · < xn−1 < xn = 1 is an equidistant grid of the spatial domain.
Discretizing the state with m points leads to a high-fidelity model of the form (2.1), with

A ∈ Rm×m representing convection and diffusion, z(t) =
[
z1(t) · · · zn(t)

]> ∈ Rn, and

B =
[

b1 b2 · · · bn
]
∈ Rm×n where bj ∈ Rm is the spatial discretization of bj(x).

For our numerical experiments, we discretize the spatial domain with finite differences
on m = 80 points, use n = 30 Gaussian sources, and set κ = α = 1. The high-fidelity model
(3.1b) is integrated once over k = 100 time steps with the implicit Euler method to generate
training data from which a POD basis with r = 4 modes is computed (r chosen by setting
ε = 10−12 in (2.4)). We explicitly construct and project B but learn a reduced operator
corresponding to A with Operator Inference. To study the effect of the basis augmentation
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Fig. 4.1: Snapshots at intermediate time t = t75 of the target profile g(t), full state u∗(t),
reduced state Vû∗(t), and reconstructed full state u∗r(t) (top), along with the full and
reduced control solutions z∗(t) and z∗r(t) (bottom), using the standard POD basis with
r = 4 modes.

strategy, we construct the ROM using 1) the usual POD basis computed from state data
alone, and 2) the POD basis augmented with the dominant mode of the discretized target
profile. In each case, we first solve the high-fidelity problem FullOpt via a trust region
conjugate gradient solver, obtaining the (optimal) control profile z∗(t) and the corresponding
state u∗(t). This requires O(100) solves of the m-dimensional ODE (3.1b). We similarly
solve the problem RomOpt, which has reduced-order constraints, yielding the control profile
z∗r(t) and the state Vû∗(t). This only requires a single solve of the m-dimensional ODE
system (3.1b) (to generate training data) and O(100) solves of the r-dimensional ROM
(3.2b), resulting in a significant computational speedup. Finally, we also evaluate the high-
fidelity constraint (3.1b) with the control z∗r(t) to produce the state u∗r(t). Figures 4.1–4.2
compare the various states and controls in the case where the basis has not been augmented
with the target profile; Figures 4.2–4.3 show results for the case when the basis has been
augmented with the target.

Figure 4.1 plots a representative snapshot in time of the target profile g(t), the high-
fidelity state solution u∗(t), the ROM state solution Vû∗(t), and the state u∗r(t) correspond-
ing to the high-fidelity constraint with the ROM-driven control profile. The high-fidelity
state is indistinguishable from the target profile, but there are visible errors in the ROM
state. The control solutions z∗(t) of FullOpt and z∗r(t) of RomOpt differ throughout the
time domain by about 20%. Figure 4.2 plots the absolute state error in time, which show
that the ROM solution is an order of magnitude less accurate than the high-fidelity solution.
Augmenting the POD basis with the target profile has a significant impact on the perfor-
mance of RomOpt: Figures 4.2 and 4.3 show that the ROM state solution now matches the
target almost exactly as well as the high-fidelity model, and the control solutions z∗(t) and
z∗r(t) now differ by only about 10% throughout the time domain. However, using RomOpt
to determine the control solution and plugging that solution back into the high-fidelity
model (3.1b) (labeled u∗r(t)) increases the state-target error, as shown in Figure 4.2. This
is not unexpected and is indicative of the propagation of error introduced by the dimension
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Fig. 4.2: Error over time of the full state u∗(t), reduced state Vû∗(t), and reconstructed
full state u∗r(t) compared to the target g(t), using the standard POD basis with r = 4
modes (top) and the POD basis augmented with an additional mode representing the target
(bottom).
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Fig. 4.3: Snapshots at intermediate time t = t75 of the target profile g(t), full state u∗(t),
reduced state Vû∗(t), and reconstructed state u∗r(t) (top), along with full and reduced
control solutions z∗(t) and z∗r(t) (bottom), using a POD basis augmented by the target
profile.

reduction. Nevertheless, the real-time performance benefit and accuracy of RomOpt are
significant given that the ROM is constructed with relatively limited training data.

4.2. Convection-Diffusion in Two Dimensions. We next examine a problem with
a more complex computational infrastructure, with an eye toward tackling applications in
future work that require scalable solvers and sophisticated software. We again consider the
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Fig. 4.4: Source profile with the control used to generate training data for Operator Inference
(left) and with the optimal control scheme determined by solving the optimization problem
with ROM constraints in the two-dimensional convection-diffusion system.

problem FullOpt, but with the objective function

J(u, z) =
1

2
‖u(tf )− g‖2 +

β

2
‖Bz‖2 , (4.1)

where g ∈ Rm is a discretization of the target function g(x, y) = tfx and β > 0 is a
regularization constant as before. The control vector z ∈ Rn is independent of time, and
the state u(t) ∈ Rm is a spatial discretization of u(x, y, t) satisfying the PDE

∂u

∂t
= κ∆u− v · ∇u+

n∑
j=1

zjbj(x, y), x ∈ Ω, t ∈ (t0, tf ],

η · ∇u = 0, x ∈ ∂Ω, t ∈ (t0, tf ),

u(x, 0) = 0, x ∈ Ω,

where Ω = (0, 1)× (0, 1) is the 2D spatial domain with boundary ∂Ω and outward-pointing
normal η ∈ R2, κ > 0 is a diffusion constant, and v ∈ R2 specifies constant x- and y-
velocities. The source functions bj(x, y) = exp

(
− 1

1000 ((x− xj)2 + (y − yj)2)
)

are isotropic
Gaussians centered at equidistantly spaced interior points (see Figure 4.4). Similar to the
previous example, spatially discretizing the state yields the system (2.1) where A ∈ Rm×m
encodes the convection and diffusion operators, B =

[
b1 b2 · · · bn

]
∈ Rm×n concate-

nates the spatially discretized source functions bj(x, y), and z =
[
z1 z2 · · · zn

]> ∈ Rn
is the control vector.

We discretize the governing equations with 40 × 40 finite elements and n = 25 sources

and set κ = 0.1 and v =
[

0.8 −0.2
]>

. The PDE constraint with the control shown in
Figure 4.4 is solved in a parallelized C++ framework, and the resulting states are used to
compute a POD basis of r = 14 modes. We then augment the basis with the target profile
and learn a ROM with Operator Inference for use in the reduced optimization problem,
RomOpt. In our current computational framework, the control matrix B is easy to construct
explicitly, but the diffusion and convection operators are not as immediately accessible from
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Fig. 4.5: Optimal state profile at the final time (left) and the linear target profile (right) for
the two-dimensional convection-diffusion optimization problem with ROM constraints.
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Fig. 4.6: Value of the objective function (4.1) at each iteration of the optimization routine.

the implementation. In more complex problems with black-box solvers for the constraint
equations, the requisite matrices may not be accessible at all. This makes Operator Inference
advantageous in the workflow of the problem, since we are not required to assemble A
explicitly.

Figure 4.4 shows the control solution to RomOpt with objective (4.1), and Figure 4.5
compares the associated end state u(tf ) to the target profile g. The control solution is
reasonable but clearly suboptimal. Figure 4.6 shows that the objective function (4.1) does
decrease by several orders of magnitude as the optimization routine progresses, but Figure
4.5 makes it clear that the quality of the ROM-constrained end state varies throughout the
domain because not all features of the governing dynamics are represented in the limited
training set. Despite the limitations, these preliminary results are encouraging considering
the ROM is derived from a single high-fidelity solve. In addition, the use of time-dependent
controllers will increase controllability and combined with a more heterogeneous target, the
results will reveal more insight.
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5. Conclusions and Future Work. Control problems with dynamical constraints
are ubiquitous in computational science and engineering, but such problems are often com-
putationally expensive due to the high dimensionality of the constraint equations. In this
work we leveraged Operator Inference, a model reduction framework for generating reduced-
order models from known physics and observed data, not from intrusive modifications of
existing codes. Specifically, we specialized Operator Inference to the physics-constrained
optimization setting by 1) incorporating known control data into the inference problem and
2) expanding the underlying basis to be able to represent well the target profile(s) defined
by the minimization objective.

We presented two prototypical convection-diffusion examples that utilize Operator In-
ference ROMs as surrogates for the optimization constraints. In the first example, we im-
proved the real-time performance of the optimization routine without sacrificing accuracy
loss in the evolution of the state, although some error remains in the ROM-driven control
solution and the corresponding solution to the high-fidelity model. We connected all of the
mechanical components of the methodology in a more demanding computational framework
for the second example and also achieved a real-time performance gain in that setting. The
reduced-order model solutions in this problem have room for improvement due to the limited
expressiveness of the time-independent controls and the small size of the training set used
to drive the reduced model learning.

Given the successes and current limitations of our ROM-driven optimization paradigm,
the stage is set for the next important step toward solving mission critical problems at scale:
using post-optimality analyses to diagnose and correct the model form error introduced by
the ROM and intelligently guide the collection of further training data [11]. We plan to
leverage hyper-differential sensitivity analysis (HDSA) [12, 18] for these purposes, which
will aid in reducing the error in the ROM-constrained optimization while preserving the
computational efficiency of only requiring a small number of solves with the high-fidelity
model.
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COMPARISON OF TEMPERED AND TRUNCATED FRACTIONAL
MODELS

HAYLEY A. OLSON∗, MARTA D’ELIA† , MIKIL FOSS‡ , MAMIKON GULIAN§ , AND

PETRONELA RADU¶

Abstract. Tempered fractional operators are able to model effects that classical partial differential
equations cannot capture, such as the super- and sub-diffusive effects that are present in hydrology and
geophysics models. However, tempered fractional operators are computationally intensive due to the infinite
range of interaction for the integral operator. We analyze a truncated variation of the fractional operators,
which are less computationally intensive, in an effort to use them in place of the more complex tempered
variation. In particular, we train parameters of the truncated operator using neural networks in order to
optimize the difference of the actions of the two operators.

1. Introduction. Fractional models are nonlocal models that can be utilized in place
of standard partial differential equations (PDEs) when trying to model anomalous effects
that standard PDEs fail to describe. For example, fractional models have found applications
in subsurface diffusion and transport, turbulence, and machine-learning algorithms. Here,
we are considering the tempered variation of the fractional Laplacian introduced in [5] which
has applications in; e.g. hydrology and geophysics [1, 6].

These nonlocal operators, such as the tempered fractional Laplacian, are integral oper-
ators that act on a so-called “interaction horizon” that determine the radius of interaction
between points in the domain. The tempered fractional Laplacian has an infinite interaction
horizon. This is useful for modelling long range forces and it reduces the regularity require-
ments on the solution. However, the infinite interaction horizon causes the operator to be
computationally complex. This work explores whether a similar operator can be generated
that mimics the tempered fractional Laplacian while being less expensive computationally.

In particular, we investigate a truncated version of the fractional Laplacian, restricting
the interaction horizon to a ball of radius 0 < δ <∞. This truncation allows for a reduction
in the computational cost of the numerical evaluation of the operator. The authors have
studied these two operators previously in [3] and determined that the nonlocal fractional
energy norms of the tempered fractional Laplacian and truncated fractional Laplacian, in its
simplest form, are equivalent. In this work, we introduce a modified form of the truncated
fractional Laplacian and we parametrize it with the goal of identifying the parameters that
minimize the difference of the actions of the operators. Similar parameter identification
problems for fractional models can be found in e.g. [2, 8]. In this work the parameters
are trained using deep neural networks (DNNs). Machine learning has been used to tackle
many aspects of nonlocal models, we mention [4] as an example of the use of DNNs for the
approximation of the solution of a nonlocal equation.

This report is organized as follows. Section 2 includes relevant definitions and previous
results that will be referenced throughout. The formulation of the problem as a loss function
to optimize and characterization of the learned parameters is defined in Section 3. Section
4 has information about the discretization of the problem for the numerical analysis. Com-
putational results of learning the parameters can be found in Section 5 with conclusions in
Section 6.
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†Sandia National Laboratories, mdelia@sandia.gov
‡University of Nebraska-Lincoln, mikil.foss@unl.edu
§Sandia National Laboratories, mgulian@sandia.gov
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2. Notation and Previous Work. Let Ω ∈ Rn be an open bounded domain. Define
the corresponding interaction domain as

ΩI = {y ∈ Rn\Ω such that x interacts with y for some x ∈ Ω}
= {y ∈ Rn\Ω : |x− y| ≤ δ for some x ∈ Ω},

where δ > 0 is the so-called interaction radius or horizon. For the tempered fractional
operator, the operator has an infinite radius of interaction. Hence, δ = ∞ and thus ΩI =
Rn \ Ω.

We will be considering two fractional operators of the general form

Lu(x) =

∫
Ω∪ΩI

u(y)− u(x)

|x− y|n+2s
γ(x,y)dy,

where n is the dimension and 0 < s < 1 is the fractional order. In particular, we will
consider the tempered fractional Laplacian, introduced in [5], which has the kernel

γtem(x,y;λ) = e−λ|x−y| (2.1)

alongside a truncated version of the fractional Laplacian which, in the simplest form, has
the kernel

γtr(x,y;σ, δ) = σX (|x− y| < δ), (2.2)

where σ and δ are positive real numbers that represent a scaling constant and the horizon
of truncation, respectively. The function X (·) represents the indicator function; thus, the
support of the truncated kernel is limited to a Euclidean ball of radius δ centered at x.

With the purpose of improving the descriptive power of the truncated operator, we
propose a modified version of γtr (that we denote by the same symbol) where both the
scaling parameter and the horizon depend on the space variable. Keeping in mind that
we will use optimization algorithms to learn these parameters, we substitute the indicator
function with a smooth approximation, so as to facilitate the use of available machine-
learning tools (this is discussed in more detail in Section 4). Thus, we define the new
truncated kernel as follows:

γtr(x,y;σ, δ) = σ(x)η(|x− y|, δ(x)), (2.3)

where σ and δ are now space-dependent parameters. Here, for the sigmoid function S(x) =
1

1+e−x and a fixed sharpness parameter α > 0, we define η as

η(|x− y|, δ(x)) = 1− S(α(|x− y| − δ(x))). (2.4)

The fractional Laplacians with the tempered and truncated kernels will be referred to as
Ltem and Ltr, respectively.

Note that the use of the sigmoid function, supported in R, might seem in contrast with
the goal of restricting the domain of integration in the definition of the integral operator.
However, such function decays to very small values which are negligible at the numerical
level, i.e. values that are below machine precision. Thus, when evaluating the sigmoid-
truncated operator, one is allowed to restrict the integration domain to the set corresponding
to function values above machine precision.

The tempered fractional Laplacian and the truncated fractional Laplacian in the simple
form of equation (2.2) have been compared previously in [3], where their energy norms are
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shown to be equivalent. We summarize that result below. For a kernel γ, the nonlocal
fractional energy norm is defined as

E(u;µ) =

∫∫
(Ω∪ΩI)2

(u(x)− u(y))2

|x− y|n+2s
γ(x,y, µ)dydx (2.5)

where µ is a parameter that determines the kernel. Then for γtem and γtr as defined in (2.1)
and (2.2), we have the following result [3].

Theorem 2.1. There exist positive constants A and A such that, given λ > 0,

AEtr(u; δ) ≤ Etem(u;λ) ≤ AEtr(u; δ), ∀u ∈ Hs
Ω(Rn), δ <∞. (2.6)

This result, although valid only for the symmetric kernel in (2.2), provides the founda-
tion for our proposed kernel representation and sets the groundwork for its mathematical
analysis, which is the subject of our future work.

3. Formulation of the learning problem as the minimization of a loss func-
tion. We describe our procedure in a one-dimensional setting and we refer to the repre-
sentation in equation (2.3). The goal is to learn functions σ(x) and δ(x) such that they
minimize the difference of the actions of the tempered and truncated fractional Laplace
operators. We consider the operators acting on a set of training functions {ui}Ni=1 and min-
imize the following loss function, which is a percent error of the L2 norm of the difference
of the operators,

Loss(δ, σ) =
1

N

∑
ui

‖Ltemui(x)− Ltrui(x)‖L2(Ω)

‖Ltemui(x)‖L2(Ω)

for x ∈ [−A,A]. (3.1)

The training functions are constructed as linear combinations of basis functions, chosen
with increasing levels of complexity and different regularity properties. In a one-dimensional
setting, they are defined as follows. Let {xi}Ni=1 be a uniform partition of [−a, a] and ∆x
the distance between the points. Note that a 6= A; indeed, in our numerical tests, A < a.
The following functions are utilized, for some covering or scale parameter c:

1. Linear hat functions (C0(R)):

ui(x) =


1
c (x− xi) + 1, xi − c < x ≤ xi
−1
c (x− xi) + 1, xi < x < xi + c

0, else.

(3.2)

2. Exponential bump functions (C∞(R)):

ui(x) =

{
exp

(
c2

(c)2−(x−xi)2
)
, xi − c < x < xi + c

0, else.
(3.3)

3.1. Characterization of σ and δ. The parameters σ and δ are learned as the outputs
of a deep neural networks (DNNs), i.e. δ(x) = DNN1(x) and σ(x) = DNN2(x). The
networks have the following structure. In addition, in some tests the parameter δ is trained
as a constant.

The DNN for σ(x) is a fully connected DNN with m nodes in each layer, referred to as
the width of the network, and n-many hidden layers, referred to the depth of the network.
All hidden layers have the same activation function, which is specified for each result below.



H.A. Olson, M. D’Elia, M. Foss, M. Gulian, and P. Radu 115

Finally, the output layer is associated with a linear activation function (i.e., an affine map,
which is common practice when using NNs for regression purposes). The DNN for δ(x) has
an almost identical structure. However, the output layer is an affine map, composed with a
custom ReLU activation to force the DNN to have a positive lower bound. This is to reflect
the fact that δ(x) cannot take negative values. In place of a standard ReLU function that
maps to f(x) = max{0, x}, the custom ReLU function maps to f(x) = max{ε, x} Here,
ε = 0.05 throughout.

4. Discretization of Operators, and Optimization. Several methods of discretiza-
tion were employed in order to approximate the actions of the operators and minimize their
difference. Here, we outline some of the main discretizations and approximations employed
in our numerical tests. In all of the following experiments, we fix the fractional order
s = 0.25.

For the computation of both the tempered and truncated fractional operators, the
integrals are approximated as follows. Let I = [−b, b] and {yk}Sk=1 a uniform partition
of I such that yk 6= 0 for any k and let ∆y be the distance between the points. Then for a
point x in the domain, we approximate the value of the operator acting on a function u at
a the point x using a Riemann sum over the interval [x− b, x+ b]. That is,

L`u(x) ≈ A`u(x) :=

S∑
k=1

u(x+ yk)− u(x)

|yk|n+2s
γ`(x, x+ yk)∆y,

where ` can refer to either the tempered or truncated operator. In the following results,
I = [−10, 10] and S = 1000, and thus ∆y = 0.02.

Likewise, the L2 norm of the operators is approximated using the `2 norm on a set of
discrete points in the domain Ω = [−A,A]. Specifically, let {xj}Rj=1 be a uniform partition
of Ω.

Additionally, index the training functions as {ui}Ni=1. Let

fγ`(ui(xj))(xj + yk) =
(u(xj + yk)− u(xj))

|yk|
γ`(xj , xj + yk), (4.1)

Then approximate the loss function (3.1) as

Loss ≈ 1

N

∑
ui

[∑
xj
|Atemui(xj)−Atrui(xj)|2∑

xj
|Atemui(xj)|2

]1/2

(4.2)

We recall that we are using the smoothed version of the truncated kernel (2.2), as
discussed in Section 2. The reason of this approximation resides in the fact that δ cannot
be a boolean variable during training, which is how a standard piecewise indicator function
is defined. The indicator is then approximated using the sigmoid function as in equation
(2.4), with α = 10.

5. Computational Results. We report the results of the regression algorithm. In all
our tests, the hidden layers have a hyperbolic tangent (tanh) activation function and we use
the Adam optimizer.

For the first test, we train δ(x) and σ(x) as NNs with 8 nodes in each layer and 2
hidden layers. The training and testing functions both utilize the exponential bump basis
function as defined in (3.3). There are 32 training and 32 testing functions formed as
linear combinations of 10 exponential bump basis functions spread evenly across the interval
[−8, 8].
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Fig. 5.1: Result of training and testing NNs with width 8 and depth 2. Both training and
testing functions are generate using bump basis functions.

Results are reported in Figure 5.1. The upper left and upper center plots contain the
DNN prediction for the δ(x) and σ(x) parameters, respectively, on the last iteration of the
optimization. The lower left plot displays the training loss, which is the percent error defined
in (4.2) for the set of training functions. The lower center plot displays the testing loss,
which is computed in the same manner as the training loss but on a set of testing functions.
The testing functions are distinct from the training functions (which are used to learn the
parameters), but formed using the same basis functions as the training functions. This graph
illustrates how well the learned parameters can generalize to functions outside the training
set. The upper right plot is a random test function from the set of testing functions. In the
lower right plot we report the values of the tempered and truncated operators acting on the
random test function from the upper right plot, as well as the difference of the actions of
the operators. The final value of the training loss indicates a percent error of 30%. While
this result is not entirely satisfactory, we believe that by using a more stable optimization
algorithm, such as L-BFGS, after training with Adam, lower loss values could be achieved.
The value of the testing loss is of the same order of the training loss; this indicates that
the learnt operator is as accurate when evaluated on (new) functions belonging to the same
family, i.e. the set of bump functions.

We performed the same test with varying choices of depth and width of the neural
networks used to train δ and σ. Result of these simulations are reported in Table 5.1. We
note that the training and testing loss are not sensitive to the sizes of the NNs.

Due to the near-constant behavior of the δ(x) when trained as DNNs, we perform tests
where this parameter is a positive real number, and learn this values as well as the neural
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Width × Depth Training Loss Test Error
8× 2 32.857 % 30.826 %
16× 4 30.790 % 28.952 %
32× 8 30.031 % 30.511 %
128× 16 29.589 % 29.581 %

Table 5.1: Training and testing loss for different neural network sizes.

network for σ(x) using the same algorithm as described above. An example of these results
is reported in Figure 5.2. Here, the plots represent the same quantities as in Figure 5.1.

Test

Fig. 5.2: Results of training with the parameter δ trained as a constant value, and σ trained
as neural network.

With the purpose of testing the generalization properties of our learning procedure, we
also perform cross-validation tests, i.e. we train the parameters using a set of basis functions
and test the learnt operator on a set of functions generated with a different basis. In this
test we kept all the parameters the same as in the first test with the exception of the shape
of the basis functions used for the testing functions, which are generated by using the linear
hat functions defined in (3.2). The corresponding results, for a new run of the algorithm,
that results in slightly different δ(x) and σ(x) than in Figure 5.1, are reported in Figure 5.3.
We observe a testing percent error of 40%; the higher value is justified by the fact that the
test functions are substantially different from the training functions, as they are generated
using different basis functions.
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Fig. 5.3: Result of training and cross-validation tests for NNs with width 8 and depth 2. The
training functions are generated using bump basis functions whereas the testing functions
are generated using hat functions.

6. Conclusions. In this work we explored the approximation of the tempered frac-
tional Laplacian by means of a truncated fractional Laplacian operator with the purpose
of improving the efficiency of numerical computations. We propose a modified truncated
fractional Laplacian operator parametrized by a scaling parameter and a horizon and we
learn, via deep learning, the optimal values of these parameters such that the action of
the truncated operator is as close as possible to the one of the tempered fractional Lapla-
cian. Our results indicate that, for the studied basis set and training/test functions, the
percent error between the truncated and the tempered operator is of the order of 30%, and
that this is quite independent of the neural network architecture, or even whether δ is a
constant value. The same accuracy is achieved when testing the optimal operator on new
functions belonging to the same family of functions used for training. However, when tested
on functions of a different family, the percent error increases to 40%.

While a deeper architecture does not improve the accuracy of the learnt operator, we
believe that more sophisticated optimization algorithms may yield accuracy improvements.
Thus, part of our planned follow-up work includes the use of improved optimization algo-
rithms such as L-BFGS after training with the Adam optimizer to improve final test error.
If this succeeds in improving training and test error, we also plan to run additional cross-
validation tests to study how the qualitative differences between the training and test sets
effects generalization. Furthermore, we plan to utilize a symmetric form of the truncated
operator by symmetrizing the truncated kernel as done in, e.g., [7], to reflect the symmetric
nature of the tempered fractional kernel. Furthermore, we plan to study the differences in
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solutions to exterior value problems using the tempered Laplacian and the learned truncated
operator, which may be significantly different that the observed test errors due to regularity.
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A REDUCED-SPACE FORMULATION FOR NONLINEAR
PROGRAMMING WITH INDEX-1 DIFFERENTIAL ALGEBRAIC

EQUATION SYSTEMS

ROBERT B. PARKER∗, BETHANY L. NICHOLSON† , JOHN D. SIIROLA‡ , CARL D. LAIRD§ ,

AND LORENZ T. BIEGLER¶

Abstract. A reduced space formulation for optimization of index-1 differential algebraic equation
systems (DAEs) is described and implemented in the PyNumero extension to the Pyomo algebraic modeling
environment. The formulation defines implicit functions from algebraic equations and uses them to remove
algebraic variables and equations from the optimization problem. The formulation is used to solve dynamic
optimization problems with the Ipopt algorithm, which uses first and second derivatives calculated by
the implicit function theorem. In challenging case studies involving the simulation and optimization of a
chemical looping combustion reactor, the reduced space formulation is more robust, solving 92 out of 116
problem instances in the first case and 52 out of 72 instances in the second case. In these cases the full
space simultaneous formulation can solve 40 and 25 problem instances. The results indicate the potential of
this reduced space formulation to be more reliable than the full space formulation for challenging nonlinear
DAE optimization problems.

1. Introduction. Differential algebraic equation systems (DAEs) are an expressive
class of equations for chemical and process systems engineers. They are capable of rep-
resenting processes that evolve over continuous time and/or space domains and involve
nonlinear physical and chemical phenomena. Complicated interactions among differential
states are often described by large numbers of highly nonlinear algebraic equations that
represent the thermodynamics, chemical reactions, and transport phenomena of the system.
Due to their number and complexity, the ability to simulate or optimize a large-scale DAE
relies heavily on the ability to solve these algebraic equations.

Optimization of DAE systems is typically done by solving nonlinear programming (NLP)
problems, as solvers for these problems are capable of handling large scale systems. Two
common approaches for these optimization problems are sequential approaches [8] and simul-
taneous approaches [6]. In the former, the optimization algorithm is only aware of control
inputs and computes the objective function by simulating a DAE system. Gradient informa-
tion is returned by the DAE simulator and used to update the input variables. In addition
to using first-order gradient information, Vassiliadis et al. [14] calculate second derivatives
with respect to control inputs, and a sequential optimization approach with an exact Hessian
is implemented by Balsa-canto et al [1]. Hybrid approaches have been proposed, including
multiple shooting [2], which partitions the continuous domain and simulates multiple DAEs
sequentially, and the quasi-sequential approach of Hong et al. [10], which eliminates all
equality constraints from the optimization algorithm but retains inequality constraints that
may involve state variables.

We propose a hybrid approach for DAEs that are index-1 in which only the algebraic
variables and equations are removed from the nonlinear optimization problem using implicit
functions. Our approach is simultaneous in the sense that the continuous domain is dis-
cretized and that all discretization points are considered simultaneously by the optimizer,
but has the characteristic of sequential approaches that square problems are solved by an
embedded solver within each iteration of the optimization solve. This is a reduced-space
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formulation as only the differential, input, and derivative variables are seen by the optimiza-
tion algorithm. The implicit function subproblems admit exact first and second derivatives
in terms of these variables and are thus compatible with second-order optimization algo-
rithms. Our approach is conceptually similar to that of Bongartz and Mitsos [3], where
external functions are used to solve global flowsheet optimization problems in a reduced
space. Rather than implementing a fully implicit function, however, they use a sequential
modular function evaluation for which they compute convex relaxations. We also differenti-
ate our approach from reduced space optimization algorithms, for instance of Cervantes et
al. [5], by noting that our optimization algorithm is not aware of any particular partition of
the variables to which it has access. That is, it calculates its search direction in the space
of variables that it is aware of rather than in a further reduced space.

2. Background and Implementation. A DAE has the form given by Equation (2.1),
where (2.1a) are the differential equations, (2.1b) are the algebraic equations, (2.1c) are the
discretization equations, and (2.1d) are the initial conditions. The equations are in terms
of differential variables x, algebraic variables y, input variables u, and derivatives ẋ with
respect to a continuous domain. We consider the DAE after discretization of this domain.
With the exception of (2.1d), these variables and equations are repeated at every point
along the discretized domain. Functions f and g are assumed to be twice continuously
differentiable in all arguments.

ẋ = f(x, y, u) (2.1a)

0 = g(x, y, u) (2.1b)

0 = d(x, ẋ) (2.1c)

x(0) = x0 (2.1d)

We say that a DAE is index-1 if the Jacobian of algebraic equations with respect to
algebraic variables, ∇yg, is nonsingular for all values of differential, algebraic, and input
variables. In this case, by the implicit function theorem, there exists a function gy which
maps the vector (x, u) to y such that (2.1b) are satisfied.

A simultaneous nonlinear programming formulation for the optimization of a DAE
model has the form given by Equation (2.2). We refer to this as the full space formula-
tion.

min
(ẋ,x,y,u)

ϕ(x, u)

s.t. ẋ− f(x, y, u) = 0

g(x, y, u) = 0

d(x, ẋ) = 0

x(0) = x0

x ≥ 0

(2.2)

A dynamic optimization problem of this form can be constructed by an algebraic mod-
eling language if the constraints and objective are explicit functions of the variables. The
optimization problem may then be solved with a generic nonlinear programming solver.

Our reduced space formulation takes advantage of the index-1 property to eliminate
algebraic variables and equations from the NLP. The formulation is given by Equation
(2.3).
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min
(ẋ,x,u)

ϕ(x, u)

s.t. ẋ− f(x, gy(x, u), u) = 0

d(x, ẋ) = 0

x(0) = x0

x ≥ 0

(2.3)

An optimization problem of this form cannot be constructed directly in an algebraic
modeling environment because gy is an implicit function. This formulation can still be
solved by a nonlinear programming algorithm, however, if gy may be evaluated and admits
sufficient derivative information. We implement an interface that evaluates an implicit
function and computes first and second derivatives via the implicit function theorem. Our
implementation is described in Section 2.1. These values and derivatives can plug into the
PyNumero CyIpopt interface, allowing us to solve NLPs in the form of Equation (2.3) using
the Ipopt algorithm [15].

2.1. Implicit Function Implementation. Our implementation makes use of the
PyNumero extension to the Pyomo algebraic modeling environment [4]. The implicit func-
tion implementation allows users to specify Pyomo constraints and variables that will be
solved to evaluate the implicit function. The variables and constraints that the user supplies
are shown in Equation (2.4), where Equation (2.4a) are the residual equations, which are
exposed to the NLP, and Equation (2.4b) are the external equations, which will be removed
as an implicit function. Variables x are inputs into the system, and variables y are external
– they are solved for by the implicit function and eliminated from the NLP.

f(x, y) = 0 (2.4a)

g(x, y) = 0 (2.4b)

Assuming that the Jacobian of external equations with respect to external variables,
∇yg, is nonsingular, Equation (2.4b) can be used to solve for y as a function of x. In our
implementation, this square system solve is performed with Ipopt. The residual equations
can then be written as shown in Equation (2.5).

f(x, y(x)) = f̄(x) = 0 (2.5)

To include the constraints of Equation (2.5) in an NLP, we need to calculate first and
second derivatives of f̄ . We do this using the implicit function theorem and the chain rule,
applied to Equations (2.4). The derivatives we calculate are given by Equation (2.6).

∇xy =−∇yg−1∇xg
∇xf̄ =∇xf −∇yf∇xy
∇2
xxy =−∇yg−1 ⊗2,3

(
∇2
xxg + (∇2

xyg ⊗1 ∇xy +∇xyT ⊗1 ∇2
yxg)

+∇xyT ⊗1 ∇2
yyg ⊗1 ∇xy

)
∇2
xxf̄ =∇2

xxf + (∇2
xyf ⊗1 ∇xy +∇xyT ⊗1 ∇2

yxf)

+∇xyT ⊗1 ∇2
yyf ⊗1 ∇xy +∇yf ⊗2,3 ∇2

xxy

(2.6)
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In Equation (2.6), the “⊗” product refers to the product between a third-order tensor
and a matrix. The result is a third-order tensor. In particular, ⊗1 produces a tensor
obtained by a matrix-matrix product along each coordinate of the first rank of the tensor,
while ⊗2,3 produces a tensor obtained by a matrix-vector product along all coordinates of
the second and third ranks of the tensor. Equation (2.7) illustrates these products with
index and slice notation, where A and B are third-order tensors, C is a matrix, and “·” is
the standard inner product between vectors.

A = B ⊗1 C ⇒ Ai,j,k = Bi,j,: · C:,k

A = C ⊗1 B ⇒ Ai,j,k = Ck,: ·Bi,:,j
A = C ⊗2,3 B ⇒ Ai,j,k = Ci,: ·B:,j,k

(2.7)

We note that for second-order optimization algorithms, only the Hessian of the La-
grangian, rather than the Hessian of each constraint, is required. In our implementation, we
compute the Hessian of the Lagrangian by first computing that of each constraint, although
it may be possible to more efficiently compute the Hessian of the Lagrangian directly. In
particular, it may be possible to extend the adjoint approach described by Heinkenschloss
[9] to the case where implicit functions are embedded in vector-valued constraint functions
rather than a scalar-valued objective function. We defer this potential improvement to
future work.

All Jacobian and Hessian matrices are calculated by PyNumero’s interface to the Ampl
Solver Library (ASL) [7], and tensor products are performed with NumPy. The Jacobian
and Hessian matrices of f̄ are sent to CyIpopt via the PyNumero interface, allowing us to
solve NLPs in the form of Equation (2.3) with the Ipopt algorithm.

2.2. Application to Index-1 DAEs. With an implicit function interface for systems
in the form of Equation (2.4), the application to DAE systems in the form of Equation (2.1)
is straightforward. Residual constraints (2.4a) are differential equations (2.1a), external
constraints are algebraic equations (2.1b), external variables are algebraic variables y, and
inputs into the external constraints are differential variables x and DAE inputs u. A separate
implicit function is used to describe the differential and algebraic equations at each point in
the discretized domain.

2.3. Sparsity of Derivative Matrices. Because derivative matrices and tensors∇xy,
∇xḡ, ∇2

xxy, and ∇2
xxf̄ are the result of products with the matrix inverse ∇yg−1, they are

in general dense. Because the Ipopt algorithm requires knowledge of all possible nonzeros
of the Jacobian and Hessian matrices, we provide a nonzero for every coordinate of these
matrices, regardless of whether they are zero for a particular function evaluation. This is
an inefficiency in our implementation as there may be several cases in which it is possible
to determine a sparse set of possible nonzeros for the Jacobian and Hessian matrices of our
implicit function constraints. For instance, if ∇yg is block diagonal, its inverse has bounded
fill-in and the derivatives of y and f̄ may be sparse. In addition, Hessian matrices may be
low rank, as is the case if a set of constraints is mostly linear. In this case Hessian tensors
∇2
xxy and ∇2

xxf̄ may be sparse even if ∇yg−1 is dense. We defer the handling of these cases
to future work. If sparsity of Jacobian and Hessian matrices cannot be sufficiently preserved,
matrix-free optimization solvers that solve the KKT system using iterative methods will be
considered. We have not used them so far as factorization of the KKT system does not
appear to be a bottleneck of our current implementation.

Note that the density of the Jacobian and Hessian of implicit function constraints does
not imply that the entire problem is dense. In our application, a separate implicit function is
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used for each point in the discretized domain, which limits potentially superfluous nonzeros
to blocks of variables and constraints at a given point in this domain.

3. Case Studies. To demonstrate the viability of our reduced-space index-1 DAE
formulation, we apply it to chemical engineering optimization and simulation problems via
the Ipopt algorithm. This section presents these results, which show that the reduced space
formulation is more time-consuming than the full space formulation, but that there are
many problem instances for which only the reduced space formulation converges.

3.1. Optimal Control of a Distillation Column. Optimal control of a binary distil-
lation column is used as an example of the dynamic optimization capabilities of Pyomo.DAE
[11]. In this section we solve a simple instance of this problem with full and reduced space for-
mulations to demonstrate some general characteristics of our approach. The code for a full-
space implementation of the problem we solve can be accessed from the examples/dae/
directory of the Pyomo repository, https://github.com/pyomo/pyomo.

Table 3.1: Characteristics of the optimization problem with full and reduced space formu-
lations

Formulation Variables Constraints Iterations Solve time Jacobian nonzeros
Full 5,119 5,068 14 0.49 s 19,554

Reduced 3,282 3,232 16 242 s 108,832

Table 3.1 shows the number of variables, constraints, and Jacobian nonzeros for the full
and reduced space formulations, as well as the solve time and number of iterations required
to reach the solution. We also note that full and reduced space formulations lead to the same
solution. Even though the reduced space formulation does not consider algebraic variables
during the optimization, the algebraic variables and constraints are solved internally at
every iteration, so their values may still be compared with those obtained by the full space
formulation. The average relative error between variable values in the solutions reached by
the two formulations is 2.8× 10−6.

Despite reaching the same solution, the optimization problems solved in the two for-
mulations are very different. Compared with the full space, the reduced space formulation
has fewer constraints and variables, but a much larger number of nonzeros in the constraint
Jacobian, and a solve time that is larger by a factor of approximately 500. Despite having
fewer constraints and variables, the reduced space solve converges in approximately the same
number of NLP iterations as the full space solve. A breakdown of computational expenses
for full and reduced space solves of this problem are shown in Table 3.2. This breakdown
demonstrates that our implementation is bottlenecked by Hessian computation and would
benefit from an approach that avoids computations with tensors.

Table 3.2: Breakdown of solve times of the distillation example for full and reduced space
formulations

Formulation I/O Ipopt Interface Evaluation Jacobian Hessian Other
Full 62 % 28 % 5 % – – – 5 %

Reduced 12 % 1 % – 20 % 1 % 56 % 10 %
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This case study indicates that although it can solve a dynamic optimization problem to
the same solution as a full space formulation, the reduced space formulation pays a high price
for repeating implicit function evaluations each iteration. The following two case studies
indicate the potential benefit of the reduced space approach by demonstrating improved
robustness of the NLP over a range of parameters.

3.2. Chemical Looping Combustion Simulation. A chemical looping combustion
(CLC) reactor is a gas-solid hydrocarbon reactor in which fuel and air reactions occur in
separate chambers, with a metal-oxide oxygen carrier looping between the two. Here we
present results for the simulation of a reduction reactor involving methane and iron oxide
operating at steady state in a counter-current moving bed configuration. The reduction
reaction is shown in Equation (3.1).

CH4 + 12Fe2O3→ 2H2O + CO2 + 8Fe3O4 (3.1)

The model equations form a DAE in which the continuous domain is distance along the
length of the reactor. Differential variables are material and enthalpy flow rates and pres-
sure. Algebraic equations and variables describe thermodynamics, hydrodynamics, transfer
correlations, and the reaction rate. In the current simulation case study, the model has no
inputs; inlet conditions are fixed. Further details are given by [13], and the model may be
accessed via the IDAES repository at https://github.com/idaes/idaes-pse.

To compare robustness and solve times of the full and reduced space formulations, we
perform a parameter sweep, varying the number of finite elements (NFE) in the spatial
discretization and the gas phase inlet temperature. We attempt to solve the simulation
problem in the full and reduced space formulations for every combination of four NFEs
and 29 temperatures, all with identical initialization routines and scaling factors. Figure
3.1 shows the solve times for each successful simulation. A failed simulation may be due
to timeout, iteration limit, function evaluation error, or converging to an infeasible point.
Solve times in these cases are omitted from Figure 3.1.

The data indicate that while the reduced space formulation takes much more time
for the solver to converge, it can also solve significantly more instances of the simulation
problem than the full space formulation. Of the 116 problem instances, the reduced space
formulation can solve 92, while the full space formulation can solve 40. However, when it
succeeds, the full space formulation solves in less than one second, while the reduced space
formulation takes 160 seconds in the most time-consuming instance.

3.3. Chemical Looping Combustion Optimization. We now present results for
optimization of operating conditions of the chemical looping combustion reactor. The model
is the same as in Section 3.2, but now inlet conditions are degrees of freedom and outlet
conditions participate in an objective function penalizing their deviation from target con-
ditions. The target outlet conditions are taken from the moving bed process described in
Table 5 of [12].

Because inlet gas temperature is no longer a fixed parameter, we now vary the gas
temperature used for model initialization, as well as the number of finite elements, in a
parameter sweep. Solve times are plotted for instances that converge in Figure 3.2.

The data again indicate that although the reduced space formulation takes much longer
to converge than the full space formulation, there are many instances for which only the
reduced space formulation converges. Out of 72 problem instances for CLC optimization, the
reduced space formulation can solve 52, and the full space formulation can solve 25. While
the reduced space formulation is slower than the full space formulation by approximately a
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Fig. 3.1: Solve times for sample temperatures and numbers of finite elements in the full and
reduced space models. Data points are omitted when the solve does not converge.

Fig. 3.2: Solve times for sample temperatures and numbers of finite elements in the full and
reduced space models. Data points are omitted when the solve does not converge.
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factor of 100, we note that there is much that can be done to speed up a solve in the reduced
space. The implicit function and derivative evaluations for each point in the discretized
domain can be performed in parallel, implicit function computations can be performed
entirely in compiled code by operating on a PyNumero PyomoNLP object rather than Pyomo
variables and constraints, and potential sparsity in the derivative matrices can be exploited.
We defer these improvements to future work.

4. Conclusions. We have implemented a novel formulation for the simulation and
optimization of index-1 DAE systems via nonlinear programming. The code for our imple-
mentation may be accessed in the pyomo/contrib/pynumero/interfaces directory
of the Pyomo repository, https://github.com/pyomo/pyomo, as of the 6.1 release of
Pyomo. The application of our formulation to the simulation and optimization of a chemical
looping combustion reactor illustrates that it has the potential to be much more robust than
a full-space formulation, although when it converges, the full space formulation is faster by
a factor on the order of 100. We hypothesize that the improved robustness of the reduced
space formulation is because the optimization algorithm cannot fail due to an inability to
converge the algebraic equations. The embedded implicit function evaluations, however,
can fail, but they are much smaller problems than the full or reduced space optimization
problems and are guaranteed to have an isolated solution so we consider this less likely.

There are many extensions to the current work that can be explored. The computational
performance can be sped up by exploiting potential sparsity in implicit function evaluation,
evaluating different implicit functions in parallel, and processing floating point values exclu-
sively in compiled code. Other extensions include removing only a subset of the algebraic
equations from the optimization problem and applying implicit functions with exact first
and second derivatives to other types of decomposable optimization problems. A compari-
son with a sequential formulation with exact first and second derivatives, performed in our
current PyNumero/Ipopt computational framework as well as with matrix-free sequential
methods, will also be valuable.
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Abstract. We investigate the predictive performance and associated uncertainty of convolutional neural
networks for dense regression problems, for the case where training datasets are available from multiple in-
formation sources. Specifically, we analyze convolutional neural networks assembled from encoders, decoders
and skip connections. These networks benefit from a significant reduction in the number of trainable parame-
ters with respect to an equivalent fully connected network and are versatile with respect to the dimensionality
of the inputs and outputs. For example, encoder-decoder, decoder-encoder or decoder-encoder-decoder ar-
chitectures are well suited to learn mappings between inputs and outputs of any dimensionality, and here
we adapt their use to multifidelity modeling. We demonstrate the accuracy produced by such multifidelity
convolutional architectures on the approximation of one-dimensional functions and the solution of a partial
differential equation in a two-dimensional domain. In these examples, the networks are trained on a few
high-fidelity and many low-fidelity examples and we investigate the performance for cases where the low-
and high-fidelity representations are either implicitly or explicitly linked. Finally, we quantify the predictive
uncertainty using a dropblock regularizer both during network training and evaluation, and investigate the
factors responsible for the amount of variability generated in the network output.

1. Introduction. Computational simulation has revolutionized engineering design and
constitutes an indispensable tool to advance our understanding of complex engineering and
scientific problems. Simulating complex phenomena, for example characterized by multi-
ple interacting physics, may however require a substantial computational effort such that
broad usage of these models is hindered by the available computational resources, ultimately
reducing their impact in answering the science questions of interest. However, it is often
the case that there exists a trade-off between accurate but expensive high-fidelity simula-
tions and lower-fidelity simulations that provide approximations at lower cost, and through
the effective combination of these model fidelities, one can often optimize efficiency while
retaining accuracy.

This research focuses on generating multifidelity surrogate models designed to combine
information from a few high-fidelity model solutions with a large number of low-fidelity
predictors of varying accuracy. More specifically, we focus on data-driven multifidelity
surrogates in the machine learning context. Existing approaches within this context include
the approach in [4], which considers a student network and a teacher Gaussian process
associated with datasets of variable annotation quality. The teacher generates soft labels
from weak labels using the representation learned by the student, and modulates the student
learning process from the estimated predictive uncertainty. This technique is compared with
two other approaches for transfer learning in [3], showing superior accuracy as a surrogate
for physical systems, analyzed with models of two different fidelities. Another approach
combines a sequence of three networks which are designed to learn a low-fidelity mapping, the
correlation between a low- and a high-fidelity model, and a network designed to minimize the
residual of an underlying PDE [16]. A Bayesian neural network pre-trained with variational
inference and fine-tuned using Hamiltonian Monte Carlo is also discussed in [15]. Another
approach combines convolutional and fully connected neural networks [22] to learn the
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discrepancy between increasingly fine discretizations, projected on a common mesh.
Our approach is inspired by recent successes in image classification and segmentation

shown by Deep Convolutional encoder-decoder Networks (DCNN) (see, e.g., [17]). In ad-
dition, the effectiveness of combining data from multiple fidelities has been mainly demon-
strated for dense networks or separately for an ensemble of hybrid convolutional and dense
networks [22]. No approach has however investigated encoding-decoding deep convolutional
neural networks where the model fidelities are learned together using an all-at-once train-
ing approach. We introduce convolutions as an essential tool to reduce the number of
weights with respect to fully connected networks when the input, the output or both are
high-dimensional.

The context for our multifidelity predictions involves uncertainty, and hence Uncertainty
Quantification (UQ) considerations, at two levels. First, there is predictive uncertainty,
which provides an indication of the quality of the prediction by analyzing the variability
in trained network outcomes. This case can be referred to as “UQ for ML” in the sense
it analyzes the uncertainty in predictions that are inherent when using a machine-learned
surrogate model, potentially targeting a trustworthy formulation with quantified and con-
trolled surrogate modeling errors. Second, there is analyzing the effect that uncertainty
in the parameter inputs has on the response outputs when using the network to perform
the forward mapping. This case can be referred to as “ML for UQ” in the sense that it
represents the traditional forward uncertainty quantification workflow for computing statis-
tics on quantities of interest (QoI) using an ML surrogate. In this paper, we focus on the
former as a precursor to the latter. That is, endowing our multifidelity network predictions
with predictive uncertainty estimates will facilitate future work in effective surrogate model
management for forward UQ analyses.

For quantifying predictive uncertainty, a large number of approaches has been proposed
in the literature [1, 8, 11]. Among these, dropout layers [21] offer a simple and computa-
tionally appealing solution to drop network nodes with some probability, creating variance
estimates complementing point estimate predictions, with well understood theoretical prop-
erties [2, 5]. However, their performance has been mainly assessed on neural networks with
dense layers. In this study, we use dropblocks [6], i.e., adaptations of dropout layers showing
improved performance on convolutional architectures.

This paper is organized as follows: §2 describes the problem domains of interest in-
cluding one-dimensional functions and high-dimensional problems in Computational Fluid
Dynamics (CFD), §3 describes the network architectures to be explored. In §4 and §5, we
describe the estimation of predictive uncertainty and the use of implicit versus explicit fi-
delity connections, respectively. In §6, we focus on two test cases characterized by a small
and a large number of inputs and outputs. Finally, we close with concluding remarks and
plans for future work in §7.

2. Problem description. In this study, we focus on building a surrogate model for
dense regression for both low- and high-dimensional inputs/outputs, to examine how low-
fidelity information can be leveraged to accelerate the training and, consequently, to improve
predictions on a high-fidelity model for which limited information is available.

2.1. One-dimensional multifidelity function approximation. We start with low-
dimensional regression, analyzing multiple examples proposed in [16]. These problems con-
sist of two linearly and/or nonlinearly correlated low- (LF) and high-fidelity (HF) functions,
where fewer training examples are available for the HF model than for the LF model. In
this work, we specifically focus on linearly correlated function pairs. The first pair we ana-
lyze is given by two linearly correlated continuous functions, defined in Equation (2.1) and
Equation (2.2), with A = 0.5, B = 10, C = −5, with 11 and 4 samples, respectively, as
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shown in Figure 2.1(a)

yL(x) = A(6x− 2)2 sin(12x− 4) +B(x− 0.5) + C (2.1)

yH(x) = (6x− 2)2 sin(12x− 4). (2.2)

The second set of functions we consider involves a linear correlation between two discontin-
uous functions given by

yL(x) =

{
0.5(6x− 2)2 sin(12x− 4) + 10(x− 0.5)− 5 := l(x) 0 ≤ x ≤ 0.5

3 + l(x) 0.5 < x ≤ 1
(2.3)

yH(x) =

{
2yL(x)− 20x+ 20 := h(x) 0 ≤ x ≤ 0.5

4 + h(x) 0.5 < x ≤ 1
(2.4)

with 38 and 5 training samples, respectively, as shown in Figure 2.1(b).
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Fig. 2.1: Low and high-fidelity functions, and available training samples, from (a) continuous
pair given by Equations (2.1), (2.2) and (b) discontinuous pair given by Equations (2.3),
(2.4), where function values are rescaled such that yH(x) ∈ [0, 1] and yL(x) ∈ [0, 1] for x in
the training set.

2.2. High-dimensional dense regression for CFD. For the high-dimensional dense
regression case, we focus on an application in computational fluid dynamics, where, at any
given time, we measure a noisy realization of a fluid domain indicator function (e.g., noisy
pixel intensities from magnetic resonance imaging) and a noisy velocity field on such domain,
and we would like to estimate the fluid pressure distribution over the domain. The governing
equations are the incompressible Navier Stokes (NS) equations, and the pressure can be
computed (up to a constant, see, e.g., [20]) from their reformulation into a Poisson pressure
equation. This approach, however, may require the solution of a PDE on a typically large
computational grid and training a neural network to perform such task has the potential
of being a much faster and computationally inexpensive alternative. Note how the present
approach differs from previously proposed physics-informed neural networks (PINN [18]) as
our network is designed to learn a relation between concentration plus velocity and pressure,
rather than pressure as a function of space and time.
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Consider a three-dimensional domain Ωf ⊂ R3 occupied by fluid and characterized by
a sufficiently smooth boundary ∂Ωf . If no body force is assumed to be acting on the fluid,
the NS equations can be written as∇p = −ρ

(
∂ u

∂t
+ u · ∇u

)
+ µ∆u := f

∇ · u = 0,
in Ωf , (2.5)

where ρ, µ and u are the fluid density, viscosity and velocity, respectively. The Poisson
equation for the pressure p can be obtained by taking the divergence of both sides of the
momentum equations in (2.5) (see, e.g, [20])

∆p = ∇ · f , (2.6)

which is equivalent to (2.5) provided the velocity field u is solenoidal, and only Neumann
boundary conditions are applied equal to the flux of f on ∂Ωf . We also consider a fluid
region Ωf immersed in a structured grid Ω with mx · my · mz = m cells, and identified
through a concentration binary map cb : R3 → {0, 1}, where a value of 1 is associated
with fluid. In practice, noise makes this function non-binary, with measured concentration
expressed as c : R3 → R. The problem we would like to solve relates to the development of
a neural network surrogate that can be used to quickly evaluate the map

f(c,u) = p, where f : Rm × Rm×3 → Rm, (2.7)

which, given the concentrations and velocity distributions over Ω, returns the spatial pres-
sure distribution on Ωf . Our main goal in this work is to investigate the possibility to train
the network with a multifidelity approach based on pressures available on images of in-
creasingly coarser resolutions. The multifidelity training is preformed by combining a small
number of HF examples, resulting from a Poisson pressure equation finite element solver,
with a larger number of solutions from the same solver, but evaluated on coarser meshes.

3. Network architecture and training data. Our proposed surrogate architecture
is a network assembled from convolutional encoders and decoders, for both low- and high-
dimensional dense regression. A convolutional encoder [14] is composed of alternating layers
of convolutions and pooling (i.e., downsampling), which generates a compressed feature rep-
resentation. A convolutional decoder, on the other hand, is composed of alternating layers of
convolutions and upsampling. For dense regression the encoder and decoder are symmetric,
so that the input and output dimensionality of the network is the same. Thus, the network
layout depends on both the input and output dimensionality. A detailed description of the
two architectures and hyperparameters is offered next.

3.1. DropBlock regularization. As explained in §1, dropout regularization drops
network nodes at random, simulating an ensemble of architectures without the extra com-
putational burden of testing them individually. Therefore, it is widely employed to avoid
overfitting during training. In practice, a dropout layer is used in hybrid convolutional/dense
networks only after the final fully connected hidden layer. Since the network architecture
used here does not include a fully connected layer, we utilize DropBlock [6], an alternative
to dropout layers that is better suited to convolutional layers and has shown success regu-
larizing convolutional networks for higher accuracy. Dropblock layers are designed to drop
a continuous group of pixels (by leveraging the spatial coherence between adjacent pixels).
As these layers are still parameterized in terms of dropout probability, the relation between
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Block size Drop prob. Feature size γ Percent dropped

3 0.2 3 0.200 0.451
3 0.9 3 0.900 0.997
3 0.2 4 0.133 0.318
3 0.9 4 0.600 0.912
3 0.2 8 0.088 0.227
3 0.9 8 0.400 0.747
3 0.2 16 0.076 0.197
3 0.9 16 0.342 0.680

5 0.2 8 0.080 0.294
5 0.9 8 0.360 0.840
5 0.2 16 0.053 0.208
5 0.9 16 0.240 0.678

7 0.2 8 0.114 0.481
7 0.9 8 0.514 0.974
7 0.2 16 0.046 0.227
7 0.9 16 0.206 0.713

Table 3.1: Dropout probability vs. the average percentage of features dropped. The percent
dropped is calculated across 1000 dropblock realizations and averaged. This is calculated
for a one-dimensional layer, where each channel has a length of 8.

such hyperparameter and the actual percentage of features being dropped should be first
clarified. A Bernoulli mask is generated in [6], using a probability γ expressed as

γ =


(1− p)F

b(F − b+ 1)
, for 1D

(1− p)F 2

b2(F − b+ 1)2
, for 2D,

(3.1)

where p is the keep probability (one minus the drop probability), F represents the feature
size and b is the block size. The drop probability 1− p may be an inaccurate representation
of the percentage of elements dropped. As an example, for a drop probability equal to 1,
γ may be less than 1 whenever F 6= b, meaning that, on average, not all features will be
dropped despite the deceptively high drop probability. As seen in Table 3.1, even when γ
is equal to the dropout probability, the percent dropped may not be equal to the dropout
probability, since the Bernoulli mask generated with γ is expanded by the block size.

3.2. Decoder-encoder architecture for low-dimensional regression. For low-
dimensional dense regression, we employ a decoder followed by an encoder, connected by
skip connections and having a scalar input xi and a scalar output f(xi).

We selected a convolutional network with a number of kernels per convolutional layer in
the decoder equal to 16, 16, 8, 8 (4 layers), in the encoder equal to 8, 8, 16, 16, 8 (5 layers),
and in the nonlinear correlation equal to 8, 1 (2 layers). We added dropblock regularization
with a drop probability of 0.2 and a block size of 3, where the drop probability is increased
by equal increments for 5000 steps, until it reaches 0.2, or, in other words, through a
linear scheduler. One step is equivalent to processing a pre-defined number (batch) of the
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training data. A linear scheduler for the drop probability is recommended in [6] to achieve
more accurate predictions. Each convolution layer is followed by a tanh activation, with the
exception of the final layer where we use a linear activation. The convolutions are performed
with a kernel size of 1, 1, 2, 2 in the decoder, 2, 2, 1, 1 in the encoder, 2, 1 in the nonlinear
correlation, and 1 in the linear correlation. A stride of 1 and padding are used to keep
inputs and outputs of the same size. The kernel size is chosen to induce a convolutional
behavior, as opposed to equivalency to a fully connected network. Training is performed
using the Adam optimizer [12] utilizing a step learning rate scheduler with decay 0.9, where
the step size and initial learning rate is determined by the dataset. In order to achieve robust
results for the given datasets, the input x must be fed to downstream parts of the network
and L2 regularization penalty carefully selected. Therefore, L2 regularization penalty is
different depending on the dataset. A batch size of 1 is used due to the limited number of
training examples. In addition, the functions are rescaled to the range [0, 1] based on the
maximum and minimum value in the training set, which allows for a consistent use of the
same optimizer across functions. The network layout is illustrated in Figure 3.1.

Input: x
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Pool 16x1 Conv: 16x1  

Conv: 16x1  

Up 16x2  

HF f(x)End
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Linear
component
Conv 1x1
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Fig. 3.1: Multi-fidelity decoder-encoder convolutional network architecture for low-
dimensional regression with optional explicit feedback. The HF output is a linear com-
bination of the nonlinear and linear portion of the network, HF = γLinear(LF, x) + (1 −
γ)Nonlinear(LF, x), where γ is a parameter learned by the network.

3.3. Encoder-decoder architecture for high-dimensional regression. A widely
adopted encoder-decoder (ED) architecture is the U-Net [19], a convolutional neural net-
work characterized by an encoder which produces a compressed, i.e. low dimension, feature
representation, followed by a decoder, which outputs a representation with the same dimen-
sion as the original input image. The U-Net architecture and its variants have shown great
performance in terms of accuracy and training speed for segmentation tasks even under
limited training data [10]. We have extended the U-Net architecture to predict the rela-
tive pressure on a two-dimensional structured grid where a velocity field and a fluid region
indicator function are defined on each pixel.

More specifically, we consider both input and output images with 64 × 64 pixels. The
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Fig. 3.2: Multi-fidelity decoder-encoder convolutional network architecture for high-
dimensional dense regression. For explicit LF-HF feedback, the connections drawn with
dotted lines are included, while they are omitted when the LF-HF feedback is implicit.
Outputs LF1, LF2, LF3, HF are ordered in terms of resolution from coarsest to finest.

number of kernels per convolution layer in the encoder are 16, 16, 32, 32, 64, 64, 128,
128 (8 layers), respectively, while those in the decoder are instead 64, 64, 32, 32, 16, 16,
32, 32, 16, 1 (10 layers). We use a drop probability of 0.25 and a block size of 3 for the
dropblock with a linear scheduler, where the drop probability starts at 0 and is increased
by equal increments for 300 steps until it reaches 0.25. Each convolution layer is followed
by a batch normalization layer and ReLU activation, which becomes a simple identity after
the final convolution layer. Additionally, each convolution is performed with a kernel of size
3, padding 1 (i.e. same size output) and stride 1 and the output is downsampled by max
pooling. Training is performed using the Adam optimizer with learning rate 0.01 and no
learning rate scheduler, using a batch size of 16.

3.4. Training datasets and multifidelity loss. For low-dimensional dense regres-
sion we adopt the same training data as detailed in [16], for the two datasets described
in Equations (2.1), (2.2) and (2.3), (2.4). For the high-dimensional case, we have tested
our approach using a two-dimensional slice from a Poiseuille flow with parabolic velocity
profile, where the fluid is confined within a cylindrical domain Ωf . We note here that the
solution is symmetric with respect to the cylindrical axis and therefore a two-dimensional
spatial representation, for a generic plane including the axis, is sufficient to fully describe
the flow. The Poiseuille dataset is generated by randomizing the maximum velocity and
cylinder radius parameters, as shown in Figure 3.3. Examples for the training, validation
and testing datasets are randomly generated using 60/20/20 split ratios, resulting in 116,
49, 35 HF images, respectively. The two high-fidelity only training datasets contain subsets
of the 116 HF training images: 32 and 116 high-fidelity data, respectively. For the mul-
tifidelity training dataset, we consider 32 high-fidelity and 116 low-fidelity representations,
each of which contains noisy, subsampled representations of dimensions 32×32, 16×16, and
8×8 corresponding to a HF sample from the full 116 HF training set, for a total of 380
images.

After training, every dataset’s accuracy is evaluated on the same validation and test sets
as described previously (49, 35 HF images). Finally, the integral of the Mean Square Error
(MSE), assembled from the contribution of all four fidelities with equal weight of 1/4, is used
for the loss function when training. The integral here is obtained by multiplying each pixel’s
contribution to the MSE by the size of associated pixel. We also tested using a weighted
average for the loss, where the high-fidelity samples are weighted more. This showed some
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(a) (b) (c)

Fig. 3.3: Poiseuille flow test case. Velocity profile (a). Test case parameterization in terms
of the fluid region radius and maximum velocity (b). Pressure result (c).

improvements in the final high-fidelity accuracy, but the results were not consistently better
than the equally weighted case across different weight initializations. Final accuracy results
are reported for predictions on the test set using the model with the lowest validation loss
during training.

4. Network prediction estimation. If used during the evaluation of an optimally
trained network, dropblocks can inject stochasticity in each network evaluation, and, com-
bined with Monte Carlo sampling, provide a tool to quantify the uncertainty in the network
outputs (so-called MC dropout, see [5]). As noted in §1, it is important to emphasize
that this notion of uncertainty reflects the variability introduced in the network by hyper-
parameters (in this case changes in the network architecture induced by randomly dropping
neurons) and not the impact of any uncertainty in the network inputs. For this work, we
focus on determining the variability in the network predictions as a result of changes in the
convolutional architecture induced by dropblock layers. We do not consider variability due
to the network weights, as done, for instance, in Bayesian neural networks [13,15].

5. Multifidelity data fusion. We use two different architectures for multifidelity
information fusion; an encoder-decoder architecture for high-dimensional regression and a
decoder-encoder architecture for low-dimensional regression. In the high-dimensional case,
the network produces a LF prediction of increasing resolution at each stage of the decoder.
A term for each LF predictor is then added to the loss function, so these LF representations
are accurately learned. In Figure 3.2, the models are ordered as LF1, LF2, LF3, HF ,
i.e., from the coarsest to the finest resolutions. The low-dimensional regression network in
Figure 3.1 only predicts a single low-fidelity estimator LF .

For each of these two networks, we also considered both an implicit and an explicit
coupling between low- and high-fidelity representations. In the first case, the LF to HF
information feedback in the network is only implicit, meaning these low-fidelity predictors
are not propagated downstream (i.e., towards the network output, see Figure 3.2, omitting
the propagation of the LF representations along the dotted arrows). However, forcing the
upstream stages to learn accurate coarse pressure representations clearly affects the accuracy
of the high-fidelity prediction. In the second case, this feedback mechanism is instead
explicit, meaning that the LF predictions are propagated through the following stages of
the decoder (see Figure 3.2, including the propagation of the LF representations along the
dotted arrows). Similarly, the network selected for low-dimensional regression is shown in
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Figure 3.1, where implicit and explicit feedback is again obtained by omitting or including
the information transfer through the dotted arrow.

When the HF and LF truth belong to the same space and are correlated, an explicit con-
nection helps in capturing the relationship between the LF and HF, such as in the two low-
dimensional regression problems discussed in Section 3.2. However, in the high-dimensional
regression problem examined in this work, it’s unclear that an explicit connection would be
beneficial, since the LFs and HF live on different spaces. In such a case, an implicit con-
nection appears to force the network between two successive LFs to learn their discrepancy,
ultimately leading to improved HF predictions.

6. Results.

6.1. Low-dimensional dense regression. The network is first trained on the LF
data only, since the LF contains more training points than the HF, to ensure there was
no detriment to using a convolutional network as opposed to a fully-connected network.
After obtaining accurate results on the LF, we focused on the multifidelity predictions.
The explicit network outperformed the implicit network, which seems reasonable given the
significant correlation between the LF and HF models from the reference publication.

The multifidelity network is able to correctly leverage the LF data to influence the
HF prediction to more closely resemble the true HF function, as shown in Figure 6.1(b),
compared to the predictions from the network trained with HF data only in Figure 6.1(a).
Similarly, in Figure 6.2, the multifidelity network is able to capture the discontinuity by
extracting this information from the LF data, since this feature could not be learned from
the limited HF data. In Figures 6.1(a) and 6.2(a), the model weights are initialized with dif-
ferent realizations of the same weight initialization scheme; these figures show the behavior
is consistent across realizations in that the network is unable to capture the unknown infor-
mation when trained only with HF data. The weights and biases were initialized through
U(−s, s), where s = nk0k1, n is the number of input channels, and k is the kernel shape, but
the behavior was consistent across other weight initialization schemes, such as Xavier [7].

Including x as an additional input downstream of the LF predictor was a necessary
adjustment needed to separate the LF into a linear and a non linear contribution, facilitating
their combination into an optimal HF predictor; in this regard, note that in (2.4), yH(x) =
cyL(x) + Fl(x), where c is a constant and Fl(x) = −20x+ 20 is linear in x.

A significant difference arose in comparing the two problem sets for low-dimensional
regression; the locations of the LF data chosen for (2.1) was a subset of the locations chosen
for the HF data (2.2), whereas in (2.3)-(2.4), the locations of the LF data were distinct from
the locations of the HF data. For different LF and HF x values, spikes were observed in the
multifidelity network predictions of 6.2(c). The LF prediction overcompensated by creating
spikes at the locations of the HF data, to improve the HF training loss, without altering
the training loss at the LF points. Therefore, the LF portion of the network required more
regularization to prevent this behavior. This does not happen instead when using the same
x values for the LF and HF, since a spike reducing the HF loss would necessarily increase
the LF loss. Although [15] reported robust results, its network required the regularization
penalty to be tuned and the size of the network carefully chosen to siphon the HF prediction
into the true HF-LF correlation; since no validation set was included, this would require some
degree of manual tuning, which might not be possible in a realistic application, since HF
data may not be readily available. Therefore, our network’s sensitivity to the regularization
penalty for the example in Figure 2.1(b) does not appear to be a limitation of this specific
architecture. Lastly, results in this section utilize all-at-once training, by which the LF and
HF sections of the network are both trained for every epoch. Simulating the separation of
these two networks by freezing the weights (i.e. train on LF data first, freeze the weights,
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and train the downstream weights only based on the HF data) produced reasonable visual
results, but performed worse than the all-at-once training as determined by the mean error
and variance of the error; these results are not reported due to space limitations.
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Fig. 6.1: Predictions from (a) high-fidelity only network, (b) multifidelity network, for
different random initializations. True function values are from Equations (2.1), (2.2).
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Fig. 6.2: Predictions from (a) network trained with only high-fidelity data (b) multifidelity
network trained with low- and high-fidelity data, for different random initializations. (c) A
single prediction both with or without regularization for a limited range of the prediction.
True function values are from Equations (2.3), (2.4).

6.2. High-dimensional dense regression. We trained the multifidelity networks
with implicit and explicit feedback using 32 high-fidelity and 116 low-fidelity pressure results.
We compared their results with a network trained from 116 and 32 high-fidelity examples
only. Results are shown in Table 6.1 where we report both the final validation accuracy as
R2

R2 = 1−RMSE = 1− N − 1

N
·
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

, (6.1)

where RMSE stands for the relative mean squared error, yi is the true pixel value, ŷi is the
predicted pixel value, ȳ is the mean of the true pixel value across all pixels and all validation
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samples, and N is the total number of pixels in the validation dataset (i.e., the number of
pixels in a single image times the number of available validation samples). We also report a
normalized accuracy with respect to the cost of generating the training data set, quantified
as the total number of pixels in the data. Thus, 116 high-fidelity images with resolution
64×64 have a cost of 475, 136 pixels, while 32 high-fidelity images have a cost of 131, 072
pixels (a cost ratio of 0.276 to the 116 high-fidelity case). The multifidelity dataset with 32
images at high-fidelity, and 116 images at each of the three low fidelities would result in a
cost of 286, 976 pixels (a cost ratio of 0.604 to the 116 high-fidelity case).

The multifidelity network with explicit feedback significantly improves the accuracy with
respect to training with 32 high-fidelity examples. Its normalized accuracy is also superior
to that produced by a network trained on 116 high-fidelity examples. High-fidelity and
multifidelity validation loss profiles are shown in Figure 6.3. Figure 6.3(a) compares the high-
fidelity contribution to the validation loss for networks trained from collections of examples
containing a single or multiple fidelities. It emphasizes the acceleration in convergence
produced by the multifidelity networks. Figure 6.3(b), on the other hand, demonstrates
the ability of the network to learn representations at multiple fidelities (resolutions) during
training. When calculating the loss, a weighted integral of mean squared error is used so that
the low-fidelity error is compared on the same scale as the high-fidelity. Finally, Figure 6.4
shows the difference in the predicted pressure profiles for a network trained from 32 high-
fidelity realizations and a multifidelity network with 32 high-fidelity and 116 low-fidelity
examples.

Skip Conn. Network Type HF/LF R2 Normalized R2

Concat MF, explicit feedback 32/116 0.924898 3.223e-06
Add MF, explicit feedback 32/116 0.930846 3.244e-06

Concat MF, implicit feedback 32/116 0.917597 3.197e-06
Add MF, implicit feedback 32/116 0.940792 3.278e-06

Concat High-fidelity only 32/0 0.909241 6.937e-06
Add High-fidelity only 32/0 0.874646 6.673e-06

Concat High-fidelity only 116/0 0.94422 1.987e-06
Add High-fidelity only 116/0 0.935619 1.969e-06

Table 6.1: Comparison of high-fidelity and multifidelity network performance on Poiseuille
test case. Accuracy is computed for the test set. The cost for multifidelity training is 286976
pixels (32 high fidelity images, 116 samples of each of the 3 coarse low fidelity sets). The
cost for the 116 high-fidelity samples is 116×64×64=475136. The normalized accuracy is
R2/C where C is the cost. The terms Concat and Add refer to how the information from a
skip connection is assembled into the decoder.

6.3. Prediction estimate accuracy. Uncertainty in the network predictions is quan-
tified, in this study, using MC dropblock. For every input at testing, the network is fed the
same input for NUQ = 50 times, producing an ensemble of 50 predictions induced by ran-
domness in the dropblock layers.

The 5%-95% confidence interval computed by MC dropblock for the function in Equa-
tion (2.2) is amplified around x = 0.2, 0.8 where we lack HF samples. In addition, the
estimated confidence interval in Figure 6.5(a) does not include the true underlying HF func-
tion. To better understand the reason why this happens, we investigated the factors that
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Fig. 6.3: Validation loss profiles for Poiseuille test case (a). The plot compares the losses
resulting from HF only and multifidelity training, using the best model for each category, i.e.
with the highest test acccuracy. The profiles for the weighted mean squared losses integrated
over the fluid domain are shown in (b) for the best performing multifidelity approach. Only
the decreasing losses are shown.

are mostly responsible for the amount of uncertainty generated by MC dropblock. Use of
tanh activation functions produce relatively narrow uncertainty intervals both within and
beyond the training locations, as shown in Figure 6.5(b). By replacing the activations with
ReLU , the intervals widen, particularly away from the training examples, as shown in Fig-
ure 6.6(b). This behavior for the dropblock observed in this study is consistent with the
observations in [5] for dropout layers in fully connected architectures, where they observed
bounded and unbounded intervals with tanh and ReLU activation functions, respectively.
In general, the ReLU activation functions produce wider uncertainty intervals, which are
more likely to capture the true HF model.

The uncertainty estimates for the high-dimensional case are plotted in Figure 6.8 for
the centerline of the fluid region. The mean prediction for the multifidelity network is
generally closer to the truth, and its uncertainty estimate captures more of the truth than
the high-fidelity only network. In Figures 6.8(c) and 6.8(f) specifically, we can see that
the uncertainty increases further from the center as the prediction becomes less accurate.
As shown in Figure 6.7, the variability of the predictions increases for the HF network as
compared to the multifidelity network. The multifidelity network shows more consistently
accurate predictions across the entire image instead of a localized region. The outliers near
the fluid boundary appear typical of convolutional neural networks which often report lower
accuracy near the boundary [9]; the original U-net architecture overcomes this through
reflective padding the input layer and not padding any subsequent layers [19] (whereas
we zero pad each convolutional layer), although other approaches exist to overcome this
limitation for convolutional networks (e.g. [9]).
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Fig. 6.4: Predictions from training with 32 HF pressure result examples on two Poiseuille
flow configurations (a,c), respectively, from the test set. Predictions from implicit multifi-
delity network architecture trained with 32 high-fidelity and 116 low-fidelity pressure result
examples (b,d).
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Fig. 6.5: Mean prediction and estimated 5%-95% confidence interval from multiple dropblock
realizations in the prediction of (a) Equation (2.2) and (b) Equation (2.4), from a network
with tanh activation functions.
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Fig. 6.6: Mean prediction and uncertainty 5%-95% confidence interval estimates from an
ensemble of 50 dropblock realizations. A network with ReLU activations after each convo-
lution layer except the last is used to predict (a) Equation (2.2) and (b) Equation (2.4).
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Fig. 6.7: Poiseuille predictions of test data along each slice inside the fluid region of the
image. For a sample cylinder with a larger radius, there exists more slices. (a)-(c) are HF
32/0 network with highest test accuracy. (d)-(f) are multifidelity network with highest test
accuracy.
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Fig. 6.8: Mean prediction and uncertainty 5%-95% confidence interval estimates from an
ensemble of 50 dropblock realizations for Poiseuille predictions of test data along the center-
line (center of the cylinder). (a)-(c) are HF 32/0 network with highest test accuracy. (d)-(f)
are multifidelity network with highest test accuracy.
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7. Conclusions and future work. Preliminary results indicate the possibility of
improving the accuracy in dense regression using multifidelity networks with explicit or im-
plicit feedback, by augmenting the training dataset through a large collection of inexpensive
low-fidelity examples. In this work, we focus on convolutional neural networks, since they
require a significantly smaller number of parameters with respect to fully connected layers
having the same number of neurons. This property is crucial for predicting results from
high-fidelity physics-based solvers having either high-dimensional inputs, high-dimensional
outputs or both, where the number of parameters resulting from fully connected networks
would simply be too large. Although these convolutional networks offer significant com-
putational savings for high-dimensional inputs/outputs, we show that their performance is
comparable to fully-connected multifidelity networks even for low-dimensional problems.

Additionally, an architecture resulting from an assembly of encoders and decoders has
the flexibility to accommodate training data from a number of sources, including arbitrary
LF predictors, ground-truth HF model results, LF data for coarse discretizations and general
response surface surrogates. As an example, we combine in Section 6.2 a HF ground truth
with its coarsened representations.

Our approach is designed to quantify variability in the prediction of the network. This
is achieved through a dropblock regularizer that requires an end-to-end training task with
multifidelity data. Given the ability of the proposed network to generate multiple predictions
every time it is evaluated, we will investigate multifidelity variants of MC dropouts. Finally,
this work focuses on networks where the inputs and outputs have the same dimensionality
and will be extended in future work to more general cases.
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ALGEBRAIC MULTIGRID FOR HIGHER-ORDER DISCRETIZATIONS
OF THE STOKES EQUATIONS

ALEXEY VORONIN∗, RAYMOND S. TUMINARO† , LUKE N. OLSON‡ , AND SCOTT

MACLACHLAN §

Abstract. This article focuses on developing monolithic algebraic multigrid (AMG) preconditioners
for mixed finite-element discretizations of coupled partial differential equations (PDEs). In particular, we
aim to construct robust AMG preconditioners for the Taylor-Hood, QQQ2/Q1 and PPP2/P1, discretizations of the
Stokes equations. The key idea is to not directly apply AMG to the higher-order systems. Instead, AMG
is applied to a stable low-order system based on either the QQQ1isoQQQ2/Q1 or the PPP1isoPPP2/P1 discretizations.
The resulting AMG method is then used to precondition the high-order system. We explore a number of
AMG coarsening parameters, identifying suitable choices that can be used to precondition finite-element
problems on structured and unstructured grids.

1. Introduction. This study focuses on developing efficient monolithic algebraic
multigrid (AMG) methods for the solution of mixed-finite element (MFE) discretizations
of PDE systems. A common example of such systems is the Stokes equations, used to
simulate incompressible viscous flow. Their discretization results in highly indefinite and
block-structured saddle-point systems, which makes it challenging to construct an effective
multigrid solver [6].

The most successful monolithic multigrid approaches for saddle-point type systems are
of geometric multigrid (GMG) type [2,8,10], where the multigrid hierarchy is composed of a
sequence of coarser discretizations on nested meshes, connected by canonical interpolation
operators for each field. In the case of GMG, the ability to construct a grid-hierarchy is
limited by the complexity of the domain with increasing difficulty from highly structured to
unstructured meshes.

While scalar AMG solvers can easily address many matrix systems associated with
unstructured meshes, the adaptation of AMG to saddle-point systems is not well understood.
One difficulty is that AMG does not perform well on stiffness matrices constructed with
higher-order bases, since they deviate from the M-matrices for which AMG was designed.
A second difficulty is that the independent coarsening of each type of variable may lead to
coarse discretization operators that violate an inf-sup (or LBB) stability condition [4]. Some
AMG saddle-point approaches are described in [12, 18, 21, 22]. Previously, we proposed a
preconditioner for a QQQ2/Q1 discretization of the Stokes equations based on applying GMG to
a QQQ1isoQQQ2/Q1 problem, demonstrating that the solver convergence rate does not deteriorate
as the mesh is refined [20]. The main goal of the current manuscript is to show that similar
mesh-independent convergence rates can be achieved with AMG instead of GMG.

Two challenges must be addressed to develop a suitable AMG solver in our context. The
first challenge centers on the AMG coarsening algorithm. While AMG convergence rates
can be sensitive to coarsening heuristics even on scalar problems, we have observed that this
sensitivity is much more pronounced in the context of mixed-finite element discretizations of
Stokes equations. In particular, we observe (in unpublished experiments) that convergence
rates may suffer significantly when the velocity unknowns are coarsened more rapidly than
the pressure unknowns, as happens with some choices of coarsening algorithms. The second
challenge centers on the choice of relaxation damping parameters. Commonly, local Fourier
analysis has been used to guide the choice of these relaxation damping parameters within
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GMG solvers. Unfortunately, it is not clear how to adapt Fourier analysis ideas to the types
of highly irregular coarse meshes created within the AMG hierarchy. Thus, some alternative
strategy is needed to determine the relaxation damping parameters.

The remainder of the report is organized as follows. section 2 summarizes the considered
PDEs and discretizations, while section 3 describes the low-order preconditioning idea along
with some of the AMG details necessary to address the low-order Stokes discretization.
section 4.1 provides numerical results demonstrating optimal SA-AMG parameters for 2D
Poisson problems on structured and unstructured meshes. section 4.2 provides results for
the monolithic SA-AMG solvers applied to the Stokes problem. section 5 presents the
conclusions and future steps.

2. Problem formulation.

2.1. Discretization of the Stokes equations. The two-dimensional Stokes equa-
tions are given by

−∇2u+∇p = f (2.1a)

−∇ · u = 0, (2.1b)

where u is a vector-valued function representing the velocity of the fluid, p is a scalar
pressure function, and f is a vector forcing term. For simplicity, we assume homogeneous
Dirichlet conditions on u over the boundary of a domain Ω.

We consider a mesh over Ω and two finite-dimensional spaces of the form X h ⊂H1
0(Ω)

and Mh ⊂ L2(Ω), where X h satisfies the appropriate homogeneous Dirichlet boundary
conditions. The resulting discrete weak formulation of (2.1) corresponds to finding u ∈ X h

and p ∈Mh such that ∫
Ω

∇u : ∇v −
∫

Ω

p∇ · v =

∫
Ω

f · v (2.2a)

−
∫

Ω

q∇ · u = 0, (2.2b)

for all q ∈Mh and v ∈ X h.
In this report, we focus on four types of stable mixed finite-element discretizations

for X h and Mh. The first discretization is the QQQ2/Q1 discretization (also known as the
Taylor-Hood discretization), which uses a biquadratic representation for the velocity com-
ponents and a bilinear representation for the pressure on quadrilateral meshes. The second
discretization, QQQ1isoQQQ2/Q1, replaces the QQQ2 space for velocities with a linear QQQ1 approx-
imation on a once-refined mesh. Figure 2.1 depicts the spatial location associated with
different unknown types on a sample mesh for the QQQ2/Q1 and QQQ1isoQQQ2/Q1 discretizations.
In addition to quadrilateral elements (QQQ), we study AMG convergence for the analogous
triangular element (P) discretizations: PPP2/P1 and PPP1isoPPP2/P1.

All four of the above discretizations satisfy the inf-sup (or LBB) stability conditions,
thereby yielding a stable discretization of the Stokes problem [6, 7]. The following saddle
point matrix system emerges from (2.2)

K

[
u
p

]
=

[
A BT

B 0

] [
u
p

]
=

[
f
0

]
= b, (2.3)

where matrix A corresponds to the discrete vector-Laplacian and B represents the negative
of the discrete divergence operator. Here, we overload the notation and use u and p to
denote the discrete velocities and pressure for the remainder of the report.
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(a) QQQ2/Q1 (b) QQQ1isoQQQ2/Q1

Fig. 2.1: Meshes and degrees of freedom for the QQQ2/Q1 and QQQ1isoQQQ2/Q1 discretizations.
Dark circle [ ] corresponds to the velocity locations (two components of velocity per marker),
and red squares correspond to the pressure locations.

3. Low-Order Preconditioner. Lower-order systems have been used to precondition
higher-order operators in many different contexts based on the defect-correction method [5,
11,14,17]. Generally, the idea centers on developing an auxiliary low-order operator that is
used for preconditioning purposes. Specifically, a preconditioning strategy such as GMG or
AMG is applied to the auxiliary low-order operator instead of being applied to the original
high-order system. A preconditioner for the high-order system can be developed by first
applying an inexpensive relaxation procedure directly to the high-order system. A residual
is then computed and transferred to the basis associated with the low-order operator. A
correction for the high-order system can be generated by applying a GMG or AMG V-
cycle to the low-order system and, finally, transferring the resulting correction back to the
high-order basis. In this way, one avoids applying GMG or AMG directly to the high-order
system.

There are several reasons why it might be undesirable to apply a similar precondition-
ing strategy directly to the high-order system. In our context, we find that AMG performs
poorly when applied directly to the high-order system. This is partially related to the fact
that AMG methods tend to aggressively coarsen high-order systems (due to the denser spar-
sity pattern associated with high-order discretizations). In the case of the Stokes operator,
this can result in a much more aggressive coarsening of the velocity variables than the pres-
sure variables, which has a tendency to produce coarse discretizations with poor stability
properties.

3.1. AMG Grids and Interpolation. In this report, we focus on Smoothed Ag-
gregation (SA-)AMG. Applied to scalar linear systems, AMG setup first determines the
coarse-grid and then defines an appropriate interpolation operator, P . For a 2D system of
PDEs like Stokes, we construct a total of three scalar SA-AMG hierarchies: one for each
component of velocity, and one for the pressure field. The individual interpolation opera-
tors, Pvx and Pvy for velocity and Pp for pressure, are then combined in a block-diagonal
matrix that has the form

P =

Pvx Pvy
Pp

 (3.1)
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on each level of the hierarchy. The block-diagonal structure of the interpolation operator
preserves the saddle-point structure of the coarse-grid operator, Kc = PTKP .

In scalar SA-AMG, each coarse-grid DoF is defined as a collection of fine-level DoFs
(also known as an aggregate), where the aggregation of the fine-level DoFs is based on the
undirected adjacency graph of the matrix. The aggregate information is then used to define
an interpolation operator that accurately interpolates error that is not effectively reduced
by relaxation. The interpolation is then used to compute the coarse-grid via the Galerkin
product. The SA-AMG setup phase is outlined in algorithm 1.

Algorithm 1 SA based AMG Setup

1: Input: A1, n× n fine-level matrix
2: C1, n× c vectors representing smooth error components on fine grid
3: Output: A1,. . . , Almax , Grid hierarchy
4: P1,. . . , Plmax−1, Interpolation Operators
5:

6: for l = 1, ..., lmax − 1 do
7: S ← strength(Ak) // Compute strength-of-connection
8: Agg ← aggregate(S) // Aggregate nodes in the strength graph
9: Tk, Ck+1 ← tentative(Ck, Agg) // Construct tentative interpolation operator

10: Pk ← smooth interp(Ak, Tk) // Improve interpolation operator
11: Ak+1 = PTk AkPk // Compute coarse-grid operator

While each step of the algorithm plays an important role in the construction of an
efficient AMG solver, in this report we will focus on the strength of connection and tentative
interpolation smoothing steps.

The strength-of-connection (SoC) step is used to determine sparsity patterns for the
grid-transfer operators. The standard SA algorithm uses a symmetric SoC, which is based
directly on the matrix stencil. The symmetric SoC measure says that DoFs i and j are
strongly connected if

|Aij | ≥ θ
√
|AiiAjj |, (3.2)

where θ is the threshold value and Aij are the entries of the matrix being coarsened. For the
rest of the report, we take θ = 0, identifying any nonzero connection as a strong connection.
However, for more complex problems and discretizations, the matrix coefficients alone do
not contain sufficient information to correctly identify the directionality of algebraically
smooth errors, which is a crucial step for a robust AMG solver. In those situations, we
turn to the evolution SoC measure, which makes point-wise SoC choices based on the local
algebraically smooth error and on the local behavior of tentative interpolation [15].

The second SA-AMG component examined in this work is the choice of tentative inter-
polation smoothing routine, which helps to determine coefficients for the final grid-transfer
operators. For generally well-formulated systems, such as low-order discretizations of the
Poisson equation, a Jacobi smoothing operation (with a damping parameter of 4/3) tends
to perform well at improving the grid transfer [3]. Thus, we use this to improve the Pvx and
Pvy grid transfers where the diagonal blocks of the discrete vector Laplacian, A, from (2.3)
are used in the Jacobi operation. However, no such matrix is available for the pressure field
interpolation operator as the diagonal block associated with pressure in (2.3) is identically
zero.

Instead, we define Ap = BBT , which leads to a pressure Poisson-like operator, albeit
with a much wider stencil than desired. We also assume that a user supplies a pressure mass
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matrix, Mp. To avoid coarsening difficulties associated with Ap’s wide stencil, we use Mp

for the AMG coarsen/aggregation algorithm, as it has a more amenable sparsity pattern.
In addition to using Jacobi operator for propagator smoothing, we explore the energy-
minimizing framework (EMIN-AMG). EMIN-AMG avoids some difficulties associated with
Ap’s wider stencil and has been shown to be effective within AMG for Stokes problems
in [18].

3.2. Relaxation. Classical multigrid relaxation methods such as Jacobi and Gauss-
Seidel are not well-defined for saddle-point systems due to the large zero block and the
indefinite system. As a result, we turn to additive Vanka [8, 9], a coupled box-relaxation
scheme.

Let np be the number of pressure DoFs. Algebraic Vanka relaxation partitions the n×n
system matrix, K, into np overlapping saddle-point problems. Each saddle-point problem,
or patch, consists of all of the velocity degrees of freedom with non-zero coefficients in row i
of the divergence matrix, B, along with the pressure degree-of-freedom corresponding to this
row. The adjacent velocity rows and columns are then extracted from the discrete vector
Laplacian matrix, A, to form the local patch matrix.

For each patch, indexed by pressure DoF i, we form a (binary) restriction operator, Vi,
which selects those entries in a global vector that appear on patch i. The system matrix
is then projected onto the patch DoFs by a triple matrix product, ViKV

T
i . The matrix

representation of single iteration of additive Vanka relaxation is then given by

M−1
V = ω

np∑
i=1

V Ti Wi

(
ViKV

T
i

)−1
Vi,

where ω is the global damping parameter and Wi is a diagonal weighting matrix defined so
that each diagonal entry is equal to the reciprocal of the number of patches that contain the
associated degree of freedom. In this report, we perform a parameter scan on ω, identifying
the optimal ω value based on the iteration count of FGMRES preconditioned with the 2-
level AMG method. Alternatively, one can avoid setting a relaxation parameter (i.e., take
ω = 1) by embedding the Vanka scheme within an outer Chebyshev polynomial or a Krylov
method to accelerate the relaxation scheme without a damping parameter [1].

4. Numerical Results. In this section, we consider the numerical solution of 2D Pois-
son and Stokes problems. For convenience, the higher-order discretization matrices, A0 and
K0, are assembled using Firedrake [13, 19]. In case of the Poisson problem, the lower-order
discretization matrix, A1, is assembled by forming a finer-mesh Q2 discretization, then ap-
plying coarsening-in-order to the DoFs. For Stokes problem, a similar approach is followed.
The QQQ1isoQQQ2/Q1 discretization matrices are assembled by forming a finer-mesh QQQ2/Q1

discretization, and then applying coarsening-in-order to the velocity DoFs and coarsening-
in-space to the pressure DoFs. The low-order AMG preconditioner is implemented using
the PyAMG library [16].

All the convergence results are for FGMRES preconditioned with a single V(2,2)-cycle of
AMG, where (2, 2) are the number of pre- and post- relaxation sweeps. All the convergence
plots report the absolute Euclidean norm of the residual based on the A0 or K0 operators.
The solver convergence tolerance is selected to be reducing this norm below 10−12 or 100
iterations, whichever is reached first.

In order to demonstrate the effect of element/mesh choice on the convergence, we con-
sider structural quadrilateral and unstructured triangular grids, displayed in Fig. 4.1 on the
left and right, respectively. We omit results for the structured triangular meshes because
they give similar convergence patterns as the unstructured triangular meshes.
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Fig. 4.1: Structured Quadrilateral Mesh (left) and Unstructured Triangular Mesh (right).

4.1. 2D Poisson. We start by verifying that SA-AMG low-order preconditioners can
achieve grid-spacing, h-, independent convergence for the 2D Poisson problems. A 2D
Poisson problem is equivalent to solving

Axu = fx, (4.1)

where Ax is a single component of the vector-Laplacian operator A in (2.3) and u and
fx are corresponding scalar vectors. We assume Dirichlet boundary conditions along the
boundaries of a square mesh.

The SA-AMG hierarchy is set up using symmetric SoC, standard aggregation, and Ja-
cobi tentative interpolation smoothing with damping parameter 4/3. For pre- and post-
relaxation, we use 2 sweeps of weighted Jacobi with optimal damping parameters, ω, de-
termined by performing line-search for two-grid AMG hierarchies of various sizes. The
correction on the coarsest grid is computed using a direct solver. The left plot in Fig. 4.2
shows that FGMRES preconditioned with AMG converges in an h-independent fashion for
structured quadrilateral meshes. However, when we solve the same problem on an un-
structured triangular mesh, as seen in the right plot of Fig. 4.2, the convergence is only
h-independent until an absolute residual of 10−5, after which the convergence rate drops
off in proportion to the depth of AMG hierarchy. Similar results were observed for struc-
tured triangular meshes (not depicted). This suggests that the coarse-grid correction is not
effectively reducing some of the smooth modes.

We examine the AMG aggregation patterns for the two types of problems to try to
explain the convergence difference in Fig. 4.2. Fig. 4.4 shows that for structured quadrilat-
eral meshes we get “nice” rectangular aggregates. Meanwhile in unstructured case, shown
in Fig. 4.5(a), the aggregates become significantly more irregular, containing many aggre-
gates with “offshoot” DoFs.

To improve the aggregation, we turn to the evolution strength measure, while keeping
the rest of the AMG parameters the same. The aggregation plot in Fig. 4.5(b) demonstrates
that this modification results in more cohesive aggregates which, in turn, helps recover the
h-independent convergence as seen in the right plot of Fig. 4.3. The convergence for the
structured quadrilateral meshes is unaffected, as shown in the left plot of Fig. 4.3. The
effect of evolution strength measure on aggregation is further recorded in table 4.1. Here
we measure the coarsening rate (CR) between two consecutive levels of the AMG hierarchy.
The CR is computed as the number of fine-level DoFs divided by the number of coarse-level
DoFs. For the 2D Poisson problem, SA-AMG with standard aggregation should achieve a
coarsening rate of about 9. That is clearly the case for structured quadrilateral meshes.
For unstructured triangular meshes, the symmetric strength of connection leads to more
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Fig. 4.2: Convergence of FGMRES preconditioned with AMG, which uses symmetric SoC,
on structured quadrilateral (left) and unstructured triangular (right) meshes. The weighted-
Jacobi relaxation damping parameters are 4/3 and 1.6, respectively.
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Fig. 4.3: Convergence of FGMRES preconditioned with AMG, which uses evolution SoC, on
structured quadrilateral (left) and unstructured triangular (right) meshes. The weighted-
Jacobi relaxation damping parameters are 4/3 and 1.6, respectively.

Table 4.1: Poisson Problem: AMG coarsening rates for each coarse-grid.

Structured Quadrilateral Unstructured Triangular

SoC Symmetric Evolution Symmetric Evolution

lvl

1 9.00 9.00 7.96 7.97
2 8.97 8.95 15.9 9.04
3 9.00 9.07 21.2 9.30
4 8.80 8.67 9.30
5 8.86 7.62
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aggressive coarsening than desired. The evolution strength measure helps rectify this by
more accurately identifying the direction of smooth error on the coarser grids.

Aggregation on A1 Aggregation on A2

Fig. 4.4: Aggregates for the 3-level AMG hierarchy based on the 4225 DoF structured
quadrilateral Poisson problem.

4.2. 2D Stokes. We next examine how the approach described in section 3 works on
structured and unstructured Stokes problems on a uniform mesh. The boundary conditions
are of lid-driven cavity problem with symmetric parabolic speed profile for the velocity of the
lid. The velocity field interpolation operators are constructed using symmetric SoC, stan-
dard aggregation, and Jacobi tentative interpolation smoothing. The pressure interpolation
is constructed using symmetric SoC and standard aggregation on a pressure mass-matrix,
followed by EMIN-AMG on Ap = BBT to determine interpolation weights. For relaxation,
we use two pre- and post- Vanka sweeps with optimal damping parameters, ω, determined
by performing line-search for two-grid AMG hierarchies of various sizes. To address the
singularity of this system the correction on the coarsest grid is computed using a pseudoin-
verse. The convergence plots for the solvers using these sets of parameters are depicted
in Fig. 4.6.

For the structured domains, we obtain close to h-independent convergence, as seen in
the left plot of Fig. 4.6. In case of the unstructured triangular grids, the right plot of
the Fig. 4.6, the convergence degrades with the depth of AMG hierarchy in a similar fashion
to the Poisson problem in section 4.1. The convergence for the unstructured problems can
once again be improved using the evolution strength measure. Performing a parameter
search on SoC, we identified that the best convergence is achieved when the evolution SoC
is applied to the pressure field and the velocity fields still use the symmetric SoC. The
convergence plots in Fig. 4.7 suggest that the choice of tentative interpolation smoothing
plays a significant role.

Our original intuition was that preserving the 4-to-1 ratio of DoFs between the indi-
vidual velocity components and the pressure (matching the ratio prescribed by QQQ2/Q1 and
PPP2/P1 discretizations) would be necessary for obtaining robust monolithic AMG solvers for
the Stokes problem. Maintaining that ratio without additional code modifications proved
to be difficult. The number of DoFs on each level depends on the SoC choices as well as
the tentative interpolation smoothing choices. This is supported by the data in table 4.2,
which shows the DoF ratio (DR), defined as the mean number of DoFs for each component
of the velocity divided by the number of pressure DoFs on that level.

table 4.2 also demonstrates that the 4:1 ratios on all the levels of AMG hierarchy do
not necessarily result in optimal convergence. The AMG hierarchy with the (Symmetric,
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Aggregation on A1 Aggregation on A2

(a) Unstructured Triangular Mesh, Symmetric SoC

Aggregation on A1 Aggregation on A2

(b) Unstructured Triangular Mesh, Evolution SoC

Fig. 4.5: Effect of SoC choice on the shape of the aggregates. Both symmetric and evolution
SoC plots are based on 3-level AMG hierarchy for a 5609 DoF unstructured Poisson problem.
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Fig. 4.6: Structured Quadrilateral Mesh (left) and Unstructured Triangular Mesh (right).
The Vanka relaxation parameters, ω, are 0.54 and 0.44, respectively.

Symmetric) SoC pair matches the desired coarsening rates the closest, while still resulting
in hierarchy-depth dependent convergence.
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Fig. 4.7: Convergence of FGMRES preconditioned with AMG. All the plots above utilize
symmetric strength of connection for the velocity field and evolution strength for the pressure
field. The choices for tentative interpolation operator smoothing parameters are listed in
the following order (velocity, pressure) for each plot: top left (Jacobi, Jacobi), top right
(Energy, Jacobi), and bottom (Energy, Energy). The Vanka relaxation parameters, ω, are
0.39, 0.29, and 0.29, respectively.

Table 4.2: The DR ratios for the AMG hierarchies based on the largest problem size
(DoFs=1164451). The SoC and T(entative interpolation) smoothing parameters are listed
in the (velocity fields, pressure field) order and are abbreviated using the first 2-3 letters of
the parameter’s name: Jac(obi), En(energy), Sym(mmetric), Ev(olution).

SoC (Sym, Sym) (Sym, Ev)

T Smooth. (Jac, En) (Jac, Jac) (En, Jac) (En, En)

DR(lvl=1) 4.0 4.0 4.0 4.0
DR(lvl=2) 3.9 7.1 7.1 7.1
DR(lvl=3) 4.1 4.3 4.3 7.5
DR(lvl=4) 3.8 2.0 2.0 4.4
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5. Conclusions and Future Work. In this report, we demonstrate that the low-
order, QQQ1isoQQQ2/Q1and PPP1isoPPP2/P1, finite-element discretizations can be used to construct
effective AMG preconditioners for the higher-order, QQQ2/Q1 and PPP2/P1, finite-element dis-
cretizations of the Stokes equations. To achieve this, we first explore the convergence of
AMG preconditioned with FGMRES for the Poisson problem on structured and unstruc-
tured grids. We find that the convergence of the AMG solvers for the unstructured grids
degrades with each additional level of the AMG hierarchy. Switching from symmetric to
evolution strength of connection measures helps to recover h-independent convergence. In
the case of the Stokes problem, we observe a similar AMG-depth-dependent convergence
drop-off. While switching to the evolution strength measure on the pressure field helps to
improve the convergence, we still observe some drop-off for larger problems.

As the next step, we plan on wrapping the relaxation methods within an outer Cheby-
shev polynomial, to eliminate the possibility of convergence drop-off due to level-dependent
relaxation parameters. In addition, we have been exploring AMG coarsening techniques
that enforce the 4:1 velocity-to-pressure DoF ratio.
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II. Software & High Performance Computing

Articles in this section discuss the implementation of high performance computing (HPC)
and productivity software. In many cases, performance improvements and portability are
demonstrated for many-core architectures, such as conventional multicore CPUs, the Intel
Many Integrated Core coprocessor (MIC), and graphical processing units (GPU).

1. Fox, Modine, and Rajamanickam employ Atom-Decomposed Neural Modeling
techniques to reduce the training burden for molecular dynamics electronic density
of state prediction modeling, improving by order of magnitude when compared to
other machine learning density of state models.

2. Gilbert, Madduri, Boman, and Rajamanickam investigate Fine-Grained Parallel
Refinement Algorithms that are applicable to GPUs. These algorithms are
benchmarked on an NVIDIA GPU and an AMD processor.

3. Kruse, Marts, and Dosanjh explore application design for exascale computing by
measuring the overhead of MiniMod and additionally consider three communica-
tion granularities.

4. Li and Kolla improve the computation of Higher Order Joint Moment Tensors
by using Khatri-Rao products. They demonstrate a significant speed up when
comparing the approach against state-of-the-art computation.

5. Logan, Lofstead, Levy, Widener, Sun, and Kougkas investigate the potential of
Persistent Memory (PMEM) devices as storage through the use of the portable
I/O library pMEMCPY. They demonstrate faster performance in a comparison
to other parallel I/O libraries.

6. Low and Wilson showcase the geo-spatial data visualization capabilities of Dash,
a Python package providing the ability to create interactive web apps.

7. Luca and Wang develop a simple fully connected neural network model to learn
Grid Cell Encodings, providing a baseline for comparisons against other network
architectures in future work.

8. McCrary, Devine, and Younge interface Chapel, a language for Productive Par-
allel Computing using Global Address Spaces, with the Grafiki and Trilinos
libraries. Two approaches are considered and scalability and performance metrics
are given for each.

9. Pereyra and Wood test different classes of machine learning models for use within
production level LAMMPS-MD simulations. Benchmark speed and stability tests
are performed and methods are provided for diagnosing reliable machine learning
models for use within the application space.

10. Woods and Curry execute performance testing of the Advanced Tri-Lab Soft-
ware Environment under various testing conditions.

J.D. Smith
E. Galvan

November 1, 2021
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ACCELERATING ELECTRONIC STRUCTURE CALCULATION WITH
ATOM-DECOMPOSED NEURAL MODELING

JAMES FOX ∗, N. A. MODINE † , AND SIVASANKARAN RAJAMANICKAM ‡

Abstract. Advances in deep learning has opened new and exciting opportunities for modeling fun-
damental properties of materials at much lower cost than is possible with existing quantum mechanical
tools. One such property is the electronic density of states (DOS), a key component of electronic structure
calculations in molecular dynamics simulation. Existing ML approaches for accurately predicting the DOS
through LDOS supervision involves millions of samples for resolving the DOS of a single configuration of
atoms, which poses formidable computational demands. This work presents a novel atom-centered decom-
position of DOS for supervision, which reduces the number of samples for training and evaluation by orders
of magnitude compared to LDOS supervision. Combined with a new model for learning atomic environ-
ment descriptions end-to-end, our approach allows resolving downstream quantities such as band energy of
melting point aluminum at a fraction of the cost of LDOS, with matching or greater accuracy.

1. Introduction. The ability to perform accurate materials modeling across differ-
ent length and time scales holds promise in advancing key directions of material science
research. Example applications include the discovery of new desirable materials, or their
behavior under extreme conditions. Molecular dynamics (MD) simulations and their ef-
ficient implementation provide a principled framework towards this goal. However, the
primary challenge is being able to faithfully extend information from quantum mechanical
calculation at atomic scales to simulations operating at larger system and time scales.

Kohn-Sham density functional theory (DFT) has been the quantum mechanical method
of choice for calculations fundamental to driving simulations at the atomic scale. Important
outputs from DFT include the energy and forces of a system as a function of the atomic
positions, which enable moving forward the dynamics of the simulation in time according
to physical principles. Despite the widespread use of DFT, its effectiveness is limited to
systems on the scale of hundreds of atoms, as its computational cost scales as the cube of
the system size and becomes prohibitively expensive for larger systems. The fundamental
bottleneck of DFT calculations is the Kohn-Sham differential equations [5], which has in-
spired recent efforts to use ML to approximate its solutions [5–7]. However, achieving this
goal requires accurately resolving the electronic structure of the system. One of the key
quantities characterizing the electronic structure is the electronic density of states (DOS),
which describes the energy distribution of electrons of an atomic system.

Recent methods have had success using the local density of states (LDOS) as the super-
vised target [5,7], from which the DOS can be computed inexpensively. While accurate, the
LDOS is computationally expensive as it is defined over a 3D grid containing tens of thou-
sand of points per atom, requiring that many predictions to resolve the electronic structure
properties of a single system configuration. The size of the grid also needs to scale up with
the size of the system in order to maintain accuracy, presenting a formidable scalability
challenge. We show that this is an unnecessary price to pay in calculating DOS through
machine learning by proposing a new approach for atom-level supervision, atom-centered
density of states, ADOS, that reduces the total work for prediction by orders of magnitude
by comparison.

Additionally, existing ML approaches for resolving DOS have so far relied on hand-
crafted descriptors to extract features (fingerprints) from local atomic environments, as
the input to their ML model. While much progress has been made in the development of
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fingerprinting techniques, they share in common the constraint of being limited to fitting
to fixed basis functions. This work proposes to instead use trainable neural descriptors for
fingerprinting, specifically focusing on the Concentric Spherical GNN (CSGNN) model [8] as
extended to the DOS prediction problem. This allows the atomic environment fingerprinting
to be adapted to the data and target problem, with the end goal of generalizing to greater
types and complexities of environments within a single model.

We use experimentally evaluate our approach for accurately resolving the band energy
(calculated from DOS) of aluminum at the melting point. Our overall approach is able to
match and even surpass the accuracy of previous LDOS-based approach for aluminum [7],
at a fraction of the time. We believe our atom-centered approach also opens the door to
resolving DOS for systems containing thousands of atoms or more that are beyond existing
DFT capabilities.

2. Related Work. Molecular dynamic simulations depend on accurate determination
of the energy of an atomistic system as a function of the atomic positions. Over at least
the past decade, there has been an evolving body of work on using data to directly learn
interatomic potentials (IAPs) that predict this energy. While different in their choice of
method for the regression problem, these ML-based potentials share a need for fingerprints,
or feature vector representations of localized atomic environments as input. Methods such
as [1, 2, 12,18] rely on hand-crafted descriptors for fingerprinting, while more recently some
methods [15,17] have used neural descriptors to learn the fingerprint end-to-end.

Recently there also have been efforts to use ML to approximate solutions to the funda-
mental bottleneck of DFT calculations, the Kohn-Sham differential equations [5–7]. Solving
these equations involves accurately resolving properties of the electronic structure, such as
the electronic density of states (DOS). Existing ML approaches predict this quantity in-
directly through spatially localized contributions, centered around 3D grid points [5, 7] or
atoms of the system [3, 6, 16]. In the former case, grid points correspond to supervised
quantities from DFT calculation (LDOS), providing millions of training samples for a sin-
gle configuration of atoms. However, this leads to computationally intensive training and
inference. Atom-centered contributions are significantly more cost effective for training and
inference, but thus far do not have a well-defined formulation for localized supervision. As
the only supervision is from the total DOS of the system, DFT calculations must be run for
many more configurations of atoms in order to generate adequate training data, an expen-
sive process. The proposed ADOS approach bridges this gap, providing local supervision
while avoiding the unnecessary cost of grid-centered LDOS in training and inference.

3. Methods. This section covers key components of our overall machine learning ap-
proach for resolving the electronic density of states. Sec. 3.1 discusses the aluminum
snapshots used in subsequent experiments, and details of its generation via simulation and
DFT. Sec. 3.2 presents a partition-of-unity approach for deriving atom-level supervision for
the DOS, as targets for downstream ML. Finally, Sec. 3.3 gives an overview of the proposed
neural fingerprinting model for ADOS prediction.

3.1. Dataset. The focus of our ML approach is for aluminum at ambient density
(2.699g/cc) and at melting point temperature (933K). Training data was generated by calcu-
lating LDOS for atomic configurations using the Quantum ESPRESSO electronic structure
code [9–11]. The configurations were generated from snapshots of DFT-MD trajectories of
256-atom supercells of aluminum. This resulted in LDOS training data for a total of twenty
snapshots of aluminum at melting point: ten snapshots in the crystalline phase, and ten
snapshots in the liquid phase. The LDOS is calculated over a finite grid of evenly spaced
energy values, with spacing of 0.1 eV ranging from -10 eV to 14.9 eV. The data for each grid
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point is then a vector length 250. The process used to generate the LDOS data is described
in detail in Ref. [7], and we refer to it for more detailed discussion and justification of the
procedures.

3.2. Atom-Decomposed Density of States. In order to reduce the number of pre-
dictions that are required in order to evaluate the DOS for a given system, we wish to replace
the LDOS DL(r, E) evaluated at grid points r and energies E with an ”Atom-Decomposed
Density of States” (ADOS) DA

i (E) evaluated for atoms i and energies E. There are two
important requirements for the ADOS: (1) The DOS is given by a sum of the LDOS over
grid points

D(E) =
∑
r

DL(r, E). (3.1)

Summing the ADOS over atoms should produce the same DOS, i.e.,∑
i

DA
i (E) = D(E). (3.2)

(2) If DL(r, E) can be accurately approximated as a function of the atomic positions in
some local region around grid point r, then DA

i (E) can be accurately approximated by
some function of the atomic positions in some local region around Ri, the position of atom
i.

Both of the above properties can be achieved if DA
i (E) is defined as a weighted sum of

DL(r, E) over grid points, and the weighted sum is a local partition of unity. In particular,
if D(r, E) is the LDOS evaluated at grid point r and energy E, we can define the ADOS
associated with atom i as

DA
i (E) =

∑
r

wi(r)D
L(r, E) (3.3)

for some weighting functions wi(r). The set of weighting functions wi(r) is a partition of
unity if ∑

i

wi(r) = 1 ∀r. (3.4)

Likewise, the partition of unity is local if every wi(r) decays sufficiently rapidly for large
‖r −Ri‖.

There are many way to define such a partition of unity, but the specific approach that
we have chosen is to define

wi(r) =
exp

[
−‖r −Ri‖2/2σ2

]∑
j exp [−‖r −Rj‖2/2σ2]

. (3.5)

Given this definition, it is easy to verify that wi(r) is a partition of unity and that Require-
ment (1) above is satisfied. For atom positions Ri that are evenly distributed throughout
space, wi(r) decays as a Gaussian tail for large ‖r−Ri‖, and the partition of unity is local.
For systems that involve large regions with no atoms, some of the weighting functions wi(r)
can remain substantial throughout such regions. However, DL(r, E) is generally small in
such regions, at least for energies E that are occupied by electrons, and thus, for practical
purposes, we believe that Requirement (2) also holds for such systems.

When σ is much less than the distance between atoms, the partition of unity defined
above closely approximates an approach in which the LDOS at each grid point is assigned
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Fig. 3.1: Atom-centered ML workflow: the local atomic environment of each atom, as
positions, are input into the learned fingerprinting module (CSGNN). Resulting outputs
are mapped through additional neural layers to predict atom-level DOS. These are then
summed to obtain the total predicted DOS for the system.

to the nearest atom. In the opposite limit, which σ is comparable to the distance between
atoms, the LDOS at each grid point is shared between several atoms. We have picked an
intermediate value of σ = 1.3 Angstroms, compared to an average nearest neighbor distance
of around 2.6 Angstroms. Thus, grid points near to an atom will mostly have their LDOS
assigned to that atom, while grid points between atoms will have their LDOS shared between
the nearby atoms.

Using the above approach, we calculated the ADOS from our previously evaluated LDOS
in order to generate training data for a model that predicts the ADOS as a function of the
local environment around each atom. This model can then be used to predict the ADOS
directly while avoiding the computationally expensive evaluation of the LDOS.

3.3. Concentric Spherical GNN for Atomic Environments. A workflow of the
overall ADOS ML approach is illustrated by Fig. 3.1. CSGNN, the proposed model, operates
on a concentric spherical spatial sampling of 3D space. Each individual sphere is discretized
by the icosahedral grid, resulting in a highly uniform sampling of spherical space. The grid
is sub-divided recursively to create higher sampling resolution. The sampling is further
extended radially, resulting in concentric spheres about a center, which is defined naturally
as an atom for the ADOS problem. We refer to Fig. 3.2 for illustration of the concentric
spherical grids. An atom’s atomic environment is contained within the concentric spherical
sampling, and mapped to an initial description over the sampling. Fig. 3.3 provides an
illustration of this mapping.

Two types of convolutions are defined for representation learning over the concentric
spherical grid: intra-sphere and inter-sphere convolutions. The former is implemented by
graph convolutions [14], with connectivity defined by each vertex’s local neighborhood in
the icosahedral discretization. Inter-sphere convolutions operate between co-radial vertices,
orthogonally to intra-sphere convolutions. The combined use of the two convolution types
permits extracting of features volumetrically over the concentric spherical sampling. Fur-
thermore, the intra-sphere convolutions are by design rotationally equivariant to the icosa-
hedral rotation group [19], and approximately equivariant to the general space of 3D rota-
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Fig. 3.2: Example CSGNN architecture with R = 3 concentric spheres. Graph convolutions
are followed by radial convolutions at each density of spherical sampling. Graph convolution
is applied within each sphere. 1D convolution is applied between co-radial vertices (3 in
this example). Vertex pooling (not shown) and downsampling then coarsens the spherical
sampling. Global pooling is applied at the end to obtain the final feature representation.

Fig. 3.3: Shown is a 2D cross section of an atomic environment centered at a reference point
(black diamond), for an example sector. (a) Each atom (black dot) in the environment a
value of φ(r) to its nearest vertex in 3D space, where r is radial distance from the center
and φ is a chosen distance mapping (such as the inverse function). (b) Values incident at
any given vertex are summed, resulting in a scalar input feature per vertex.

tions. We refer to [8] for more detailed discussion of the concentric spherical convolutions.
We combine the proposed convolutions into a hierarchical convolutional architecture, by
also utilizing pooling and downsampling over the icosahedral grid. Fig. 3.2 illustrates an
example CSGNN architecture. Convolutions at different scales of spherical sampling en-
ables learning representation of the input atomic environment analogously to 2D CNNs for
images.

4. Results. In this section we present main results of our atom-centered ML approach
for electronic structure calculation, demonstrated for aluminum. Sec. 4.1 shows that the
proposed ADOS permits faithful reconstruction of the original DOS, and therefore a suffi-
cient target for atom-centered supervision. Sec. 4.2 presents band energy results using the
proposed CSGNN model for learned fingerprinting, combined with ADOS training. Our
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proposed approach improves on band energy accuracy over prior LDOS based approach,
while requiring orders of magnitude less total samples for both training and inference. Fi-
nally, Sec. 4.2 demonstrates how the proposed ADOS approach leads to significant speedup
over LDOS in practice for training and inference.

4.1. Reconstruction of DOS from ADOS. For the proposed ADOS to be useful,
it must be possible to reconstruct the original DOS derived from LDOS. We experimentally
verified that simple summation of the ADOS leads to nearly perfect reconstruction of the
original DOS. We further verified that the band energy derived from ADOS matches the
original band energy.

Resulting ADOS curves are plotted for sampled atoms from liquid and solid snapshots in
Fig. 4.1. Overall, the atom-centered DOS appears much more similar within each snapshot
than between liquid and solid snapshots, with the solid snapshots showing prominent wiggles
in the 5 to 8 eV range that are remnants of the Van Hove singularities that occur in a perfect
crystal. Furthermore, the ADOS within each snapshot tends to reflect the profile of the DOS
of their respective snapshots (see Fig. 4.2). These results are to be expected since both
solid and liquid aluminum are generally homogeneous systems with each atom in a similar
local environment. There are some fluctuations in the local environment, which are reflected
in the variations between the ADOS for different atoms within the same phase. The local
environment varies more for the liquid than for the solid, and correspondingly, the variation
between the ADOS for different atoms is larger in the liquid. However, even in the liquid,
these local fluctuations are not as significant as the difference between the solid and liquid
phases. This shows that the atom-centered DOS profile is able to resolve the differences
between liquid and solid phase aluminum, as well as fluctuations in the local environment
of the atoms.

(a) ADOS for liquid aluminum, snapshot 9. (b) ADOS for solid aluminum, snapshot 19.

Fig. 4.1: Atom-centered DOS values resulting from partition-of-unity, for liquid and solid
aluminum snapshots at 933K. Shown are DOS from 5 sampled atoms of each snapshot.

4.2. ML Model for Resolving Band Energy of Aluminum. For experiments, we
consider a dataset of 20 total snapshots of aluminum at 933K, consisting of 10 liquid and
10 solid phase aluminum snapshots. For each phase, 6 snapshots are used for training, 1
snapshot for validation, and 3 for testing. Band energy is calculated from predicted DOS for
each snapshot of the test set, and error from ground-truth is measured by meV per atom.
We compare the proposed approach with LDOS-SNAP [7]. Our approach uses atom-based
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Method Training Total Test Band Energy Band Energy
Set Training Set Max Error Mean Error

Samples (meV/atom) (meV/atom)

LDOS-SNAP [7] 6 liquid 4.8× 107 3 liquid 21.3 17.1
6 solid 4.8× 107 3 solid 39.3 33.6

ADOS-CSGNN 6 liquid 1.5× 103 3 liquid 19.9 15.6
6 solid 1.5× 103 3 solid 5.3 3.3

Table 4.1: Band energy results, comparing the proposed ADOS-CSGNN approach to prior
LDOS-SNAP approach. Band energy error is calculated for the test set, and measured
in terms of both max and mean absolute error. Total training samples reflects to actual
number of predictions, based on local supervision.

ADOS for supervision, while LDOS-SNAP uses grid-based LDOS. Another key difference,
orthogonal to the the form of supervision, is the method of fingerprinting. Whereas LDOS-
SNAP used SNAP [18] for fingerprinting, we use a neural fingerprinting approach, CSGNN,
to learn atomic environment descriptors end-to-end.

Table 4.1 presents results for the proposed model and comparisons. By using ADOS
instead of LDOS, the total number of samples for prediction is reduced by a factor of 32,000
for training. This reduction also extends to inference, although not shown in table for
brevity. This is a significant reduction, as the total number of samples direcly reflects the
total amount of actual work for the model, all else equal. Importantly, this reduction is
achieved without any sacrifice to accuracy.

Compared to LDOS-SNAP , the ADOS-CSGNN model reduces band energy error (mean
absolute error) by 9% in the case of liquid phase aluminum, and by 90% the case of solid
phase aluminum. For the liquid phase band energy, the ADOS-CSGNN model achieves
a slight improvement in accuracy over LDOS-SNAP. However, for the solid phase band
energy, the ADOS-CSGNN model achieves nearly 10x improvement, which represents a
major advance in predictive power. We surmise that this large reduction in error is due to
difference in the learning model–CSGNN learns local environment descriptions end-to-end,
which could prove beneficial when using a single model for hybrid dataset. However, this
hypothesis remains to be investigated further.

We further plot the DOS predicted by ADOS-CSGNN to the reference DOS from DFT,
and show these for example liquid and aluminum snapshots in Fig. 4.2. These plots confirm
that the proposed approach is able to produce aluminum DOS closely matching DOS from
quantum-mechanical calculation, and that the band energy accuracy is not resulting from
some degeneracy.

Finally, we list hyperparameter settings for the best-performing ADOS-CSGNN model
in Table 4.2. We also used batch normalization [13], which is not counted in the total
number of layers. Finally, we also plot training and validation loss for the best-performing
model in Fig. 4.3.

4.3. Runtime. In this section we explore how the ADOS-CSGNN approach translates
to actual runtime for training and inference, compared to the LDOS-SNAP approach. For
training we consider the time for a single epoch (12 training snapshots), and for inference
we consider the time to evaluate a single snapshot for its local DOS quantities. Both models
are run on a single NVIDIA V100 GPU.

Results are presented in Table 4.3. ADOS-CSGNN provides a 240× speedup in training
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Parameter Value

Concentric spheres 16
Spherical resolution 642

Optimizer Adam
Batch size 32

Learning rate 0.01
Activation ReLU

Epochs 200
Layers 18

Total Weights 5.9× 106

Table 4.2: List of parameter settings for ADOS-CSGNN model used for experiments. Spher-
ical resolution is number of vertices of icosahedral spherical sampling. Number of layers is
trainable layers.

(a) DOS of liquid aluminum for snapshot 8. (b) DOS of solid aluminum for snapshot 18.

Fig. 4.2: Density of states for solid and liquid snapshots at 933K. Top row shows DOS curve
predicted by ADOS compared to reference curve from DFT. X-axis is energy range from -5
to 10 eV. Units for y-axis is eV. Bottom row plots difference between predicted DOS and
the reference DOS of respective snapshots.

Method Training time (1 epoch) Inference time (1 snapshot)

LDOS-SNAP 76 minutes 54 seconds
ADOS-CSGNN 19 seconds 1 second

Table 4.3: Runtime comparison for training and inference, run on single V100 GPU. LDOS-
SNAP takes grid-centered local descriptors as input to the neural model, but their generation
time was not included in this comparison.

per epoch and 54× speedup in inference compared to LDOS-SNAP . While a very significant
and practical improvement, the speedups fall short of the factor of reduction (32, 000) in
the total amount of samples in switching from LDOS to ADOS. This is likely due to the
difference in the neural models used in ADOS-CSGNN vs. LDOS-SNAP . Additionally,
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Fig. 4.3: Training and validation loss curves for best-performing version of ADOS-CSGNN
used in experiments. Y-axis is mean-squared error loss for ADOS prediction, and x-axis is
epoch number.

while fingerprint generation is part of the neural model in the case of ADOS-CSGNN , it
is not in the case of LDOS-SNAP and was omitted from time comparison. The speedup of
ADOS-CSGNN should therefore be interpreted as a lower bound, especially in the case of
inference, as the time to generate fingerprint for input cannot be ignored in practice.

5. Conclusion. In this work we present a machine learning approach for resolving key
products of electronic structure calculation, such as the density of states and band energy,
at a small fraction of the computational cost of existing LDOS approaches and without
sacrificing accuracy. The first key piece of the proposed approach is to create atom-level
supervision, ADOS, using a partition-of-unity approach. This reduces the total number of
predictions required to resolve DOS compared to LDOS by orders of magnitude, for both
training and inference. The second piece of our approach is to incorporate a neural model
based on concentric spherical convolutions for learning atomic environment fingerprints end-
to-end. We experimentally demonstrate that our overall approach allows resolving DOS and
band energy many times faster than with LDOS-based approaches. In combination with
our neural model for learned fingerprinting, we match and even outperform LDOS-based
approaches in resolving band energy of melting point aluminum. In terms of future work,
we believe that our atom-centered approach can be very feasibly extended to systems of
size of O(104) atoms, which is already well beyond the reach of DFT. Another direction for
future work is an extension of atom-centered supervision towards predicting the electron
density [4], which together with the DOS would complete a ML-driven solution to electronic
structure calculation.
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[1] A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B,

87 (2013), p. 184115.
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FINE-GRAINED PARALLEL GRAPH PARTITION REFINEMENT
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Abstract. Many graph partitioning algorithms use the multilevel method, where the graph size is
progressively reduced and the partitioning problem solved on smaller graphs. Refinement is a key step in
the multilevel method. Informally, refinement refers to improving a partition when projecting the solution
from a smaller to a larger graph. Several refinement algorithms are known, but most of them are greedy
algorithms and not amenable to parallelization. Some coarse-grained parallel refinement algorithms suitable
for multicore CPUs exist. In this work, we investigate fine-grained parallel refinement algorithms that are
applicable to Graphics Processing Units (GPUs). Our refinement approaches are inspired by the sequential
algorithms, as we empirically identify core features of the serial algorithms that are responsible for high-
quality partitions on a collection of graphs. We present initial results of the parallel algorithms on an
NVIDIA RTX 3090 GPU and a 32-core AMD processor. We find that our parallel algorithm achieves
cutsizes within 10% of serial Fiduccia-Mattheyses refinement on 85% of our test graphs, and within 20% of
the serial cutsize for all graphs.

1. Introduction. Graph partitioning is the problem of taking an input graph G =
(V,E,W ), consisting of vertices, edges, and edge weights, and producing a partitioning of
V into k parts (disjoint vertex sets), such that the ratio of the largest part’s size to the
optimal part size (|V |/k) is less than some balance constraint λ, while an objective function
is optimized. The objective function in partitioning is typically to minimize the sum of edge
weights for edges in the cutset (also called the “cutsize” or “edge cut”). The cutset is the
set of edges that connect vertices in distinct parts.

Most modern graph partitioners utilize the multilevel method. This is the process of
generating a sequence of coarse graphs according to some heuristic, such that the final graph
in the sequence is suitably small to run high-precision serial partitioning algorithms on. This
sequence is generated recursively, such that Gi+1 = coarsen(Gi). The initial partition on
graph Gc may be denoted Pc, where c is the number of coarse levels. Each Pi can be
projected onto the previous graph in the sequence Gi−1, to generate a partition Pi−1. This
can be repeated until P0 is generated. It is the role of partition refinement algorithms to
take a partition Pi immediately after each such projection, and improve it in terms of both
balance and cutsize.

In this work, we seek to create high-quality graph-partition refinement techniques that
can operate efficiently on GPUs. This requires creating a substantial degree of fine-grained
parallelism, whereas all prior work on parallel refinement algorithms has targeted a coarse-
grained approach suitable for multicore CPUs. The greedy nature of serial algorithms like
Kernighan-Lin (KL) [8] and Fiduccia-Mattheyses (FM) [4] prohibits implementation on
GPUs without relaxing the greedy constraints. However, these algorithms have other traits
and behaviors that can be emulated by a more parallel algorithm.

The parallel algorithm we develop in this work emulates some qualities of the FM algo-
rithm while diverging from it in many significant ways. We emulate such qualities including
moving high gain vertices before low gain ones, and decreasing imbalance by moving ver-
tices in the proper direction when necessary. We diverge from FM in neglecting the globally
optimal move in terms of gain. The algorithm requires very little synchronization, needing
only to atomically update the gains of neighboring vertices to those swapped. It refines in
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iterations, with each iteration requiring a few milliseconds to complete in the worst case for
our test graphs.

In our results we will show that this algorithm achieves edge cuts that rival and occa-
sionally outperform that of FM refinement. It greatly outperforms serial FM in terms of
time.

2. Background and Related Work. In order to implement a multilevel partitioner,
one must choose a coarsening heuristic. The primary role of this heuristic is to determine a
mapping from an input graph to a coarse graph. In our past work, we investigated several
of these heuristics. In particular, we focused on the heavy-edge coarsening (HEC) heuristic,
first used for multilevel methods by Urschel et al. [12]. The HEC heuristic determines the
heaviest edge adjacent to each vertex, and coarse aggregates are formed by joining vertices
across these edges. A typical implementation will visit each vertex and attempt to create an
aggregate with the vertex adjacent on its heaviest edge, or join the aggregate of that vertex if
one already exists. If the vertex already has an aggregate when it is visited, its heaviest edge
is ignored. Metis [7] uses a different approach based on maximal matchings, wherein coarse
vertices are formed from matched pairs. Such matched vertex pairs are usually formed by
choosing the heaviest edge of one vertex to determine its partner, or the vertex of heaviest
available edge if the first choice is taken. Mt-Metis [10] introduced optimizations to the
standard matching approach designed to prevent stalling on skewed-degree graphs. Skewed-
degree graphs are those graphs having a large ratio between the maximum degree of any
vertex versus the average degree. These optimizations allow matches to be formed between
2-hop neighbors if a vertex has no available 1-hop neighbor to match with.

There are multiple types of partition refinement schemes, but these schemes most com-
monly use combinatorial methods. A less common approach can be found in partitioners
such as Mongoose [1], which uses quadratic programming. A core concept in combinatorial
partition refinement is the vertex gain, which reflects the net decrease in cutsize for a vertex
v if v were to move to another partition. In a k-way partitioning setting, this gain can be
defined for every pair of a vertex v ∈ V and one of the k−1 partitions that v is not currently
resident in. For bisection, this gain can be calculated as the weight of all edges adjacent to
v in the cutset, minus the weight of all edges adjacent to v not in the cutset. The gain is
positive if moving v decreases the cut, while it is negative if moving v increases the cut. This
concept is used by algorithms such as FM and the greedy refinement implemented by kMetis
and Mt-Metis [9]. Refinement schemes are also used by non-multilevel partitioners, such
as PuLP [11], which uses label propagation to refine partitions. Label propagation is the
process of assigning a vertex to the partition given by the mode of its neighbors’ partitions
(weighted by edge-weight). In a bisection setting, this means that a vertex is assigned to
the opposite partition if it has a positive gain, whereas it is not moved if it has a negative
gain.

The Fiduccia-Mattheyses (FM) refinement algorithm [4] (see algorithm 1) is a greedy
heuristic algorithm. It operates by iterations, and within an iteration it can only move each
vertex once. It builds a data structure, which is a heap/priority-queue in some implemen-
tations, to select the highest gain vertex from the largest partition, and moves it to the
smaller partition. It is possible for this vertex to have negative gain, even if positive gain
vertices exist in the smaller partition. After moving a vertex, it marks it as moved for the
iteration, then updates the gains of neighboring vertices, which also necessitates updating
the data structure. A common optimization used by partitioners such as Metis is to restrict
consideration only to those vertices on the cut boundary (vertices with an adjacent edge in
the cutset). It is typical that this boundary set is a small fraction of the total vertices, which
provides substantial computational efficiency. However, this can prevent vertices not on the
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boundary from being considered when they might be the optimal move, such as when no
positive gain vertices exist in the larger part. This is usually not an issue on regular graphs,
but can become an issue on skewed-degree graphs.

Algorithm 1 FM Refinement

Input: G(V,E,W ). Partition vector Pi[1..n]. n = |V |.
Output: Pi+1[1..n]

1: gainmax ← 0
2: cutsize← cutsize(G,Pi)
3: balance← imbalance(G,Pi)
4: Gains[1..n]← gain values(G,Pi)
5: (Compute maximum possible gain)
6: for u = 1 to n do
7: Eu ← E adjacent to u
8: sum ← sum-edge-weights(Eu)
9: if gainmax < sum then

10: gainmax ← sum

11: (One bucket array for each part, each has 2*gainmax total buckets)
12: B0, B1 ← allocate-buckets(2 ∗ gainmax)
13: for u = 1 to n do
14: if Pi[u] == 0 then
15: bucket ← B0[Gains[u]]
16: else
17: bucket ← B1[Gains[u]]

18: insert into bucket(bucket, u)

19: swap sequence ← empty list
20: Pi+1 ← Pi
21: while B0 not empty AND B1 not empty do
22: if balance > 0 then
23: swap ← best-gain-in(B0)
24: else if balance < 0 then
25: swap ← best-gain-in(B1)
26: else
27: swap ← best-gain-in-either(B0, B1)

28: (remove swap from data structure, update cutsize and balance)
29: remove-and-perform-swap(P1, swap, cutsize, balance)
30: Eswap ← E adjacent to swap
31: update-adjacent-gains(Eswap, swap)
32: append-to-list(swap sequence,{swap,cutsize,balance})
33: (Here we find the optimum cutsize and imbalance combination from swap sequence. We

then undo all swaps after that point.)
34: select-best-and-undo-rest(swap sequence, P1)

Mt-Metis provides a coarse-grained CPU parallel refinement algorithm, which is very
similar to FM. Each thread owns a subset of the boundary vertices, and for this set each
thread builds a priority-queue. Vertices are moved in order of these thread-private priority
queues, but the globally optimal heuristic is relaxed. The threads use locks on both the
part sizes and neighboring vertices to ensure moving a vertex v will not violate the balance
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constraint, and will actually decrease the cutsize.

3. Parallel Refinement Algorithm.

3.1. Parallelism Difficulties with FM. Our parallel refinement algorithm attempts
to mimic certain attributes of the FM refinement algorithm. We identify the core attributes
of FM refinement in a bipartitioning context:

1. Move vertices from the larger part to the smaller part
2. Move the individual vertex having most positive gain
3. Move each vertex at most once per iteration
4. Terminate iteration after x vertices move without a net cutsize decrease

When considering a direct parallelization of FM, we encounter problems due to at-
tributes 1, 2 and 4. Atrribute 1 limits parallelism because there is a limited number of
moves that can be made from the larger part before it becomes the smaller part, especially
if the parts are close to balanced. Attribute 1 can be relaxed to allow an algorithm to con-
tinue to choose vertices from one part even after it is no longer the largest part. Attribute 2
limits the degree of parallelism, as moving even a singular vertex impacts the gains of each
of its neighbors, requiring any data structure that tracks the gains of vertices to be updated
before the next highest gain vertex can be determined. Attribute 4 is a smaller limit on
parallelism, but we can easily increase x. It is clear that attribute 2 is the primary source
of difficulty translating FM into a parallel algorithm, as it has no trivial relaxation.

3.2. Moving Positive Gain Vertices. We relax attribute 2 by allowing our algorithm
to select all vertices with positive gain. In order to avoid our selections conflicting with each
other, we should select vertices from only one part. To illustrate why we should do this,
suppose we select two vertices that share an edge. If both are in the same part, when we
swap them they will still be in the same part as each other. In this way, the edge will not
be on the cut after the swap, but our calculation of the individual gain values assumed it
would be cut. Thus, the gain calculated on a per-vertex basis is a minimum value.

In selecting multiple vertices from the same part, we also relax attribute 1. We usually
choose the initially larger part as the source, but we can select the smaller part if the
balance constraint is currently satisfied. We found that it can often be advantageous to
simply move all vertices of positive gain instead of limiting the number of moves by the
imbalance constraint. This can substantially reduce the number of iterations required for
convergence, while the next phase we discuss can handle the impact on the imbalance that
this causes. This process for finding these vertices is illustrated in algorithm 2.

3.3. Gain Poisoning. We encounter a problem that leads to a limited capability to
refine. Suppose we chose to move many vertices from part A to part B, then the gains
of vertices in part B would decrease substantially. We denote this as “gain poisoning”.
Consider M to be the set of vertices we have moved from A to B, and note that while these
vertices had positive gain while they resided in side A, they now have negative gain residing
in part B. In addition, moving these vertices will decrease the gains of the vertices originally
residing in part B. If we move enough things from part A to part B, there will be few to no
vertices that individually have positive gain in part B. To put it simply, the more vertices
we move from A to B, the harder it is to move vertices from B to A. Gain poisoning is
a major problem due to the balance constraint, since the majority of positive gain vertices
want to move from A to B (further increasing the imbalance). Gain poisoning can have a
positive side effect: after moving enough vertices from one part in early iterations, we can
consider positive gain vertices from all parts in later iterations without too many conflicts.
This is because most positive gain vertices will exist in one part after a couple refinement
iterations.
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3.4. Addressing Gain Poisoning. When we violate the balance constraint, we must
consider moving vertices with negative gain due to gain poisoning. This allows us to decrease
imbalance, so that we can continue to move positive gain vertices in later phases. To
accomplish this, we select d vertices (d is the number of vertices that must move to make
both parts equal in size; ||A|− |B||) from the overweight part B that have the least negative
gain (including any vertices of positive gain) to move to A. As the number of vertices with
negative gain is usually large, we use bucketing to choose the d vertices. Bucket zero contains
all positive gain vertices, bucket one contains all zero gain vertices, then buckets two and
beyond contain the negative gain vertices. A vertex with negative gain is assigned to the
bucket given by log2(|gain|) + 2 (reference algorithm 3 for more detail). Algorithm 4 details
how these buckets are populated. In algorithm 5 we demonstrate the process of choosing d
vertices from these buckets, which requires selecting all vertices from each bucket in order
of ascending bucket id until we have chosen d vertices. In our experiments, we found that
this process is the most time-consuming section of our algorithm. This is due to a large
number of atomic operations which are performed on a small number of memory locations,
necessary to count the size of each bucket and for assigning each vertex a position within
its respective bucket. We make efforts to reduce this contention by splitting buckets into
“minibuckets”, and assigning vertices to a minibucket using a simple hash of the vertex id.

We also use algorithm 5 to help find cutsize decreases when there are no positive gain
vertices in either part. To do this, we set the number of buckets to be something small,
around two or three (this corresponds to gains ≥ 0 and ≥ −1 respectively). After running
this on one of the parts, we look for positive gain vertices in that part again and move them.
This process works as the inverse of gain poisoning, by increasing the gains of vertices in
the part they are moved from. If this process doesn’t produce a net cutsize decrease, we
revert it.

3.5. Overall Algorithm. The resulting algorithm (see algorithm 6) has multiple
phases, which are traversed in sequence. In the first phase, it rebalances the parts (or
as close as it can get). In the second phase, it attempts to move all vertices of positive gain
from part 1. In the third phase it tries to move vertices of small negative gain from part 0.
In the fourth phase, it moves any vertices of positive gain from part 0. Phases 5, 6, 7, and 8
mirror phases 1, 2, 3, and 4 respectively, but phases 6, 7, and 8 move from the opposite part
as their counterparts. These phases are cycled through until a full cycle is passed without
decreasing the cutsize. At the end of each iteration, the vertices chosen during the iteration
are swapped, and this swap list is used to update the gains of neighboring vertices (using
algorithm 7), the total imbalance, and the total cutsize.

3.6. Boundary Vertices. We have a separate version that attempts to optimize the
number of vertices that must be processed in each iteration by limiting consideration to
those vertices that are on the cut boundary. We accomplish this with a list of all vertices
on the boundary. In order to minimize the effort to maintain this list, this list is created
once and is reused without modification for each iteration.

3.7. Kokkos Library. To implement the parallel kernels necessary for this algorithm,
we use the Kokkos Library [3]. Kokkos can be used to target a variety of execution envi-
ronments, including Nvidia and AMD GPUs, and multicore CPUs, without writing distinct
versions for each target. In this work, we leverage “views”, which are memory-managed
multi-dimensional arrays, to store data such as vertex gains. We also make extensive use
of “parallel for”, “parallel reduce”, and “parallel scan” routines, which enable efficient pro-
cessing of these views. Kokkos even provides a wrapper for “compressed sparse row” format
matrices, which we use to store our graphs. Additionally, we make use of “hierarchical
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parallelism” for processing adjacency lists, which allows the effort of tasks like computing a
vertices’ gain to be shared among a thread “team”.

Algorithm 2 Move Positive Gain

Input: G(V,E,W ). P . Gains Y . Source Partition pid
Output: X
tpos ← 0
for u from 1 to |V | in parallel do . count positive gain vtx

g ← Y [u]
if g > 0 and P [u] = pid then

tpos ← tpos + 1

X ← nulls(tpos)
for u from 1 to |V | parallel scan i do . write positive gain vertex

g ← Y [u]
if g > 0 and P [u] = pid then

X[i]← u
i← i+ 1

Algorithm 3 Bucket ID

Input: g.
Output: b
b← 0
if g = 0 then

b← 1
if g < 0 then

b← floor(log2(−g)) + 2
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Algorithm 4 Bucket Negative Gains

Input: G(V,E,W ). P . Total Buckets bt. Gains Y . Source Partition pid
Output: X
R← zeros(bt)
for u from 1 to |V | in parallel do . count vtcs by bucket idx

g ← Y [u]
b← bucket id(g)
if b < bt and P [u] = pid then

R[b]← R[b] + 1

B ← exclusive prefix sum(R) . create offsets for each bucket
X ← nulls(B[bt])
R← zeros(bt)
for u from 1 to |V | in parallel do . write vtcs to bucket

g ← Y [u]
b← bucket id(g)
if b < bt and P [u] = pid then

i← R[b] +B[b]
R[b]← R[b] + 1
X[i]← u

Algorithm 5 Move Negative Gain

Input: G(V,E,W ). Pi. Gains Y . Desired imb change d. Source Partition pid. Total
Buckets bt

Output: X
X ← bucket negative gains(G,Pi, bt, Y, pid)
Pi+1 ← P
X ← X[1..min(d, |X|)] . If using wgted vertices, can use a scan to determine where in
X to truncate
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Algorithm 6 Parallel Refinement

Input: G(V,E,W ). P . Max allowed imbalance ratio λ
Output: Pi+1

Y ← gain values(G,P )
Pi+1 ← P
cutmin← cutsize(G,P )
d← imbalance(G,P ) . positive if 0 is larger, negative if 1 is larger
dmax← (λ− 1)∗total vertex wgts(G) . dmax gives max allowed difference in size
between both parts
s← 0
c← 0
while true do

X ← null
c← c+ 1
switch s+ 1 do

case 1 or 5
pid ← 0
if imb < 0 then

pid ← 1

X ← move negative gain(G,P, Y, dmax− |d|, pid, 20)

case 2
X ← move positive gain(G,P, Y, 1)

case 3
X ← move negative gain(G,P, Y, dmax+ d, 0, 3)

case 4
X ← move positive gain(G,P, Y, 0)

case 6
X ← move positive gain(G,P, Y, 0)

case 7
X ← move negative gain(G,P, Y, dmax+ d, 1, 3)

case 8
X ← move positive gain(G,P, Y, 1)

P, Y ← move vtcs update gains(G,P, Y,X)
d← imbalance(G,P )
cut← cutsize(G,P ) . can compute these when computing gain updates
if cut < cutmin then

Pi+1 ← P
cutmin← cut
c← 0

s← s+ 1 mod 8
if c > 7 then break
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Algorithm 7 Move Vertices and Update Gains

Input: G(V,E,W ). Pi. Gains Y . Swap List X
Output: Pi+1. Y
Pi+1 ← P
for i from 1 to |X| in parallel do

u← X[i]
Pi+1[u]← opposite part(Pi[u])
Eu ← adjacency list(u, E)
gnext ← 0
for j from 1 to |Eu| do . process adjacencies

v ← Eu[j]
w ←W [u, v]
if P [u] = P [v] then . contributes negatively to gain in next phase

gnext ← gnext − w
if v not in X then . vertices in swap list will process their own gains

atomic add(Y [v],−2w)

else . contributes positively to gain in next phase
gnext ← gnext + w
if v not in X then . vertices in swap list will process their own gains

atomic add(Y [v], 2w)

Y [u]← gnext

Algorithm 8 gain values

Input: G(V,E,W ). Partition P .
Output: Y
Y ← zeros(|V |)
for i from 1 to |V | do

u← V [i]
Eu ← adjacency list(u, E)
for j from 1 to |Eu| do

v ← Eu[j]
if P [u] = P [v] then

Y [i]← Y [i]−W [u, v]
else

Y [i]← Y [i] +W [u, v]
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Table 4.1: A collection of graphs used for performance evaluation. The graphs are based on sparse
matrices from the SuiteSparse matrix collection [2], and networks from OGB [6]. We preprocess the graphs
to extract the largest connected component, relabel vertex identifiers, and transform edges to undirected.
The number of edges (m), number of vertices (n), and the ratio of max vertex degree (∆) to average degree
after preprocessing are given. Based on this ratio, we partition graphs into two groups: regular and skewed-
degree. Within each group, the graphs are ordered by size (2m+ n).

Graph Domain m n ∆/(2m/n)

HV15R cfd 162 357 569 2 017 169 3.1
rgg24 syn 132 557 200 16 777 215 2.5
nlpkkt160 opt 110 586 256 8 345 600 1.0
europeOsm road 54 054 660 50 912 018 6.1
CubeCoup fem 62 520 692 2 164 760 1.2
delaunay24 syn 50 331 601 16 777 216 4.3
Flan1565 fem 57 920 625 1 564 794 1.1
MLGeer sim 54 687 985 1 504 002 1.0
cage15 bio 47 022 346 5 154 859 2.5
channel050 sim 42 681 372 4 802 000 1.0

ic04 www 149 054 854 7 320 539 6296.9
Orkut soc 117 185 083 3 072 441 436.7
vasStokes4M vlsi 97 708 521 4 344 906 25.3
kmerU1a bio 66 393 629 64 678 340 17.0
kron21 syn 91 040 839 1 543 901 1813.7
products ecom 61 806 303 2 385 902 337.4
hollywood09 soc 56 306 653 1 069 126 108.9
mycielskian17 syn 50 122 871 98 303 48.2
citation cit 30 344 439 2 915 301 480.4
ppa bio 21 231 776 576 039 44.0

4. Experiments and Results. In order to evaluate our refinement, we use a test set
of 20 graphs from the SuiteSparse repository [2] (see Table 4.1). In our previous work [5],
we evaluated graph coarsening algorithms on this same test set, however we needed to rerun
the experiments to collect timing info so the cutsizes are different. The preprocessing of
each graph is also the same as that work. We split these graphs into two groups with 10
graphs each. The first ten graphs listed are the “regular” graphs, and the last ten graphs
listed are the “skewed-degree” graphs. We compare our parallel refinement to Mt-Metis in
terms of cutsize and runtime, as well as the serial FM refinement implementation used in
our previous work. Our test system is a 32-core AMD Ryzen Threadripper 3970x CPU with
256 GB of RAM, and an Nvidia RTX 3090 GPU with 24 GB of device memory.

For all experiments, we aggregate data from 21 runs, and report median statistics unless
indicated otherwise. For our evaluation of this refinement, we use the HEC coarsening algo-
rithm to provide the coarse graph hierarchy, and we use greedy-graph growing partitioning
to generate the initial partition on the coarsest graph. Our coarsening terminates once the
coarsest graph has less than 50 vertices, but the coarsest graph may be discarded if it has
fewer than 10 vertices. For this reason, our initial partitions are usually outsize the balance
constraint, but the serial FM algorithm is usually capable of bringing the partition within
the balance constraint after refining the coarsest couple levels. For refinement, we use our
new refinement algorithm on the finest 3 levels (Par-Top3), and on all levels (Par-All), in
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two separate experiments. This is to determine if our algorithm has any difficulty handling
coarser levels of the multilevel hierarchy. In a third experiment, we evaluate our refinement
using a basic boundary vertex optimization (Boundary-All), and this is also performed on
all levels. We allow our new algorithm and Mt-Metis a maximum imbalance ratio of 1%
(λ = 1.01), whereas the implementation of serial FM we use does not allow for an input
imbalance ratio (instead it always returns a 0% imbalance partition). We do not make any
claims that our serial FM implementation is optimized for runtime, rather it is optimized for
cutsize. We chose to compare to Mt-Metis because it is the most widely used parallel graph
partitioner, although its coarsening and initial partitioning differ from ours. We additionally
compare to PuLP [11], as our scheme is similar to label propagation.

In Table 4.2, we compare median uncoarsening times for each method. This includes any
time spent initializing refinement data structures, projecting the partition vector, and per-
forming the refinement. We use this notion of uncoarsening time as opposed to refinement
time, because Mt-Metis reports the time it spends initializing its refinement data structures
together with its projection time. This means that the “refinement“ time Mt-Metis reports
does not include such tasks as calculating the boundary vertices, so we believe total uncoars-
ening time is a more accurate comparison. Mt-Metis is run with 64 threads on the CPU,
serial FM is run with one thread on the CPU, and the three parallel refinement experiments
are run on the GPU. In Table 4.3, we compare the total bisection time, including coarsening,
initial partitioning, projection, and refinement times.

Our primary purpose of comparison to serial FM is to compare with the cutsizes of our
parallel refinement, as our serial FM implementation is integrated into the same codebase
as our three parallel experiments. To minimize sources of variation, our serial FM and three
parallel experiments share the same coarse graph hierarchy and initial partition in a single
run. This enables us to calculate the ratio of the cutsizes achieved by each method. We
wanted to do such a comparison using the coarse graph hierarchy and initial partition gener-
ated by Mt-Metis, but we could not find a simple way to export these from the application.
In Figure 4.1 we report the median of ratios between the FM cutsize and the cutsize of
each of the three parallel experiments. We also report the ratio of median cutsizes between
FM and Mt-Metis. We exclude comparison to PuLP cutsizes in this figure, as the ratio of
PuLP cutsize to FM cutsize is too large to fit inside the bounds for most graphs. Instead
we report that the median PuLP cutsizes are 3.57x larger than median FM cutsizes by
geometric mean. Interestingly, this ratio is equal for both the regular graphs and irregular
graphs. The median PuLP cutsize is only within 1.5x of the median FM cutsize for three
regular graphs, and one irregular graph.

We also have CPU execution results for our parallel refinement on all levels, although
we do not include these in any figures or tables due to the redundancy of information
conveyed. For parallel refinement on all levels, the GPU results have cutsizes 1.02x smaller
than the CPU cutsizes by geometric mean. The GPU refinement times for performing
parallel refinement on all levels are 3.2x faster than the equivalent CPU refinement times.
In a breakdown by graph class, the GPU is 2.6x faster than the CPU on regular graphs,
and 3.8x faster on the skew-degree graphs.
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Fig. 4.1: Comparison of cutsize between FM, Parallel Refinement on All Levels, Parallel
Refinement on the Top 3 Levels, and Parallel Refinement on All Levels with the Boundary
Optimization. Out-of-bounds results are shown on the edges of the figure.

Table 4.2: Median Bisection Refinement Time (s) Comparison

Graph FM Serial Par-All Par-Top3 Boundary-All Mt-Metis

HV15R 1.1 0.036 0.193 0.034 0.094
rgg24 1.27 0.079 0.095 0.07 0.186
nlpkkt160 1.15 0.071 0.14 0.071 0.131
europeOsm 3.19 0.114 0.203 0.07 0.29
CubeCoup 0.62 0.033 0.081 0.032 0.035
delaunay24 1.07 0.084 0.102 0.054 0.137
Flan1565 0.39 0.027 0.056 0.026 0.027
MLGeer 0.38 0.03 0.044 0.028 0.024
cage15 1.09 0.05 0.195 0.05 0.125
channel050 0.48 0.062 0.081 0.05 0.051

ic04 0.97 0.042 0.102 0.045 0.115
Orkut 3.27 0.056 0.658 0.054 0.385
vasStokes4M 0.8 0.057 0.104 0.038 0.083
kmerU1a 55.66 0.191 10.91 0.138 0.791
kron21 9.02 0.106 0.109 0.107 0.49
products 1.77 0.044 0.191 0.041 0.123
hollywood09 1.09 0.025 0.279 0.026 0.142
mycielskian17 2.82 0.042 0.043 0.043 0.353
citation 1.4 0.046 0.173 0.046 0.087
ppa 0.72 0.024 0.143 0.024 0.074
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Table 4.3: Median Total Bisection Time (s) Comparison

Graph FM Serial Par-All Par-Top3 Mt-Metis PuLP

HV15R 1.29 0.23 0.39 0.65 0.17
rgg24 1.63 0.44 0.45 1.07 0.48
nlpkkt160 1.47 0.4 0.47 1.1 0.2
europeOsm 3.6 0.52 0.6 3.39 4.56
CubeCoup 0.79 0.2 0.24 0.26 0.08
delaunay24 1.29 0.3 0.32 0.87 1.51
Flan1565 0.55 0.18 0.21 0.21 0.07
MLGeer 0.51 0.16 0.18 0.16 0.09
cage15 1.29 0.25 0.4 1.66 0.18
channel050 0.65 0.23 0.25 0.37 0.11
ic04 1.18 0.25 0.31 1.84 1.2
Orkut 3.68 0.46 1.06 8.47 1.31
vasStokes4M 1.01 0.27 0.31 1.09 0.29
kmerU1a 56.3 0.83 11.55 9.65 3.86
kron21 9.35 0.43 0.44 15.48 4.1
products 1.95 0.23 0.37 2.04 1.18
hollywood09 1.37 0.3 0.56 2.31 0.5
mycielskian17 3.07 0.29 0.29 0.88 0.31
citation 1.55 0.2 0.33 1.8 0.85
ppa 1.09 0.4 0.51 0.87 0.16

5. Discussion. We note that our parallel refinement on all levels about 2.4x faster by
geometric mean than the Mt-Metis refinement, although the former is running on a GPU
vs the latter running a 32-core CPU. If we break this down further, we find that it is 1.5x
faster on the regular graphs, and 3.6x faster on the skew-degree graphs. If we compare the
timing results for our boundary optimization (Table ?? on the regular graphs to Mt-Metis,
the geometric mean increases to 2.6x faster (1.8x on regular graphs vs Mt-Metis, 3.9x faster
on skew-degree graphs). We must additionally note that our parallel refinement does many
more iterations, usually 10-30 depending on the graph, but sometimes as high as 40. This
is much larger than the 5 or fewer iterations that Mt-Metis performs. This leads to a
large amount of parallel overhead, due to our refinement using 12-15 kernel invocations per
iteration. This parallel overhead is particularly notable during refinement of the coarsest
graphs, as we note in our experiments that the duration of a single iteration saturates at
around 100-120µs, regardless of how few vertices there are. This would indicate a kernel
latency of 6-10µs. We ran a separate experiment on the RTX 3090 GPU to determine the
latency of launching very small kernels, and found that the kernel latency was 5.9µs.

With respect to quality, we find that the Par-Top3 and Par-All versions of our par-
allel refinement are similar except on kmerU1a. For this graph, we note that FM
outperforms both methods. This seems to indicate that our parallel refinement is not
finding certain cutsize decreases that FM can find. This trend is observable on several of
the regular graphs as well such as CubeCoup, MLGeer, and channel050. We find that our
parallel refinement on all levels doesn’t experience any more difficulty on coarser levels
than finer levels of the multilevel heirarchy for the majority of test graphs. Our all-level
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refinement is neck-and-neck with Mt-Metis or often better, with the exception of HV15R
and vasStokes4M. The difference on these two graphs in particular may come down more
to coarsening algorithms than refinement. This is often the case for graphs where serial
FM and our parallel refinement are superior to Mt-Metis as well. Additionally, the use of
a boundary vertex optimization may be responsible for Mt-Metis’ worse cuts on several
skew-degree graphs. This is corroborated by results for Boundary-All on graphs such as
ic04, Orkut, and kron21. Across all graphs, our parallel refinement (Par-All) achieves
cutsizes 1.13x smaller by geometric mean than those achieved by Mt-Metis (0.96x smaller
on regular graphs, and 1.32x smaller on skew-degree graphs). Comparing to our serial FM
implementation, which does not allow any imbalance, our parallel refinement achieves cuts
0.96x smaller by geometric mean. Breaking down further by skewness, the regular graphs
have 0.94x smaller cuts with our parallel refinement, versus 0.98x smaller on the skew-degree
graphs. Comparing PuLP directly to our parallel refinement, we find our cutsizes to be
3.42x smaller overall, 3.37x smaller for regular graphs, and 3.47x smaller for irregular graphs.

The total bisection time for our GPU partitioner (shown in Table 4.3), greatly out-
performs Mt-Metis and is competitive with PuLP, despite PuLP not using the multilevel
method. Our Par-All experiment is 1.54x faster than PuLP and 4.33x faster than Mt-Metis
(geometric mean) on all graphs. On regular graphs, our partitioner is 0.93x faster than
PuLp and 2.38x faster than Mt-Metis. On irregular graphs, our partitioner is 2.51x faster
than PuLP and 7.88x faster than Mt-Metis. Our partitioner is the best method tested in
terms of both cutsize and runtime for the irregular graphs. Mt-Metis has a slight advantage
in cutsize for the regular graphs, while PuLP has a slight advantage in runtime on the
regular graphs.

The greatest attribute of this parallel refinement method is its simplicity compared
to both FM and greedy refinement methods used by Mt-Metis. When choosing to move any
particular vertex, our method never explicitly considers its interactions with neighboring
vertices which we might also move in the same iteration. Only once we have chosen all the
vertices we desire to move in an iteration, do we then consider how these affect the cutsize
and gains in the next cycle. Overall, this refinement is similar to the label propagation
scheme used by PuLP, although it differs in how we maintain balance. Additionally, we
implement this in a multilevel partitioner, while PuLP is not multilevel.

While developing this algorithm, we considered several related parallelization ap-
proaches for refinement, where we attempted to address the issue of interactions between
simultaneous moves of adjacent vertices. We investigated using colorings and special
constructions of connected components, but these approaches did not work as expected
in terms of optimizing cutsize. For instance, we found that using color sets introduces
difficulty in selecting vertices to rebalance a partitioning. Selecting vertices from one color
at a time makes it more difficult to choose large numbers of vertices with small negative
gain. Computing the coloring itself is also an expensive overhead, and some graphs have too
many colors to process one at a time. Our connected components construction considered
the subgraph induced by the boundary vertices, and formed connected components. This
has the benefit of forming independent vertex components for which we calculate the gain,
but these clusters often were too large to swap without greatly impacting the imbalance.
It was also possible that some vertices in the components detracted from the overall gain
of the component. We restricted the boundary by limiting it to only those vertices with
positive gain individually, which greatly improved the cutsizes we could obtain, but also
made the components redundant. In the context of fine-grained parallelism, we found the
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best strategy to address this is to move groups of vertices from the same source part. As
mentioned in the “Gain Poisoning” section, even this requirement can be relaxed in certain
situations.

6. Conclusion. In this work we present a method for fine-grained parallel graph par-
tition refinement. We develop Kokkos-based implementations of this method. We were
able to greatly improve on the speed of our serial implementation of Fiduccia-Mattheyses
refinement, and nearly match its performance in terms of bisection quality. Additionally,
we demonstrated that our GPU implementation can achieve substantial speedups over CPU
partitioners. In future work, we hope to extend this refinement method to k-way partition-
ing, as well as further optimize time and cutsize results.
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AN EXPLORATION OF MINIMOD OVERHEAD AND GRANULARITY

DONALD A. KRUSE ∗, W. PEPPER MARTS † , AND MATTHEW G. F. DOSANJH ‡

Abstract. As we approach Exascale many tools have been proposed to enable future application designs.
Some examples include, partitioned communication, multithreaded MPI support through software offloading,
and MPI endpoints. MiniMod aims to help designers understand how fine-grained communication affects
their application through a modular application structure that allows different communication granularities
to be selected at runtime.

MiniMod achieves this by requiring the application kernel to mark each data element as ready when
the element is in it’s final state for the iteration. There is an overhead related to having small element
sizes, as the application must call a ‘ready’ function for each element. MiniMod processes and transfers
this data using logic defined in the Granularity component, with modules such as ‘bulk-synchronous’, ‘fine-
grained’, and ‘bins’. In the bins module, the bin size can be modified to separate a communication payload
into multiple payloads. These smaller payloads are sent after they are finished and marked ‘ready’ by the
application. Additionally, small bin sizes have the potential to result in payloads that are smaller than the
maximum transmissible unit for the network and increasing message-matching overhead, and thus being
bottlenecked by the networks latency rather its bandwidth.

In this study, we measure this overhead by modifying the element size and thereby the number of calls to
the ‘ready’ function. This is done by leveraging kernels that have a configurable element size. Additionally,
we explore how different communication granularities impact performance by switching between our three
granularity modules.

1. Introduction. MiniMod is a modular proxy application framework created by
Marts et al [17] that aims to explore and evaluate new communication access patterns .
This framework uses hooks added to a computational kernel to mark data as ready for
transfer. This allows the user to select runtime behavior which includes what threading
library is being used, which communication interface is being used, and the granularity of
communication. One open question about this framework has been how much overhead do
these hooks cause and whether data elements should be aggregated before each hook.

To examine the question, we leveraged a five-point stencil kernel that models 2D heat
diffusion. This kernel has a parameter that modifies the extent of communication aggre-
gation before calling into MiniMod. By modifying this parameter while using MiniMod to
maintain a Bulk Synchronous communication pattern, we can test the overhead of using
these hooks.

In this paper we measure and analyze this overhead to determine if there is a granularity
beyond which we need to aggregate elements before marking them ready.

The rest of the paper is structured as follows: In Section 2 we present the background
of MiniMod as it pertains to this study. In Section 3 we discuss our experimental setup. In
Section 4 we present our results and provide an analysis of MiniMod overhead. In Section 5
we present our plans for future expansions to this study. In Section 6 we discuss related
work and how it pertains to this study. And finally, in Section 7 we present our conclusions
of this work.

2. Background. In recent years a number of proposals for middleware to support
fine-grained communication have emerged. These aim to improve application performance
through better utilization of network resources. By sending data as soon as it is ready, an
application can overlap communication and computation, and spread network utilization
out over a larger portion of each iteration. This strategy has the potential to increase the
performance of bandwidth bound applications.

∗University of New Mexico, krused@unm.edu
†Sandia National Laboratories and University of New Mexico, wmarts@sandia.gov
‡Sandia National Laboratories, mdosanj@sandia.gov
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There are several challenges to adapt an application to use fine-grained communication.
One can no longer pack data en masse at the end of an iteration. Instead one must pack
each element sent over the network at the time of completion, but this technique requires
careful consideration to preserve the cache performance of the compute loop. In addition,
the increased volume of messages can prove costly to communication methodologies such as
MPI’s two-sided message passing, where the larger message count can increase receive queue
depths and thus matching workload. Finally one is incentivized to send smaller payloads over
the network, as it allows completion of communicable elements earlier in the computational
phase, and thus more overall time in which to achieve communication computation overlap.

MiniMod is a runtime configurable modular application framework. It is designed to
explore different levels of granularity in communication and allow for direct comparison
between application behaviors. The architecture of MiniMod is divided into three layers
arranged hierarchically. At the top is the application layer that consists of the computation
kernel and controls over all execution. At the bottom is the interface layer, which executes
particular network operations such as sending data via OpenSHMEM or spinning up a work
thread with Pthreads. In between is the control layer, which allows the user to select from
various granularity methods of completing the requests of application layer with the low
level primitives of the interface layer. Each layer is composed of one or more components
that further increase the configurability of each layer. Minimod modules implement these
components and its overall behavior is determined by configuring which modules to use
at runtime. Its granularity component in the control layer provides modules for bulk-
synchronous, binned, and element-by-element fine-grained communication.

In order to port an application for use in MiniMod, existing communication and thread-
ing calls are replaced with hooks into MiniMod’s abstracted interface. These hooks require
an initialization function that defines the external needs of each process, i.e., who is sending
and receiving what data from what external process, and a ready call that specifies when
each data member is ready to be sent. With that high level information, Minimod is able to
ensure the requisite data movement is completed by the epoch deadlines defined by a pair
of hooks to demarcate the beginning and end of each iteration.

3. Experimental Setup. We applied a strong-scaling method to understand the over-
head associated with MiniMod for the different granularity layers at different partition sizes.
The number of nodes was fixed at nine with problem sizes 212 to 215 stencil points per side
in increments of powers of two, while sweeping through the maximum partition sizes of 1 to
the problem size in powers of two.

At each combination of problem size, maximum partition size, and granularity module,
10 trials were completed. The data was the trial total time to complete as well as the
total comm wait time. MiniMod was compiled with Intel’s icpc version 19.1.3.304 with
Cray’s MPICH 7.7.16 MPI implementation using flags -g -Wall -O3. of problem sizes
and maximum partition counts on that single set of nine nodes. To ensure that the network
configuration remained controlled for the strong scaling configuration, each trial constituted
a single set of nine nodes, one of the granularity modules, and the entire set of problem sizes
and maximum partition counts.

The heat diffusion kernel uses a five-point stencil halo exchange for each node because
it is the minimal configuration for a complete communication pattern that occurs with the
middle node.

All experiements were run on the Mutrino testbed at Sandia National Laboritories.
The Mutrino cluster is a Cray machine with Intel Haswell CPUs and a Cray Aries dragonfly
network. Each node has 32 cores and 128 GB of RAM.
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Fig. 4.1: The average total run times of the heat diffusion kernel of size 4096 for all granu-
larity modules.

4. Experimental Results. The bulk-synchronous total run time remained effectively
constant for fixed problem size across all partition sizes (see 4.1, 4.2, 4.3, and 4.4) but
with increased variance in the total run times for larger problem sizes and is likely due to
the fact that for a bulk-synchronous communication, data is only sent all at once when all
ranks are ready, so changing the partition size should have negligible effect (see table 4.1).

The comm wait times obeyed a similar pattern. For the smallest two problem sizes, the
average total times remained fairly constant with minimal standard deviations. However,
for the largest two sizes, the variance was more significant most likely due to large data
element sizes used during the communication portions of the kernel. Table 4.2 shows that
the largest problem sizes experience greater variance during the communication.

In the case of our heat diffusion kernel, partitioning the communication elements for
fine-grained communication had the most significant effect on the total time if the the
problem size was large enough. By increasing the the partition count, we are able to take
advantage of the large computational overhead and utilize the network when individual data
elements are ready. We see that the overall average total time decreases as the number of
data elements per partition increases and is most apparent for problem sizes of 16384 and
32768 (see 4.3 and 4.4) and where the performance reaches an optimum at about 16 and
32 elements per partition respectively. Similar trends were noticed for sizes 4096 and 8192
but the effect of fine grained communication is not as pronounced.

The comm wait times trend similarly to that of the total time. This makes sense
since we expect the run time to be dependent on the communication time for fine-grained
communication.

The binning module admitted similar results as bulk-synchronous. The total time re-
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Fig. 4.2: The average total run times of the heat diffusion kernel of size 8192 for all granu-
larity modules.

Total Time Summary (seconds)
size 4096 8192 16384 32768

max
mean

bulk 1.031656 4.397255 16.52813 64.56762
fine 142.031000 612.399100 3017.515000 14134.210000
bins 1.045520 4.408428 16.560920 64.885290

min
mean

bulk 1.0166657 4.287672 16.30881 63.88878
fine 142.031000 612.399100 3017.515000 14134.210000
bins 1.045520 4.408428 16.560920 64.885290

max σ
bulk 0.038680 0.133902 0.257060 1.197230
fine 7.327983 43.230068 184.167173 1175.881021
bins 0.023270 0.151192 0.234688 1.108074

min σ
bulk 0.011931 0.051372 0.074931 0.567370
fine 7.327983 43.230068 184.167173 1175.881021
bins 0.023270 0.151192 0.234688 1.108074

Table 4.1: A summary of the extreme values for all the averages of the total run time.

mained about constant despite increasing the maximum partitions (see 4.3 and 4.4). The
comm wait time also was semi-constant but showed more fluctuation at the two largest
problem sizes. Fine-grained granularity performed similarly to both binning and bulk-
synchronous after data transfers reached a size of 1KiB or greater (128 8 byte elements).
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Fig. 4.3: The average total run times of the heat diffusion kernel of size 16384 for all
granularity modules.

comm wait Time Summary (seconds)
size 4096 8192 16384 32768

max
mean

bulk 0.030324 0.069749 0.547271 1.082221
fine 0.018150 0.020889 0.385387 0.588321
bins 0.012884 0.021640 0.361266 0.580323

min
mean

bulk 0.019197 0.028622 0.028622 0.677152
fine 0.018150 0.020889 0.385387 0.588321
bins 0.012884 0.021640 0.361266 0.580323

max σ
bulk 0.013564 0.060339 0.263614 0.410079
fine 0.007288 0.009593 0.126373 0.180278
bins 0.005363 0.008116 0.118258 0.202490

min σ
bulk 0.006334 0.011271 0.106094 0.090161
fine 0.007288 0.009593 0.126373 0.180278
bins 0.005363 0.008116 0.118258 0.202490

Table 4.2: The summary of all the extreme values for the comm wait time.
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Fig. 4.4: The average total run times of the heat diffusion kernel of size 32768 for all
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5. Future Work. There are several limitations to this study that we plan to relax.
The context of this study is limited to one computational kernel. While a five-point halo
exchange code is used in some cases, it is a limited view of the overall application space.
Additionally, its communication to computation ratio shrinks as the problem size scales. If
n is the size of the local x and y dimensions of the problem space, communication grows as
O(n) while computation grows as O(n2). To address this we plan to identify and evaluate
other computational patterns.

Another avenue of future exploration includes analyzing additional methods to handle
granularity. We plan to examine other behaviors for accessing communication, such as
creating a dedicated communication thread to reduce communication processing on worker
threads. This would allow us to invoke the communication layer from a single thread, which
can improve the performance of some communication libraries.

Finally, we plan to extend this study to cover other methods of communication, such
as MPI RMA, Persistent Communication, and OpenSHMEM.

6. Related Work. Benchmarking applications can be a challenging endeavor due to
their complexity. Therefore, a popular technique is to provide an application proxy, a
simple version of the main task of an application that has performance representative of the
application itself, enabling the study of the application without a significant burden on the
person doing the benchmarking. Proxy application suites like Mantevo [10] are used for this
purpose as well as many different versions of singular miniapps like LULESH [13]. For each
communication subsystem (e.g., MPI, OpenSHMEM, RDMA) a separate benchmark needs
to be written. Therefore there are many different versions of popular benchmarks, each of
which needs to be maintained. In addition, new subsystems or system architectures may
require new versions of the miniapps, each having to release separate new versions.

There have been many prior works evaluating communication middleware and compar-
ing approaches. MPI has been extensively studied in traditional modes [9, 15] as well as
one-sided [3, 11]. MPI multi-threading is currently a hot topic and has been extensively
explored recently [4–6, 14, 16, 18]. Many MPI comparisons are limited to studying MPI
libraries themselves–some by necessity due to comparisons of new features or proposed fea-
tures [2, 7, 8, 12, 19]. However, such new approaches would be desirable to compare broadly
across many different communication subsystems which this work enables and makes signifi-
cantly less burdensome. This is a necessity when creating a new communication middleware
solution to convince new users that they can achieve higher application performance with
the new method. It can be challenging to compare approaches comprehensively as it re-
quires many application proxies using a wide variety of middleware options. It is clear
that application developers want to compare communication middleware options as well as
concurrency methods, as shown in a survey of US application developers [1].

7. Conclusions. In this work we have demonstrated that MiniMod’s ready calls have
a low functional overhead via our course grained experimental results. Additionally, we have
shown that choosing too few data members per data transfer using fine-grained granularity
has serious performance penalties. Finally, we see that for binning granularity there is
measurable if small performance gains.
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EFFICIENT COMPUTATION OF HIGHER ORDER JOINT MOMENT
TENSOR

ZITONG LI∗ AND HEMANTH KOLLA†

Abstract. The decomposition of higher-order joint cumulant tensor of spatial temporal data sets is
useful in analyzing multivariate non-Gaussian statistics with a wide variety of applications (e.g. anomaly
detection, independent component analysis, dimensionality reduction). Computing the cumulant tensor
often requires computing the joint-moment tensor of the input data first, which is very expensive using a
näıve algorithm. The current state-of-the-art algorithm for computing joint moment tensors takes advantage
of the symmetric nature of a moment tensor by dividing it into smaller cubic tensor blocks and only compute
the blocks with unique values and thus reducing computation. We propose an improvement over this
algorithm by posing its computation as matrix operations, specifically Khatri-Rao products and standard
matrix multiplications. Because this approach is much more cache efficient, we expect considerable speedup
in single processor. We implemented our algorithm in Julia and in MATLAB and compared against the
state-of-the-art approach. The results show a speedup of up to 10x.

1. Introduction. Many scientific applications in the exascale era involve computation-
s/observations of multi-scale multivariate physical phenomena. Higher-order joint statistical
moments and cumulants are natural, information-rich, compact statistical representations
that can facilitate a wide variety of statistical learning in such high-dimensional data. Such
compact representations can also aid prominent analytics including surrogate/reduced or-
der model construction, dimensionality reduction, low-dimensional manifold and subspace
identification, uncertainty quantification, data fusion/assimilation from different sources
(experiment, simulation, sensors).

Joint cumulants can be defined using joint moments, which are multivariate extensions
of the commonly used univariate (marginal) moments. Consider a vector of N random
variables X ≡ [X1, X2, . . . , XN ]. The joint moments M of orders two, three, and four can
be defined using index notation as, respectively,

Mi,j = E[XiXj ], Mi,j,k = E[XiXjXk], Mi,j,k,l = E[XiXjXkXl], 1 ≤ i, j, k, l ≤ N, (1.1)

where E is the expectation operator, and the number of indices reflects the order of the
moment. The joint cumulants C are related to joint moments. The first order cumulant is
equal to the first order moment and for the second, third and fourth order cumulants the
relations are

Ci,j = Mi,j −MiMj , (1.2)

Ci,j,k = Mi,j,k −MiMj,k −MjMi,k −MkMi,j + 2MiMjMk, (1.3)

Ci,j,k,l = Mi,j,k,l −MiMj,k,l −MjMi,k,l −MkMi,j,l −MlMi,j,k −Mi,jMk,l

−Mi,kMj,l −Mi,lMj,k + 2(MiMjMk,l + MiMkMj,l + MiMlMj,k

+MjMkMi,l + MjMlMi,k + MkMlMi,j)− 6 MiMjMkMl

(1.4)

The relations simplify considerably if one considers centered joint moments, i.e. if the
random variables comprising X are centered around their means.

While many analytics techniques are centered on the co-variance and second-order statis-
tics, with a few exceptions such as financial modeling and medical diagnostics, higher-order
joint statistics have not been widely adopted for analyses by scientific applications. A

∗Wake Forest University, liz20@wfu.edu
†Sandia National Laboratories, hnkolla@sandia.gov
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key property of multivariate Gaussian distributions is that all cumulants of order greater
than two are zero. However, many scientific phenomena, e.g. turbulence, are associated
with non-Gaussian statistics and important statistical information is contained in joint mo-
ments of order greater than two. Independent Component Analysis (ICA) [4] identifies a
linear transformation of multivariate data to a set of statistically independent variables,
which is a stronger condition than linearly uncorrelated variables identified by Principal
Component Analysis (PCA). ICA is specifically geared towards non-Gaussian statistics and
certain classes of ICA algorithms are based on the fourth-order joint cumulant tensor [3,5].
Higher-order statistical moments have been employed for assessing accuracy of coupled
climate models [19], and for unique source identification using ICA when comparing dif-
ferent model predictions to observed data [10, 17]. They have also been used for various
analyses in hyperspectral imaging [11,13, 21] and medical electrodiagnostic techniques, e.g.
electroencephalography (EEG), electrocardiography (ECG) and electromyography (EMG)
[6,8,16,22]. Based on the principle that outliers are another manifestation of non-Gaussian
behavior, higher-order moment tensors have also been tailored for anomaly detection [1,18].

In applying tensor and multi-linear algebra, software have been typically designed for
the scenario where the raw data (field quantities at every mesh point) itself constitutes a
higher-order tensor. In contrast, for higher-order joint statistics the tensor is not the raw
data, rather a result of contractions on the raw data. This is evident from Eq. 1.1, where the
moment tensors are a result of an expectation operation over samples spanning space and/or
time. For an application with N variables, and joint statistics of order d, the full tensor is
dense and of size Nd. The tensor, being super-symmetric, has duplicate elements, with the
number of unique elements being equal to

(
N+d−1

d

)
. While the tensor size is independent

of the mesh size and time steps, each element of the tensor is a result of contractions over
samples from a suitable portion of the space-time domain, and the mesh size and time steps
are reflected in the cost of forming the tensor. For exascale applications the space-time
degrees of freedom can be order of billions, and hence it is vital to develop efficient and
scalable algorithms for computing higher-order moment tensors efficiently.

2. Preliminaries.

2.1. Notation. We are going to use the capital letters in bold Euler script front (X)
to denote a tensor. For matrices we use capital letters in bold (Y). For vectors we use the
lower case letter in bold (a).

M(k) k-th moment tensor

C(k) k-th cumulant tensor

� Row-wise Khatri-Rao product⊙j
i Xi X1 � ...�Xj

MB(i,j,k) The block of M with index (i, j, k)

◦ Outer product

In this paper, we will assume that the input matrix X ∈ Rm×n where m >> n.

2.2. Symmetric tensor. In this paper, a supersymmetric tensor refers to a tensor
whose elements have the same value for all the permutations of their indices. For example,
a 3-dimensional tensor X is supersymmetric if and only if

Xi,j,k = Xi,k,j = Xk,i,j = Xk,j,i = Xj,k,i = Xj,i,k
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for any i, j, and k. For brevity, we will refer to supersymmetric tensors simply as symmetric
tensors. All symmetric tensors are cubical, which means each of its dimensions has the same
size. The following are two obvious properties of a d-dimensional symmetric tensor of size
s (i.e. the size of each dimension is s) :

• The total number of elements is sd.
• The number of unique elements is at most

(
s+d−1
d

)
.

From these two properties we can see that the storage and computation cost of symmetric
tensor can be reduced by O(d!) if we can exploit its symmetric nature.

2.3. Vectorization of a tensor. It is sometimes useful to convert a tensor into a
vector. The following function vec : RI1×I2×...×Id → RI1I2...Id is one of the ways to do this:

Definition 2.1. vec(X)α = Xi1,i2,...,id where

α = 1 +

d∑
k=1

(ik − 1)

k−1∏
l=1

Il

2.4. Storing supersymmetric tensor. One of the efficient ways of storing a symmet-
ric tensor is proposed in [20] as Blocked Compact Symmetric Storage (BCSS). We adopt this
approach in our implementation. The general idea of BCSS is to partition the d-dimensional
tensor into smaller d-dimensional blocks and only store those blocks with unique values using
conventional ordering (e.g. column major). Figure 2.1 shows an example where a 4× 4× 4
tensor is partitioned into 8 2 × 2 × 2 tensor blocks. Only 4 of those blocks(e.g. those in
the legend) have unique values and are stored. We choose to store only those blocks whose
indices are in strictly increasing order because this makes it easy to list out those unique
blocks.

Fig. 2.1: How a 4 × 4 × 4 symmetric tensor is divided into 2 × 2 × 2 blocks. The 4 blocks
included in the legend have unique values and only those are stored.

This data structure is not optimal in terms of memory efficiency because the blocks
on the super diagonal of a symmetric tensor are symmetric and thus contains redundancy.
More specifically, for a d-dimensional supersymmetric tensor X of size n, let the block size
be s. There are n

s blocks on each mode, resulting in
(n
s+d−1
d

)
blocks where each block has
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sd entries. So the total storage needed with this blocked approach will be

sd
(n
s + d− 1

d

)
. Whereas the storage needed for only the unique values is(

s+ d− 1

d

)
. This sacrifice of memory is justified since otherwise we have to use alternative ways of
ordering the unique values of the tensor in memory, which causes the complexity of indexing
them to increase quickly [12].

2.5. Moment tensor. For X ∈ Rm×n, its dth moment tensor is a d-dimensional tensor
where each of its dimension has the same size. In this paper, we assume that each row of X
contains a sample of n variables. The element-wise expression for the dth moment tensor
M of X is shown below:

Mi1,i2,...,id =
1

m

m∑
a=1

d∏
x=1

Xa,ix (2.1)

Computing this moment tensor in this naive way is very expensive. However, it’s easy
to see that moment tensor of any matrix is supersymmetric. It is natural to think about
exploiting the symmetry of the moment tensor by employing the BCSS data structure and
only computing the elements in its unique blocks.

2.6. Related work. In [7], Domino et al. successfully exploited the symmetric struc-
ture of the moment tensor and employed the BCSS to reduced the operations needed to
compute the moment tensor. Their performance experiments shows that a block size of 2
is usually the optimal. This means the memory requirement for storing the moment ten-
sor is also greatly reduced. However, their implementation still has room for improvement.
Specifically, to compute each element of a d-dimensional moment tensor, they use two nested
loops corresponding to the summation and multiplication shown in Equation (2.1). It is well
known that this type of nested for loops can usually be vectorized and posed as matrix op-
erations, which is much more cache efficient. In fact, this is what we have done and we
consider it to be the main contribution of this work. We will elaborate on our algorithms
and the improvements in performance in the following section.

2.7. Row-wise Khatri-Rao product. For the following sections, we need to first in-
troduce the row-wise Khatri-Rao product. Denoted by �, the row-wise Khatri-Rao product
on two matrices with the same number of rows is defined as the following:
With A ∈ Rr×m, B ∈ Rr×n, C ∈ Rr×mn and ⊗ denoting the Kronecker product:

C = A�B =


A1,: ⊗B1,:

A2,: ⊗B2,:

...
Ar,: ⊗Br,:


The complexity of the row-wise Khatri-Rao product is O(rmn). As an example, given

A =

1 2 3
4 5 6
7 8 9

 ,B =

9 6 3
8 5 2
7 4 1
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A�B =

 9 6 3 18 12 6 27 18 9
32 20 8 40 25 10 48 30 12
49 28 7 56 32 8 63 36 9


3. Algorithm.

3.1. Computing moment tensor with matrix operations. As we mentioned in
Section 2.6, we can speed up the computation of the moment tensor substantially if we can
frame the computation as matrix operations instead of nested for loops. In fact, given the
input matrix X ∈ Rm×n, we can compute its moment tensors with two series of Khatri-Rao
products and a standard matrix multiplication. The vectorization, defined in section 2.3, of
the 2nd moment tensor, which is a matrix, is simply the following:

vec(M(2)) = vec(
1

m
XTX) (3.1)

The vectorization of the 3rd moment tensor can be computed as:

vec(M(3)) = vec(
1

m
XT (X�X)) (3.2)

The vectorization of the 4th moment tensor can be computed as:

vec(M(4)) = vec(
1

m
(X�X)T (X�X)) (3.3)

The vectorization of the dth moment tensor can be computed as:

vec(M(d)) = vec(
1

m
(

dd/2e⊙
i=1

X)T (

d⊙
i=dd/2e+1

X)) (3.4)

Organizing the computation this way might seem out of the blue but it is in fact very similar
to how we reconstruct the tensor from its CP factor matrices. The connection between
computing moment tensor and CP decomposition[14] is the following: A CP decomposition
can be seen as decomposing a tensor into the sum of a series of rank-one tensors. For a
3-way tensor X with rank R, its CP decomposition can be written as:

X =

R∑
r=1

ar ◦ br ◦ cr

. By definition, a d-dimensional rank-one tensor is the outer product of d vectors. The d-th
moment tensor of an input matrix X can also be seen as the sum of a series of rank-one
tensors where the i-th rank-one tensors is the outer product of the i-th row of X. The idea
of using Khatri-Rao product to replace the sum of a series of outer product can be found in
this survey paper [15].

3.2. Complexity. In this approach using Khatri-Rao products, for d-th order moment
tensor, if the input matrix has shape m×n, the complexity for computing the whole moment
tensor is:

2m(n2 (nd/2−1 − 1)

n− 1
) + 2mnd = O(2mnd) (3.5)

On the other hand, the complexity for using Equation (2.1) to compute the moment tensor
element-wise is:

(dm+m)nd = O(dmnd) (3.6)

We can see that these two are essentially the same when d is small, which is typically the
case.
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3.3. Blocked version. The previous section introduces the general idea of how to
compute the entire moment tensor with matrix operations. To leverage the symmetry of
the moment tensor we have to use the blocked data structure, which allows us to skip
computing the blocks that are redundant in the symmetry. For simplicity, let’s assume that
with input matrix X ∈ Rm×n, the block size s can divide n. The building blocks of this
algorithms are the column blocks of X. In the following equations, we denote the ith column
block of X as Xi, which is defined as X[:, ib − b + 1 : ib] (b is the block size). For the 4th
order moment tensor, we can compute vectorization of the block with index (i, j, k, l) as the
following:

vec(MB(i,j,k,l)) = vec(
1

m
(Xi �Xj)

T (Xk �Xl)) (3.7)

More generally, for the d-th order moment tensor, we can compute the vectorization of the
block with index (i1, i2, ..., id) as the following:

vec(MB(i1,i2,...,id)) = vec(
1

m
(

dd/2e⊙
i=1

Xi)
T (

d⊙
i=dd/2e+1

Xi)) (3.8)

4. Implementation details. Domino et al.[7] implemented their algorithm in Julia,
a high-level language tuned for performance. We also implemented our algorithm in Julia to
make direct comparisons. We adopted the symmetricTensor data structure implemented
by Domino et al. The pseudocode for our sequential algorithm is shown in Algorithm 1.
Here X ∈ Rm×n is the input matrix, M is the 4th moment tensor of X and s is the block
size.

One thing to note about Algorithm 1 is that it is solely focused on computing the 4th
order moment tensor. To compute lower/higher order moment tensors we would have to
modify the code to include less/more nested for loops. In contrast, the implementation by
Domino et al. can compute moment tensor of arbitrary order. Our reasoning for imple-
menting it this way is the following: First, at the moment, we rarely see a need to compute
moments higher than 4th order. Second, modifying our code to compute higher order mo-
ment tensor is relatively easy. Finally, using this nested loop structure allow some additional
saving of computation, which we discussion in Section 4.1.
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In this algorithm, there are two computation intensive kernels: the Khatri-Rao product
and matrix multiplication. For matrix multiplication, we used the BLAS gemm interface
implemented by Julia. We implemented our own Khatri-Rao product of A and B as broad-
cast multiplications between each column of A and the entire B. In addition, one problem
we had to solve for using matrix operations is memory allocation/deallocation. Comparing
with computing each element of the moment tensor individually, using matrix operations
needs more memory allocation/deallocation, which can become a bottleneck in the algo-
rithm if not managed properly. Specifically, in lines 4, 6, 9, and 11 of Algorithm 1, Julia
will make copies the submatrices instead of creating a reference. We addressed this issue
by using the @views macro, which forces those submatrices to be references to the original
input matrix. In addition, simply allocating memory for matrices E and F when they are
computed in line 9 and 10 also result in unnecessary allocation and deallocation in each
iteration of the for loops. We address this problem by allocating memory for those matrices
outside of the loop and reusing the associated memory when possible.

To rule out the influence of performance difference that results from the language par-
ticular features, we also implemented both our algorithm and that proposed by Domino et
al. in MATLAB and compared the performances. The results are shown in Section 5.3. In
this implementation, we used the Khatri-Rao product that implemented in Tensor Toolbox
[2] and the standard matrix multiplication implemented by MATLAB.

4.1. Complexity of 4thMomentTensor implementation. Using nested for loops
to iterate through the block indices allows us to reuse the results of some of the Khatri-
Rao products. If both Khatri-Rao product is computed in the inner-most for loop, we will
need 2

(
b+3

4

)
ms2 operations for all the Khatri-Rao products. By moving one Khatri-Rao

product to the outer loop we will need (
(
b+1

2

)
+
(
b+3

4

)
)ms2 operations, resulting in a saving

of O( b
4

24ms
2) operations. This speed up is not necessarily significant especially considering

that b is usually fairly small in applications where the typical shape of the input matrix X
is often have much more rows than columns.

5. Performance results. The following experiments are conducted on a laptop with
a Intel Ice Lake i7 CPU running on a base frequency of 2.3 GHz. In all the experiments we
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are only using 1 thread on 1 core.

5.1. Julia results. We compared our Julia implementation against that by Domino
et al. The input for this experiment is a randomly generated matrix. In our case, the
typical shape for the input tensor is tall and skinny. The number of rows can range from the
thousands to tens of thousands while the number of columns is usually no more than 100.
The results of the following two experiments are shown in Figure 5.1. In the first experiment
experiment, we fixed the number of rows of the input tensor to 1000 and the block size to
2 and vary the number of columns. The time for the two implementations are recorded in
the left figure below. We can see that speed up is consistent at around 5x to 10x.

In this next experiment, we fixed the number of columns of the input tensor to 30 and
the block size to 2 and vary the number of rows. The time for the two implementations are
recorded in the right figure below. We can see that speed up is consistent again at around
5x to 10x. The reason for the speed up in both these experiments is mostly due to the cache
efficiency of matrix operations.
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Fig. 5.1: Scaling the number of rows/columns. For the plot on the left, we fix the input X
to 1000 rows and the block size to 2. For the plot on the right, we fix the input X to 30
rows and the block size to 2.

5.2. Optimal block size. In this experiment, we test the impact of having different
block size has on the performance. We fixed the number of columns of the input tensor to
1000 and the number of rows to 30 and varied the block size. The time comparison for the two
implementations are recorded in Figure 5.2. We can see that for the implementation from
[7], as the block size increase, the performance decreases. However, for our implementation,
increasing the block size to an extent will result in increase in performances. Specifically,
going from a block size of 2 to a block size of 3 results in a nearly 2x speed up. This
is because when the block size increases, the number of computation increases while the
number of matrix operations needed decreases. When starting from a small block size
such as 2, the benefit of having launching less matrix operations overweighs the cost of the
increase in computation. The optimal block size that we recorded is around 20. However,
the optimal block size is most likely dependant on the hardware and has to be tuned. More
importantly, increasing the block size not only increases the flop count but also increases the
memory needed to store the final moment tensor as the redundancy in the diagonal blocks
increases. That being said, even with the block size being suboptimal such as 2, we are still
seeing a significant speed up of about 5x using our algorithm.
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Fig. 5.2: Optimal block size in Julia. In this experiment we fix the input X to 1000× 30

5.3. Matlab results. In this section we show the results of the same experiments in
last section ran on our MATLAB implementations. Note although we label the red curves in
these figures as Domino et al. This is not their implementation. Instead, we have translated
their Julia code to MATLAB in order to make this comparison.

From the results shown in Figure 5.3, we can see the MATLAB results largely confirms
what we have seen in the previous section. The MATLAB implementation is slower in
general than the Julia implementation. This is because we haven’t done the extensive
performance tuning to either of the approaches as we have done for the Julia version.
This results shows that the improvements in performance that our algorithm brings is not
particular to one programming language.
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Fig. 5.3: MATLAB experiment results. Similar to the Julia experiments, the baseline input
X is 1000× 30 with a block size of 2.

6. Ongoing work. Currently we are implementing this algorithm in parallel on a
shared memory system. We aim to make this implementation a performance portable one
by using C++ with Kokkos [9]. In [7], Domino et al. parallelized this algorithm by dividing
the input matrix vertically into several submatrices, each owning a subset of the rows of
the input matrix. The sequential algorithm can then be applied to each of the submatrix to
compute their moment tensors. Those partial moment tensors then have to be reduced and
averaged. This approach is compatible with our new sequential algorithm as well. However,
the final reduction creates a bottle neck because it is communication intensive and does
not scaled well. Instead, we intend to implement our algorithm in a way such that we can
compute the blocks of the moment tensors in parallel, which avoids communication.

Another extension of this work we are investigating is the ways to parallelize the compu-
tation of the cumulant tensor. The computing the moment tensors is a substantial portion
of the work involved in computing the cumulant tensor. However, after the moment tensors
are known, there is currently no good implementations that will compute the cumulant
tensor in parallel efficiently.

7. Summary. In this work we present a more efficient way of computing the moment
tensor that takes advantage of its symmetry at the same time. The complexity of this
evaluated. We also documents the implementation of this algorithm in Julia and MATLAB
and compared its performance with the benchmark. From the results, we see that using
matrix operations that has higher efficiency to compute a block of the final results can result
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in substantial increase in performance compared to more naive approach of computing each
values individually. In addition, we discuss the ongoing effort to parallelize this algorithm
and ways to expand the results we have now to more efficient computation of higher-order
joint cumulant tensors as well.
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PMEMCPY: AN EFFICIENT I/O LIBRARY FOR PMEM

LUKE M. LOGAN∗, GERALD F. LOFSTEAD† , SCOTT LEVY‡ , PATRICK WIDENER§ ,
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Abstract. Persistent memory (PMEM) devices can achieve comparable performance to DRAM while
providing significantly more capacity. This has made the technology compelling as an expansion to main
memory. Rethinking PMEM as storage devices can offer a high performance buffering layer for HPC
applications to temporarily, but safely, store data. However, modern parallel I/O libraries, such as HDF5
and pNetCDF, are complicated and introduce significant software and metadata overheads when persisting
data to these storage devices, wasting much of their potential. In this work, we explore the potential of
PMEM as storage through pMEMCPY: a simple, lightweight, and portable I/O library for storing data in
persistent memory. We demonstrate that our approach is up to 2x faster than other popular parallel I/O
libraries under real workloads.

1. Introduction. Scientific applications generate massive amounts of data; however,
storage performance lags behind CPU performance resulting in applications being bottle-
necked by I/O both with other nodes as well as with storage. One approach to alleviate
this problem is to expand the memory capacity of the nodes, enabling more local processing
before requiring communication. PMEM (e.g., phase change memory and Intel DC Persis-
tent Memory) offers an excellent solution that is cheaper than DRAM, but offers reasonably
similar performance characteristics. This technology has driven considerable work into using
main memory (i.e., DRAM) as a working cache for an expanded PMEM main memory [30].
As compelling as this case is, it only addresses the inter-node portion of the bottleneck. For
applications where communication with storage is a more serious concern, using that same
PMEM technology as fast storage (instead of slower memory) offers a flexible resource that
can address multiple kinds of workloads. For example, various works investigate the use of
storage hierarchies in order to combat the I/O bottleneck [5,21,34]. In these works, storage
such as PMEM, NVMe, SSD, and HDD are arranged in a hierarchy based on performance
and capacity characteristics. Data is initially buffered in faster storage tiers and then asyn-
chronously flushed to slower mass storage, which helps avoid costly data stalls. While there
has been considerable work examining the use of node-hosted storage technology with more
favorable performance characteristics than hard drives, the interfaces for PMEM offer an-
other potential performance gain, but only if the software uses the devices with these more
efficient interfaces.

Due to the DRAM-like performance of PMEM, software overheads are no longer neg-
ligible on the I/O path. For this reason, researchers have started rethinking the design
of node-local storage stacks [1, 19, 23, 40, 41], which had previously been designed for slow
storage technologies such as hard drives. EXT4/XFS DAX [1] allows applications to di-
rectly store data in PMEM without first copying to DRAM using memory mapped I/O.
SplitFS [19] aims to improve the performance of DAX by splitting metadata and storage
operations between kernel space and user space respectively, allowing the majority of I/O
operations to avoid the kernel entirely. NOVA [40] is a log-structured filesystem that aims
to exploit the parallelism and random access properties of PMEM by storing logs per-inode
as opposed to a global log. These works avoid many of the overheads introduced by the
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Linux kernel, such as context switching, splitting/merging, lock contention, and request
reordering. However, improving node-local storage stacks is not enough. HPC applications
typically use parallel I/O (PIO) libraries on top of node-local storage stacks to persist data.
We assert that fundamental changes in the design of PIO libraries must be made to gain
the full benefits of PMEM for I/O.

Various PIO libraries exist, such as ADIOS [13, 29], HDF5 [22], and pNetCDF [24].
However, these libraries introduce significant programming burden, software overhead, and
complex configuration spaces. In order to maximize the performance of these libraries and
reduce the user’s burden, researchers have investigated the use of auto-tuning to identify
optimal parameters specific to the characteristics of applications and parallel filesystems [3,
4,6,7], with approaches such as genetic algorithms and Bayesian optimization. However, at
a fundamental level, existing PIO libraries do not interact with PMEM efficiently, regardless
of how well they are tuned. For example, all production-ready work depends on the use of
MPI-IO and POSIX, which causes unnecessary networking communication and data copies
that degrade the performance of I/O to PMEM [20]. Furthermore, PIO libraries tend to
have complicated APIs, requiring many lines of code to store simple data structures, such
as arrays. A simple memcpy interface is more desirable. PIO libraries should be designed
with awareness of the underlying device characteristics in mind in addition to being more
user-friendly.

In this work, we present pMEMCPY: a simple, lightweight, and portable I/O library
for storing data in persistent memory. Using the Persistent Memory Development Kit
(PMDK) [32], applications have direct access to PMEM while maintaining consistency guar-
antees. Users can store data structures with a simple key-value store interface that adds
the minimal metadata necessary to deserialize the data structures in addition to avoiding
costly network communications and data copies that other PIO libraries introduce.

Our contribution offers an optimized approach for parallel I/O library design that can
store application data structures in node-local PMEM directly with minimal overhead using
a simple key-value store interface similar to memcpy. Through this style of I/O library,
users can achieve the best possible PMEM performance for their storage operations and
enjoy an API much closer to memcpy.

The rest of this paper is organized as follows. First in Section 2 is a deeper discussion
of background and related work. Next in Section 3 we detail the reasoning and design
decisions for our demonstration. Section 4 presents a collection of evaluations comparing
this approach against alternatives. Finally, in Section 5 we summarize the work.

2. Background & Related Work. There are various existing parallel I/O libraries,
including HDF5, ADIOS, and pNetCDF. Furthermore, there are various libraries and APIs
that exist to efficiently interact with PMEM. However, there has been no published ap-
proach, to our knowledge, that demonstrates how to optimize the I/O library for PMEM
interfaces and simplify the API to a most basic memcpy-like approach.

2.1. Parallel I/O (PIO) Libraries. HDF5 [22] is a popular PIO library, and is used
as the foundations for other popular PIO libraries, such as NetCDF4 [31]. HDF5 exposes a
hierarchical namespace to users, where H5Groups are analogous to directories. HDF5 can
store primitive types (ints, floats, doubles, etc.), compound data types (structures), and
arrays (H5Datasets) of those types. Subsets of datasets can be taken using the Hyperslab
APIs. HDF5 can store datasets using various data layout policies: contiguous, chunked,
and compact. The contiguous layout stores arrays as a 1-D sequence of data, and is the
default layout for HDF5. The chunked mode divides the array into fixed-size sub-arrays
(i.e., chunks) where the dimensions of the sub-arrays are user-defined. In chunked mode,
HDF5 also allows for the definition of filters, which are operations to perform on individual
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chunks, such as compression [10, 11]. Lastly, if the dataset is less than 64KB, the compact
mode stores the dataset in its corresponding metadata entry. In order to persist data to
storage, HDF5 allows multiple approaches: MPI Independent I/O, MPI Collective I/O, and
POSIX I/O. In each of these cases, the final output of HDF5 is a single binary file. Further-
more, HDF5 introduced a multi-tiered buffer management system, Hermes [21], that allows
users to manage the complexity of heterogeneous, multi-tiered storage environments without
changing application code. While HDF5 is a feature-rich library that has specific function-
ality for buffering and prefetching, it has many limitations. The Neuroscience community,
for example, has noted multiple flaws in the user-friendliness of this library [12]. HDF5
stores data in a single binary file, where metadata is not human readable. This also makes
version control systems less efficient. Furthermore, HDF5 compound types do not support
the nesting of compound types or dynamically sized arrays. Furthermore, MPI-IO relies
on the underlying filesystem (for Linux, read/write) APIs in order to store data. However,
read/write perform data copies which introduces unnecessary overhead [20].

An alternative to HDF5 and NetCDF4 (a PIO library depending on HDF5) is
pNetCDF [24]. This was developed around the same time as NetCDF4 as an effective
demonstration on how to maintain the NetCDF3 compatibility as much as possible while
extending for 64-bit support. While the two libraries “compete”, the reality is that they
co-exist peacefully and are widely supported as a pair rather than individually. For exmaple,
the NCAR PIO library [9] offers a single API that can switch to use either NetCDF4 or
pNetCDF underneath. As with HDF5, pNetCDF is designed with MPI-IO as the primary
IO interface for parallel IO and optimized for slow storage devices through additional work
to prepare data to more efficiently be moved into storage. However, the performance gains
of PMEM shifts the bottleneck of the storage device that required such optimizations to the
I/O library itself. NVMe devices have had a similar effect [2], but PMEM offers additional
performance exaggerating the performance overhead the software layer imposes.

ADIOS is an alternative PIO library to HDF5, NetCDF and pNetCDF. ADIOS aims to
encompass various I/O transport mechanisms (e.g., MPI-IO, POSIX, HDF5, and NetCDF)
under a simplified interface that is easily configurable and requires little change to appli-
cation code to change which implementation is used. ADIOS is designed to reduce the
code complexity of HDF5 and acknowledge that some of the performance optimizations
employed by HDF5 and other PIO libraries do not scale for reading and writing as well as
hoped [28]. One approach ADIOS uses to address the performance gap is to use its own
Binary Packed (BP) format whenever possible. BP offers delayed consistency, lightweight
data characterization, and data resilience. Unlike HDF5, ADIOS stores data in the same
format as it was produced on a process-by-process basis rather than constructing a global
linearization of complex datastructures. For example, a 3D domain decomposition is stored
as a single item in HDF5 with all three dimensions across all processes being linearized
through a data rearrangement phase prior to hitting storage. This has the advantage of
eliminating any potential artifacts from unusual process decompositions. ADIOS has each
process write the data it owns with no coordination with other processes. This eliminates
the data rearrangement phase, which can improving performance greatly. In particular,
large 3D domain decompositions see radical performance improvements for both writing
and reading [28]. ADIOS also supports transparent and custom operators, similar to HDF5.
In addition, ADIOS2 [13] is an update to ADIOS that provides a C++ interface that is more
simplistic and extensible than that of the original ADIOS. The recent revision includes a
key-value store API for storing data. However, ADIOS2 suffers from the same drawbacks
as the original when it comes to PMEM as it is storage device agnostic.

A more recent effort, Proactive Data Containers [33] offers a similar key-value store
approach for data management. However, it is designed for hard drives and solid state drives,
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offering no optimizations for PMEM. This approach still suffers from the same limitations
as the other aformentioned approaches.

One system recognizing the need for a different interface to non-volatile memory is
DStore [14]. However, DStore is intended as a way to store a log for an in-DRAM key-value
store. Unlike other attempts to optimize key-value stores with PMEM, such as MongoDB-
PMEM [17] and PMEM-RocksDB [39], DStore uses PMEM to store the logs rather than as
the main store, offering greater performance while still offering predictable consistency.

In all cases, effectively using PMEM using efficient interfaces is a relatively new endeav-
our that popular HPC I/O libraries have yet to embrace. While some progress has been
made in the scale-out space, the recent DStore paper demonstrates that a simple “switch
to the PMDK interface” may not be the most efficient nor optimal approach for achieving
both performance and price/performance.

2.2. Accessing PMEM. PMEM can be exposed like any other storage device. Ap-
plication developers can use traditional filesystem APIs such as POSIX, stdlib, and iostream
in order to store data in PMEM. However, these interfaces introduce significant software
overheads. For example, these interfaces will cause unnecessary data copies and memory
allocations to occur. To avoid this, applications can access PMEM directly using mem-
ory mapped I/O (MMIO) and DAX. However, managing memory-mapped regions requires
application developers to provide their own memory allocation functions and concurrency
control mechanisms, which can cause data consistency and reliability concerns.

The Persistent Memory Development Kit (PMDK) [32] is a collection of libraries and
tools for managing PMEM devices. It provides low-level primitives for interacting with
PMEM and a transactional object store that utilizes memory mapping in order to interface
with PMEM devices. What this really means is that PMEM is mapped directly in the
memory space for a process enabling direct access. Unlike MPI-IO and POSIX I/O, this
approach allows applications direct, zero-copy access to PMEM while providing consistency
guarantees. PMDK provides optimized memory allocation functions, persistent locks, basic
data structures (e.g., thread-safe lists), and transactions. This allows applications to have
efficient and safe access to PMEM while reducing the complexity of managing memory-
mapped files.

2.3. New Filesystems. In the Introduction, we covered many of the newer generation
storage systems written from the ground up to take advantage of solid state, node local
storage. However, these have all been written for NVMe devices, at best, and still assume a
more traditional device interface. One major exception to this is DAOS [16]. The original
design of DAOS [27] was to offer a new storage architecture, but still assuming non-PMEM
storage devices. The current DAOS generations have been reimagined using Intel Optane
PMEM devices as a core component. Using these devices, DAOS was able to achieve top
marks on the IO500 benchmark at sc19 [18]. More recent conversations with the DAOS team
about Optane and DAOS or other storage use recommended at most 1% of the capacity
using the PMEM devices as a way to ensure top performance for the most critical operations
while keeping costs from spiraling out of control [26]. This makes DAOS a good potential
candidate for using PMEM as a storage device, but it does not address the I/O library layer
entirely. The plug-ins for HDF5 for speaking directly with DAOS and the DAOS native
APIs may offer better support. However, the interfaces are still complex and focused on a
container-like structure with POSIX-structures layered on top.

3. Design & Implementation. This work offers pMEMCPY, a simplistic and
portable I/O library for managing node-local PMEM. Our design assumes that the compute
nodes running the application also contain PMEM. Data structures in memory are stored
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Fig. 3.1: Basic Machine Architecture

directly on PMEM without extra metadata, context switching, or data copies beyond what
is necessary to reload the data during a different application run or for an analysis job. Our
assumed, basic machine architecture is illustrated in Figure 3.1.

1. #include <pmemcpy/pmemcpy.hpp>
2. pmemcpy::PMEM pmem;
3. pmem.mmap(std::string filename, int comm);
4. pmem.munmap();
5.  
6. pmem.store<T>(std::string id, T &data);
7. pmem.alloc<T>(std::string id,
8.   int ndims, size_t *dims);
9. pmem.alloc<T>(std::string id,

10.   pmemcpy::Dimensions dims);
11. pmem.store<T>(std::string id, T *data,
12.   int ndims, size_t *offsets, size_t *dimspp);
13.  
14. pmem.load<T>(std::string id);
15. pmem.load<T>(std::string id, T &num);
16. pmem.load<T>(std::string id, T *data,
17.   int ndims, size_t *offsets, size_t *dimspp);
18. pmem.load_dims(std::string id,
19.   int *ndims, size_t *dim);

(a) pMEMCPY API

1. #include <pmemcpy/pmemcpy.h>
2. int main(int argc, char** argv) {
3.     int rank, nprocs;
4.     MPI_Init(&argc,&argv);
5.     MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6.     MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
7.     pmemcpy::PMEM pmem;
8.     size_t count = 100;
9.     size_t off = 100*rank;

10.     size_t dimsf = 100*nprocs;
11.     char *path = argv[1];
12.  
13.     double data[100] = {0};
14.     pmem.mmap(path, MPI_COM_WORLD);
15.     pmem.alloc<double>("A", 1, &dimsf);
16.     pmem.store<double>("A", data, 1, &off, &count);
17.     MPI_Finalize();
18. }

(b) pMEMCPY API Usage Example

Fig. 3.2: pMEMCPY API and an example of writing a 1-D array

API: pMEMCPY exposes a key-value interface for storing and loading data from
PMEM. Users can store primitive types, structured types, and arrays of these types using
the templated load/store APIs. The C++ API is shown in Figure 3.2(a). In Figure 3.2(b),
we demonstrate the usage of pMEMCPY for writing a 1-D array of data in parallel. In the
example, each process writes 100 doubles to non-overlapping offsets in the array directly
to PMEM. alloc is used to specify the final dimensions of the array, and store is used to
persist pieces of the array generated by each process. In Figure 3.3(a), we show the equiva-
lent HDF5 code. HDF5 requires a user to create and free dataspace and dataset objects in
addition to subsetting the dataset, and each of these interfaces contain many parameters.
The dataspace defines the dimensions of the array, and the dataset represents the array
within HDF5. The HDF5 version is 34 lines of code and 248 tokens, whereas our code is 16
lines and 132 tokens, which is a 47% reduction in the number of tokens. Similar to HDF5,
NetCDF and pNetCDF requires users to define and allocate the dimensions of the array us-
ing special APIs, which adds unnecessary complexity. While ADIOS simplifies this, it still
requires the user to store the dimensions of the array separately and then associate those
variables with the array. pMEMCPY automatically stores the dimensions of the array and
the per-process subarrays in the store API by appending “#dims” to the id; dimensions can
be queried using load dims. In Figure 3.3(b), we show the equivalent ADIOS code, which
is 24 lines and 164 tokens. Overall, we see that pMEMCPY provides a more simplified and
compact API than other libraries.

Data Transfer and Serialization: Unlike ADIOS, NetCDF, and pNetCDF which
depend on POSIX and MPI-IO, pMEMCPY uses memory mapping and independent I/O
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1. #include <hdf5.h>
2. int main (int argc, char **argv) {
3.   int nprocs, rank;
4.   MPI_Init(&argc, &argv);
5.   MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
6.   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
7.   hid_t file_id, dset_id;
8.   hid_t filespace, memspace;
9.   hsize_t count = 100;

10.   hsize_t offset = rank*100;
11.   hsize_t dimsf = nprocs*100;
12.   hid_t plist_id;
13.   char *path = argv[1];
14.   int data[100];
15.  
16.   plist_id = H5Pcreate(H5P_FILE_ACCESS);
17.   H5Pset_fapl_mpio(plist_id,
18.     MPI_COMM_WORLD, MPI_INFO_NULL);
19.   file_id = H5Fcreate(path,
20.     H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);
21.   H5Pclose(plist_id);
22.  
23.   filespace = H5Screate_simple(1, &dimsf, NULL);
24.   dset_id = H5Dcreate(file_id, "dataset",
25.     H5T_NATIVE_INT, filespace, H5P_DEFAULT,
26.     H5P_DEFAULT, H5P_DEFAULT);
27.   H5Sclose(filespace);
28.   memspace = H5Screate_simple(1, &count, NULL);
29.   filespace = H5Dget_space(dset_id);
30.   H5Sselect_hyperslab(filespace,
31.     H5S_SELECT_SET, &offset,
32.     NULL, &count, NULL);
33.  
34.   plist_id = H5Pcreate(H5P_DATASET_XFER);
35.   H5Dwrite(dset_id, H5T_NATIVE_INT,
36.     memspace, filespace, plist_id, data);
37.  
38.   H5Dclose(dset_id);
39.   H5Sclose(filespace);
40.   H5Sclose(memspace);
41.   H5Pclose(plist_id);
42.   H5Fclose(file_id);
43.   MPI_Finalize();
44.   return 0;
45. }

(a) Equivalent HDF5 Example

#include <adios.h> 
int main(int argc, char **argv) { 
    int rank, nprocs; 
    MPI_Init(&argc, &argv); 
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    char *path = argv[1]; 
    char *config = argv[2]; 
    double data[100]; 
    int64_t adios_handle; 
    size_t count = 100; 
    size_t offset = 100*rank; 
    size_t dimsf = 100*nprocs; 
  
    adios_init(config, MPI_COMM_WORLD); 
    adios_open (&adios_handle, "dataset", 
      path, "w", MPI_COMM_WORLD); 
    adios_write (adios_handle, "count", &count); 
    adios_write (adios_handle, "dimsf", &dimsf); 
    adios_write (adios_handle, "offset", &offset); 
    adios_write (adios_handle, "A", data); 
    adios_close (adios_handle); 
    adios_finalize (rank); 
    MPI_Finalize (); 
    return 0; 
}

(b) Equivalent ADIOS Example.

Fig. 3.3: HDF5 and ADIOS example of writing a 1-D array

to store data in the node-local PMEM, which avoids unnecessary data copies, network/inter-
process communications, and kernel interventions. When storing a data structure in PMEM,
pMEMCPY serializes the data using well-known, portable serialization libraries, such as
BP4 [13], CapnProto [36], and cereal [38]. By default, the BP4 serialization (same as
ADIOS) is used; however, other serialization tools can be added, and serialization can be
completely disabled. Unlike similar work which serializes data structures into an in-memory
buffer and then copies to PMEM, pMEMCPY can serialize the data directly into PMEM
without first placing it in DRAM, avoiding a significant data copying cost. Furthermore,
we allow users to configure whether or not the MAP SYNC flag is enabled when storing
serialized data structures in a region of PMEM. The MAP SYNC flag guarantees that, after
a crash, a block that has been mapped into memory with write permissions will still be at
the same offset within the file [8]. While this improves crash consistency, this can introduce
significant latency penalties that severely degrade performance, as shown in our evaluations.
This is because MAP SYNC will cause a flurry of modified file metadata to be flushed on
every I/O operation [8]. After serialization, a burst buffer, such as DataWarp [15], will then
be triggered to asynchronously flush the buffered data to mass storage. The data will be
stored in the same format as it was produced, similar to ADIOS, which avoids the network
and inter-process communication required to restructure the data.

Data Layout: By default, pMEMCPY stores all application data in a single file similar
to ADIOS, NetCDF, and pNetCDF. However, pMEMCPY uses the PMDK [32] to manage
PMEM, which provides direct access to PMEM in addition to data consistency guarantees,
concurrency control, and memory allocation policies. Metadata is stored in a flat namespace
using a hashtable with chaining. This utilizes the high parallelism and random access char-
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acteristics of PMEM. Alternatively, unlike ADIOS, NetCDF, and pNetCDF, pMEMCPY
can layout data hierarchically using the PMEM’s filesystem. In this approach, instead of
writing to a single file, pMEMCPY stores the data structures in a directory and creates a
file for each variable. Whenever a “/” is used in the id of the variable, a directory is created
if it didn’t already exist.

4. Evaluations. Testbed: All tests were conducted in Chameleon Cloud using a
Compute Skylake node. Compute Skylake nodes come with 192GB of RAM and 2x Intel(R)
Xeon(R) Gold 6126 CPU @ 2.60GHz, for a total of 24 cores/48 threads. The OS used was
Ubuntu 20.04 with kernel 5.4.0-70-generic. We used openmpi 3.1.6.

Emulating PMEM: Since we do not have access to PMEM, we emulate it using the
approach presented in the Strata PMEM filesystem paper [23]. We utilize Linux’s PMEM
emulator to treat 80GB of DRAM as PMEM and format the resulting PMEM device using
EXT4 with DAX enabled. We assume that PMEM has a read latency of 300ns, write latency
of 125ns, read bandwidth of 30GB/s, and write bandwidth of 8GB/s [35]. We benchmarked
DRAM bandwidth and latency using Intel’s Memory Latency Checker (MLC) [37] and
use nanosecond-accurate monotonic timers to add the additional latency and bandwidth
constraints.

4.1. Real-App Evaluation. In this test, we demonstrate the performance impact of
pMEMCPY over other popular PIO libraries using real workloads. In this evaluation, we
use two workloads that were obtained through the help of scientists [28]. The first workload
is a write-only 3-D domain decomposition problem where each process writes a rectangular
region of data to storage. The second workload is a read-only workload that reads the regions
from storage. For both tests, we use between 8 and 48 processes. This model represents a
large memory regular stencil code common in compute models today. One example is the
S3D combustion code [25] that was the inspiration for this configuration. This model has
been previously used [28] to demonstrate potential I/O performance. In the write-only case,
we generate 10 3-D rectangles. For each test, a total of 40GB of data is generated and the
40GB is divided equally among the processes. Each element in the rectangle is a double
precision floating point value (8 bytes). The read workload is completely symmetrical to
the write workload, where each process reads the same data that had been written. We
measure the wall-clock time from the point at which the file is opened/mmapped to when
the it is closed. We perform the I/O using ADIOS, NetCDF-4, pNetCDF, and pMEMCPY
and compare the runtime between the different approaches. For NetCDF-4, we make sure to
call nc def var fill() with NC NOFILL in order to prevent it from initializing variables with
a default value, which causes significant overhead for write workloads. For pMEMCPY, we
use BP4 serialization with the PMDK hashtable layout. We run each experiment 3 times
and take the average of the runs.

The results of the experiment are shown in Figures 4.1 and 4.2. From these figures, we
see the effects of concurrency due to the CPU and PMEM wear off after 24 cores in the
write case and for most of the reads, with the exception of PMCPY-B and NetCDF4. This
makes sense considering the node has 24 physical CPU cores in total. For NetCDF, the
performance differences were largely due to differences in the dimensions of the cube being
read for the different process counts. For PMCPY-B, this was because the metadata updates
were parallelized, which caused fewer stalls. Overall, we see that pMEMCPY outperforms
ADIOS, NetCDF, and pNetCDF in both workloads when MAP SYNC is disabled. This is
because pMEMCPY avoids unnecessary communications and data copies that other PIO
libraries introduce. In the case of writes, all other PIO libraries first generate the cube in
DRAM, serialize the cube into another DRAM buffer, and then copy the serialized cube
to the PMEM whereas pMEMCPY generates the cube in DRAM and then serializes the
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Fig. 4.1: Performance of writing a 40GB 3-D domain to PMEM for a varying number
of processes. PMCPY-A has MAP SYNC disabled, whereas PMCPY-B has it enabled.
Each process writes an equal amount of data. pMEMCPY is 2.5x faster than pNetCDF
and NetCDF by avoiding network communications and data copying costs. At 24 cores,
pMEMCPY is faster than ADIOS by 15% when MAP SYNC is disabled, and slightly slower
when MAP SYNC is enabled. Note, the left figure is a zoomed in version of the right figure.

cube directly into the PMEM, avoiding an entire copy of the cube. From these figures,
we see ADIOS performs far better than NetCDF and pNetCDF in both read and write
performance. This is because, similar to pMEMCPY, ADIOS stores data in the same
format as it was produced, which avoids costly network communications and data copies
during the write phase. Furthermore, since the workload is symmetrical, ADIOS does not
need to realign any data, which mitigates data shuffling costs in the read phase. However,
pNetCDF and NetCDF store data contiguously, which requires data to be shuffled during
both reads and writes, incurring significant overhead. While ADIOS performs much better
than pNetCDF and NetCDF, it still introduces data copying overheads that pMEMCPY
avoids, causing its performance to be suboptimal. For example, in the case of reads, ADIOS
requires the serialized data to be copied from PMEM into DRAM and then deserialized into
another DRAM buffer. pMEMCPY deserializes the data directly from PMEM, avoiding
the initial copy from PMEM to DRAM. Within pMEMCPY, we see that the choice of flags
has a significant impact on performance. When MAP SYNC is enabled, the performance
benefit of serializing/deserializing directly from PMEM is completely lost, and can even
cause performance to be worse than simply using POSIX read()/write(). This is because
MAP SYNC causes a flurry of modified file metadata to be flushed on every I/O operation,
introducing significant latency penalties. Overall, we see that pMEMCPY can perform at
least 15% better for writes and 2x better for reads depending on the level of safety the user
requires.

4.2. Discussion. While standard I/O libraries offer a familiar interface, that can come
at a cost. ADIOS, with the design break from the previous generation demonstrates better
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Fig. 4.2: Performance of reading a 40GB 3-D domain from PMEM for a varying number of
processes. PMCPY-A has MAP SYNC disabled, whereas PMCPY-B has it enabled. Each
process reads an equal amount of data. pMEMCPY is 5x faster than pNetCDF and NetCDF
by avoiding network communications and data copying costs. pMEMCPY is 2x faster than
ADIOS whe [8]n MAP SYNC is disabled. When enabled, pMEMCPY performs no better
than ADIOS. Note, the left figure is a zoomed in version of the right figure.

performance, but is still not optimal by a margin of 15% - 100%. Only by using an approach
such as the one we demonstrate in pMEMCPY can the full potential of PMEM as a storage
device be achieved.

5. Conclusions. Persistent memory (PMEM) is an extraordinarily fast persistent stor-
age device typically thought of as an extension of DRAM main memory. However, using
PMEM for storage requires revisiting the design of parallel I/O (PIO) libraries. With
PMEM being integrated into compute nodes, PIO libraries should take full advantage of
the characteristics of these devices. However, popular libraries, such as HDF5, ADIOS, and
pNetCDF, introduce significant overheads when applications store and load data. Further-
more, they introduce complex interfaces and parameters that add unnecessary burden on
programmers. In this paper, we introduced pMEMCPY: a simple, lightweight, and portable
I/O library for storing data in persistent memory. We compared our design with ADIOS,
NetCDF-4, and pNetCDF, and found that write speeds improved at least 15% and reads
improved up to 2x.
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GEO-SPATIAL VISUALISATIONS

MAXWELL R. LOW∗ AND ANDREW T. WILSON†

Abstract. Geo-spatial analysis studies geographic landmarks for inventorying, locating instances, dis-
covering patterns and predicting behaviors. Visualizations of geographic data provide readily understand-
able depictions to communicate locations and patterns of motion. This report focuses on visualizations of
current trajectory analysis techniques and showcases the capabilities of Dash for applications in a query
by example search engine for geo-spatial intelligence exploitation. The trajectory analysis summaries the
Tracktable team’s current techniques for feature generation and presents visualizations of trajectories clus-
tered by collections of features. The visualizations of Dash’s capabilities affirm that it can be used in the
larger geo-intelligence project and provides a tutorial for other team members. These presented examples
are building blocks of larger projects and provide a snapshot of the current progress.

1. Introduction. The following introduces two distinct geo-spatial visualization con-
cepts that were developed this summer.

Trajectory data gathered by the OpenSky Network on December 1st of 2016 con-
tains examples of anomalous trajectories that exemplified the available anomaly de-
tection and clustering methods developed by the Tracktable team. Tracktable is an
open source project developed by Sandia National Labs for handling trajectory analy-
sis and visualization. [6] The following examples were created using built in methods
for density based clustering (tracktable.analysis.dbscan), computing distance geometry
(tracktable.analysis.distance geometry), and calculating boxiness (boxiness), along with
methods to read in and create trajectories (tracktable.analysis.assemble trajectories), dis-
play trajectories (tracktable.render.render trajectories), and various geo-spatial math meth-
ods (tracktable.core.geomath). These are used in the creation of other features and conver-
sions to account for the increased distance between two points, due to the earth’s curvature.

While all of the features can be analyzed together many of the more interesting examples
come from pairs of features. The feature list in 2.1 and parings is not complete, but it
provides visualizations of Tracktable’s applications to be released with a future update.

The second focus of the project was to establish the building blocks of a visualization tool
set for Machine Assisted Geo-spatial Intelligence Exploitation (MAGE). The visualization
tools are for a query by example initiative, and will allow the user to interact with and
edit graph elements to specify structures, fields, roadways, and other landmarks. Query
by example (QBE) is a machine learning task in which the user provides examples from
which search parameters are derived. Then the user evaluates individual examples of search
results to fine tune the search parameters. The final displayed results are based on the
learned parameters improved by having a human in the loop.

Spatial-Query-by-Sketch have been explored previously in related contexts. [1] [2] [5] A
user enters a desired shape, by drawing it, to pull it from a geographic database. A user can
also specify desired attributes of the shapes inputted to further refine the search. The user
is then presented with results that then best match the defined sketches and characteristics.

For example, in the geo-spatial domain, the user may input a series of high schools
from which the QBE search determines the results should contain a 2 story building with a
moderate parking lot and football field. The user then evaluates search results confirming
high schools and canceling examples of colleges, middle schools, or even parks and shopping
centers. After many iterations of fine turning the search parameters of the QBE search
engine, the results can be evaluated to assess the QBE search engine’s accuracy. My specific
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†Sandia National Laboratories, atwilso@sandia.gov
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contribution is to the visualization tools that will eventually allow for user selection of and
editing of graph elements.

2. Examples of Anomalous Trajectory Detection. The trajectory data is gath-
ered from the OpenSky Network, a collection of individuals with Automatic Dependent
Surveillance Broadcast(ADS-B) receivers that track equipped aircrafts in range. The re-
ceivers capture ADS-B which contains an aircraft’s id, the time the broadcast was sent
and the position in latitude and longitude of the aircraft. The broadcast may also contain
additional information like the aircraft’s velocity, altitude, and heading. Using the Python
package, Tracktable, the trajectories are read in using the assemble trajectories method.
This matches points together by their ID and sorts them by their timestamp. Trajectories
are then filtered based on how straight they are using the total distance and end to end
distance ratio, which is equivalent to a depth level of one for distance geometry. Flights with
a ratio of 0.97 or greater are then removed. These are flights that are primarily straight
and not typically very interesting for study. From there, different combinations of features,
derived from the properties of each trajectory are clustered using the DBSCAN module.
The remainder of this section will evaluate technique and provide case studies of clustering
by different combinations of features.

2.1. All Features. With the addition of more features, each cluster tends to become
more exact. The examples use a variety of features, listed below.

• Total Distance
• End to End Distance
• Start Point Latitude (Lat)
• Start Point Longitude (Long)
• End Point Lat
• End Point Long
• Median Velocity
• Distance Geometry

– Measure of curvature via ratio of end to end distance to total distance
• Convex Hull Centroid Lat

– A convex hull is a polygon formed by connecting the outer most points
• Convex Hull Centroid Long
• Convex Hull Area
• Convex Hull Aspect Ratio

– Measure of shape via ratio of the shortest and longest polygon axes
• Convex Hull Perimeter
• Total Turn Angle
• Total Turn Winding
• Boxiness

In using all 19 features, the clusters tend to be nearly identical flights with only slight
discrepancies. In figure 2.1, 12 distinct clusters are shown with near identical patterns in
each cluster.

2.2. Distance Geometry. Distance geometry is a way of creating a feature vector
that represents a trajectory’s geometry independent of rigid transformations. It is used to
cluster trajectories according to their shape. [3] Distance geometry is the ratio of the end
to end distance to the total distance over a segment of a trajectory. It creates values in the
range of (0,1]. The depth level of distance geometry represents the amount equal segments
a trajectory is broken up into before the ratio is determined over each segment. When a
depth level is computed it also contains all the prior depth levels as well. A depth level of 4
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Fig. 2.1: Depictions of Clusters 1-12 of ADS-B Gathered Flight Trajectories Clustered by
All 19 Features

contains all four ratios of the trajectory being split into four equal pieces and also contains
the three ratios from splitting the trajectory into three equal parts and so on for a total of
ten ratios at depth level 4. The following figures are using clustered results from a depth
level of 4.

In figure 2.2 the trajectories are brought together by having ratios close to 0 for a depth
of 1 and the 2nd segment of the depth of 3. For all the other measurements and depths
the ratios are close to 1. One means that all of the travel distance is used in getting to
the destination so the flight is straight. Zero means that the flight didn’t travel anywhere
overall; it ended where it started. None of the traveled distance went towards reaching the
destination, it was already there.

2.3. Convex Hull Area and Perimeter. A convex hull is formed by connecting all
the points on the periphery of a given set. Unlike simple polygons it doesn’t necessarily
contain all the points, as any internal points are ignored. Consider a convex hull as the
results of stretching a rubber band around the trajectories points. Metrics describing the
convex hull can be useful in describing geometry about a set of points in an efficient manner.
The following considers clustering trajectories grouped by the area and the perimeter of
the convex hull polygon. The selected clusters in figure 2.3 and in figure 2.4 show a
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Fig. 2.2: Distance Geometry Clustered Trajectories: Low Area Loops

large amount of encircled area with minimal and maximal perimeters which leads to the
trajectories having a triangular elbow shape and others that complete the entire loop.

Fig. 2.3: Convex Hull Clustered Trajectories: High Encircled Area, Low Perimeter Distance

Fig. 2.4: Convex Hull Clustered Trajectories: High Encircled Area, High Perimeter Distance

2.4. Start and End Point Clustering. Figure 2.5 shows the outlier group from
clustering by start and end point. All of the flights here do not have other flights that have
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flow similar routes, or at least not 5 other flights to define a cluster.

Fig. 2.5: Outlier Cluster from Trajectories Clustered their by Start and End Points

2.5. Oddities. From exploring the various combinations of features, each experiment
produced several hundred outliers. Below are some of the most visually unusual that stood
out and a brief explanation as to potentially why.

Fig. 2.6: Trajectory Anomalies: Upper Left - BOE378, Upper Right - N330PE, Lower Left
- N877BR, Lower Right - SWA872

Flights BOE378 and N877BR were pulled out for their complexity of shape. The flights
may be scenic flights or avoiding particular regions of air space, which may account for the
trajectories’ complexity of shape. Flight N330PE stood out for its extended travel distance
while returning to the same location. Flight SWA872 stood out as an outlier by having a
high boxiness score. Boxiness is a measure of how much of a trajectory is made up of equal
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length sides separated by 90 degree angles. A histogram of the trajectory’s heading at each
point is created. The expected result for a square trajectory would have 4 spikes, one for
each of the trajectory’s headings, each of roughly equal counts. Each spike would contain
one of the four sides of the square. The boxiness score is a ratio representing how well a
trajectory aligns with the profile of a square trajectory’s histogram.

3. Query by Example Visualization Tools. The following examples of QBE vi-
sualization tools were created using Dash. Dash is a Python package which provides the
developer with the ability to create interactive web apps without needing to know the in-
tricacies of HTML coding and hosting apps. [4] The descriptions partially serve as a work
summary but also as a tutorial to Dash. The progression of my work started with generating
a geographic map, adding static mapping elements, and adding editable map elements. The
project will continue in the future and potential next steps are explored in the conclusion.

3.1. Generation of Geographic Map. The map is generated via the scttermapbox
module. The background geographic terrain of the map is added to a graph plot. Changing
the style argument inside of mapbox will create the background. The following examples use
stamen-terrain as a background. The map’s initial center and zoom is set but scattermapbox
passively allows for users to zoom and pan the map image.

3.2. Adding Static Map Elements. To add static elements, edits are made to the
scattermapbox arguments. This is most easily done via update layout which can reformat
and add layers to an existing map or can be specified with scattermapbox when the map is
originally created.

3.2.1. Point. Points are specified by specifying marker as the mode and proving two
lists, one of longitude and one of latitude for the lon lat arguments. The markers can also
be edited via providing a dictionary to the marker argument. The markers have a default
of black dots of size 20. Figure 3.1 shows a singular static dot near Albuquerque, NM on
a geographic map. Figure 3.2 builds upon the singular point example and displays 4 dots
in Southeastern Canada and the Northeastern United States.

Fig. 3.1: Geographic Map Rendering with Single Static Point

3.2.2. Simple Polygon. Polygons are specified by providing a new map layer to map-
box containing a FeatureCollection with a Multipolygon feature containing a list of coordi-
nates. Figure 3.3 provides an example of 3 static map points creating a shaded area in the
Northeast United States.

To create additional polygons, specify an additional feature under features for the Fea-
tureCollection. Figure 3.4 gives an example of two figures created on the same map. The
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Fig. 3.2: Geographic Map Rendering with Multiple Static Points

Fig. 3.3: Geographic Map Rendering with Single Static Area

concept is expandable to any numbers of figures.

Fig. 3.4: Geographic Map Rendering with Multiple Static Areas

3.3. Making Dynamic Elements. Graph elements can be changed in real time by
the user operating the app if callbacks are set up. A callback is a special function within
a Dash app that allows for the changing of values in real time and updates the displayed
elements based on user input. A callback has 3 potential fields that can be specified, an
input, an output, and an optional state. Inputs reference interactable app elements which
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will trigger the app to update when their corresponding value or other component property
changes. An inputs element might be a button, with a value fo how many times it’s been
clicked. A state is similar to an input in that is stores a value provided to the function
under a particular callback. Changing a state variable, does not update the app. This is
useful for when the user inputs a series of inputs but submits all of them at the end with
a button or other input element. Outputs are the elements or variables that changes when
an input is changed. While there can be multiple callbacks, no two callback can update the
same outputs. Inputs and states can be reused. The output of one call back can even be
the input of the next allowing callbacks to be chained together.

The callback here allows the user to enter the latitude and longitude of a point and
then when the update button is clicked the graphic updates. The first figure (Figure 3.5)
shows the use of state variables, lat and long, and the apps visual condition prior to update
being clicked. The use of state variables in the callback to prevent immediate updating.
The second figure shows the results of updating the app. (Figure 3.6)

Fig. 3.5: Editable Point, Before Movement

Fig. 3.6: Editable Point, Post Movement

Adding and subtracting points involves keeping a running list of points between callback
cycles that is updated every time a point is added or subtracted. The map is also recreated
when the points change. The new points list and graphic are then rendered. Figure 3.7
show this application with an editable series of points.

A similar application of keeping track of a points list enables an editable shape. The
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Fig. 3.7: Editable List of Points and Multi-points rendering

first image (Figure 3.8) shows the shape with a new coordinate ready to be added. The
second image (Figure 3.9) is of the shape is after the 4th point is added.

Fig. 3.8: Editable List of Points and Single Area Rendering, Before Point Addition

Fig. 3.9: Editable List of Points and Single Area Rendering, Post Point Addition
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4. Conclusions. Both geo-spatial visualization projects are continuing, and there are
several improvements that can be made to each.

For anomalous trajectories, more rigorous data filtering can be implemented. As a part
of determining the features for each trajectory, histograms of the distribution of values for
each feature were also created. For every feature the top and bottom 5% of trajectories
for each feature could be extracted and identified as outliers as appropriate, in addition
to clustering the main bulk of the trajectories. As a precaution the data being assembled
into trajectories should also be verified that it is within reasonable ranges. Finally the
survey of anomalous trajectories can be expanded to look as additional feature pairs and
combinations.

For the QBE visualization tools, there are several next steps. Next, the project involve
creating multiple dynamic shape where the user can select a shape by its ID and then edit
point by point. This could then be integrated with the dots examples so that multiple user
selected dots and shapes are available to the user in one app. Another set of improvements
could be to the user experience. A lasso tool can be implemented to make interacting and
selecting shapes and points easier. It would also be beneficial to provide points and shapes
with the pop-up display showing various properties about the shape/dot on hover with
the mouse. The properties could be the object’s ID, its location, or even details about its
shape. Next the project can look at how to attach the backend to the visualization and
render images from a data file using the same techniques from when the user was providing
the information. Finally, it would beneficial to be put in an outline of the filters that the
user will be able to use to narrowing the data. Most of these steps are preparatory and still
only represent a piece in the larger creation of a QBE search engine.
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PERIODIC LOSS FUNCTION FOR GRID CELL ENCODINGS

SARAH LUCA∗ AND FELIX WANG†

Abstract. Grid cells, located in the medial entorhinal cortex (mEC), have been shown to be involved in
the encoding of a mammal’s location in space. The periodic firing of these cells with different spatial offsets
relative to one another are believed to provide a compact encoding of location and aid in navigation. Of
particular interest is how this grid cell activations can be used to encode location from sparse information
obtained from the environment. Taking this inspiration from biology, we have developed a simple fully
connected neural network to learn the encoding transformation function f : X → Y, where X ⊂ R contains
elevation information from an elevation map and Y ⊂ [0, 2π)2N is the grid cell encoding, as part of an
encoding/decoding framework. Since the output of this network lies on a flat (Clifford) torus with periodic
behavior, a custom loss function was developed. This paper describes the encoding of location using periodic
grid cell phases and presents the proposed loss function for training an encoder. We then present results
from training a simple fully connected network to learn the encoding using the proposed loss function and
compare the results to a network trained with the standard mean-squared error loss function. The results
were inconclusive, but this work provides a baseline for comparison with potentially more compatible network
architectures for learning the grid cell encoding in future work.

1. Introduction. Grid cells, which are located in the medial entorhinal cortex (mEC),
have been implicated in spatial navigation in mammals [1–3,5]. These cells have hexagonal
firing patterns relative to the environment the mammal navigates that are organized in
modules within the mEC. The hexagonal firing pattern of grid cells within the same module
share the same scale and orientation but a different spatial offset or “phase” relative to each
other [1,2] (see Figure 1.1). These relative spatial phases are preserved across environments
and have been shown to help mammals encode their location and help them navigate in
novel environments [5]. Additionally, it has been shown theoretically that representing start
and goal locations using grid cell activations with modules of different spatial scales can be
used to determine distance and direction between locations[1].

Taking this inspiration from biology, we have developed an encoding/decoding frame-
work that promises to reduce the on-board memory demands of navigation in autonomous
agents. Rather than store large amounts of environmental data on board, the agent uses
sparse information obtained from sensors and transforms the information into a grid cell
encoding which can be decoded into an exact location, where the encoding transformation
and decoding are learned offline.

The following sections detail the encoding of location using grid cells and how to train
an encoder to learn it using a torus loss function. Section 2 explains how an exact location
can be encoded with grid cells and in Section 3 we introduce a periodic loss function for
training the encoder. Section 4 compares the proposed loss function to the mean-squared
error loss function (MSE) by training a fully connected network to encode elevation data
and we conclude with results and discussion of future directions in Section 5.

∗University of Arizona Department of Mathematics, sarahluca@math.arizona.edu
†Sandia National Laboratories, felwang@sandia.gov
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Fig. 1.1: Hexagonal firing pattern of grid cells in the mEC of rats. Leftmost: An electrode
measures the activity of grid cells and a position tracker tracks the rat as it moves in its
environment. Middle left: raw data from grid cells. The rat’s position is recorded in black.
The blue indicates the position of the rat as the grid cells fire. Middle right: a firing rate
map with high activity for “hot colors”. Rightmost: the firing pattern is characterized by
the spacing (scale), orientation, and offset (spatial “phase”). Sourced from [1]

2. Grid Cell Encoding of Location. For our application we are interested in naviga-
tion of autonomous vehicles and for the environment of interest we are looking at elevation
maps as represented by a digital elevation model (DEM) where each location coordinate
(x, y) on the map is associated with an elevation (e). For a given elevation map, a hexagonal
grid of grid cell activations is generated based on the scale λ, orientation θ, and relative
offset φ (see Figure 2.1) using equations obtained from [6].

Fig. 2.1: Grid cell activations (left) with different scales λ, orientations θ, and offsets φ
produced using [6] equations and overlayed on an elevation map (right). The bright green
dots correspond to areas of high grid cell activity.

For a specific location on the map, the offset is determined with respect to the reference
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point (φx0
, φy0) = (0, 0) (see Figure 2.2) and calculated from the phase coding (pxi , pyi) of a

particular location. Given a location (xi, yi), the phase code dimensions are orthogonalized
based on the following transformation:

(x′i, y
′
i) =

(
cos(θ) − sin(θ + π

6 )
sin(θ) cos(θ + π

6 )

)
(xi, yi)

which is then converted to the appropriate phase coding by:

(pxi , pyi) =

(
x′imodλ

λ
· 2π, y

′
imodλ

λ
· 2π

)
.

Fig. 2.2: Grid phase offset with respect to reference point (0,0) for a location on an elevation
map with grid activations. This represents the phase coding for the location of the red X.
Note that every location on the map with a green dot has the same phase coding.

Note that the phase coding is periodic, so many locations on the map share the same
phases. Thus, in order to provide a more unique encoding, many grid modules are produced
with different scales and orientations (see Figure 2.3). Thus, given N grid modules the
location (xi, yi) has the following phase encoding:

p = (p1
xi , p

1
yi , p

2
xi , p

2
yi , ..., p

N
xi , p

N
yi).

where pjxi , p
j
yi ∈ [0, 2π).

2.1. Decoding. In order to convert the grid phase encoding back to exact location
coordinates, a coincidence map is calculated. This is done by adding together grid module
activations. Increasing the number of modules for the coincidence map produces a more
distinguishable location (see Figure 2.4) but also increases the computation time, thus only
a subset is needed to reproduce the exact location.
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Fig. 2.3: (Top) Each figure (left, right, center) is the environment of a mouse with the
location of the grid cell activations (red dots) overlayed on the space. While several locations
(yellow dots) in the environment have the same phase coding (Bottom) as the yellow star in
each module, multiple modules of different scales (s1, s2, s3) help create a unique encoding
of the location. Sourced from [1]

Note that due to the periodicity of the phases, the phase encoding lies on a twisted
torus (see Figure 2.5), a manifold which is represented by a parallelogram with opposite
sides associated with each other. Normally in supervised learning, the output space of a
learning algorithm is either a linear space or a discrete space in the case of a classification
algorithm. The next section explores the implementation of learning on a torus and the
potential need for a periodic loss function for learning the grid cell encoding.
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Fig. 2.4: Coincidence maps for different numbers of grid activation modules. As the number
of modules used in an encoding increases, the uniqueness of the location becomes more
apparent.
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Fig. 2.5: Periodicity of phases lie on twisted torus where opposite sides of a grid tile are
joined together. Sourced from [1].
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3. Learning on a Torus. Recall that when training a supervised learning algorithm,
we seek to find a function f(x) such that f : X → Y where X is the input space and Y is the
output space. The learning of this function is achieved by solving the following minimization
problem [4]:

argminf :X→Y

∫
X×Y

∆(f(x), y)ρ(x, y)

where ∆ is a loss function such that ∆ : Y × Y → R and ρ is the joint probability
distribution for X × Y. In this case, Y ⊂ TN , an N dimensional Clifford torus and X ⊂ R
is a set of elevations on a map.

3.1. Torus Loss Function. Note that since a torus is a topological manifold it is
locally Euclidean. This means that for every point on the torus, there exists a neighborhood
around the point that is homeomorphic to Rn. Thus, Euclidean metrics work for measuring
the distance between points that lie on a torus. In fact, [4] show how squared geodesic
distance is an appropriate loss function for manifolds, which is the equivalent of Euclidean
distance when the manifold is Rn. Since the goal of learning is to minimize the distance
between the output of the encoder and the expected output, it may be important to consider
the periodicity of points that lie on the torus. Consider Figure 3.1. Notice how points are
no more than π apart, since opposite sides are associated. Thus the following variation of
the mean-squared error loss function was developed to account for the minimum distance
between points on Y :

∆(ŷ = f(x),y) =
1

2N

2N∑
i=1

(min(|ŷi − yi|, 2π − |ŷi − yi|))2

where N is the number of grid cell modules, ŷ ∈ [0, 2π)2N is the output of the function
f(x) learned by the encoder and y ∈ [0, 2π)2N is the ground truth grid encoding for the
location corresponding to the sensor input x.
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Fig. 3.1: Minimum distance on a torus. The black arrows on the sides indicate which sides
are connected, so the top is connected to the bottom and the left connected to the right.
The minimum distance in each direction between the red point and the dark blue point is
along the blue trajectories.

4. Training Experiment. To evaluate the performance of the torus loss function,
a fully connected network was implemented (see Figure 4.1 for network architecture) to
learn the transformation of an elevation to a grid cell encoding. In order to train the fully
connected network, 10000 data points were generated where each data point contains an
elevation ei ∈ X ⊂ R from a location (xi, yi) on the elevation map. This location has a
phase coding pi ∈ Y ⊂ [0, 2π)2N calculated from the transformations detailed in Section 2.
For this experiment, 1000 grid modules were used for the phase coding (N = 1000).

The fully connected network was trained using two loss functions: the torus loss function
proposed in Section 3.1, and the standard mean squared error (MSE) loss function, given
by:

∆(ŷ = f(x),y) =
1

2N

2N∑
i=1

(ŷi − yi)2.

After training, the location coordinates were estimated by calculating a coincidence
map for a subset of 60 grid modules from the phase encoding. The displacement error (D)
between the estimated location and the ground truth location was then calculated using
Euclidean distance:

D =

10000∑
i=1

√
(xgti − xesti)2 + (ygti − yesti)2

where (xgti , ygti) is the ground truth location and (xesti , yesti) is the estimated location
for each data point i.
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Fig. 4.1: Fully connected network architecture.

5. Results and Discussion. While the MSE loss function had a lower displacement
error and loss compared to the torus loss, the fully connected network produced a large
displacement error and loss for both functions (see Table 5.1). This could be partially
attributed to the chosen network architecture implemented, as the fully connected network
was chosen as a base case for comparison to potentially more compatible networks in the
future such as an LSTM. It is also possible that the number of grid cell modules chosen
to decode the location was not enough to accurately capture the location, but additional
grid cell modules significantly increases the computation time so determining the optimal
number for the highest accuracy will be explored in the future. Additionally, future training
methods would employ more information as input to the network, such as a sequence of
elevations and heading information rather than a single elevation. It is likely that multiple
locations on the elevation map have the same elevation, so one elevation does not provide
much context to the location the encoder is learning.

Given the high displacement and loss for both loss functions, we were not able to
conclude that one loss function was significantly better than the other for training the
encoder. In the future, an LSTM network with sequential elevation data as input may learn
the grid cell encoding better and provide a clearer picture in terms of the effectiveness of
the torus loss function. Additionally, a more in depth theoretical analysis might be helpful
for determining the usefulness of a periodic loss function or if MSE can be reasonably
implemented despite the periodicity of the output space.
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Displacement Error Loss
Torus Loss 784.8769 90924.4609
MSE Loss 769.1613 81002.75

Table 5.1: Displacement error and loss for the fully connected network for torus loss and
MSE loss functions.
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INTEGRATING PGAS AND MPI-BASED GRAPH ANALYSIS

TREVOR M. MCCRARY∗, KAREN D. DEVINE† , AND ANDREW J. YOUNGE ‡

Abstract. This project demonstrates that Chapel programs can interface with MPI-based libraries
written in C++ without storing multiple copies of shared data. Chapel is a language for productive parallel
computing using global address spaces (PGAS). We identified two approaches to interface Chapel code with
the MPI-based Grafiki and Trilinos libraries. The first uses a single Chapel executable to call a C function
that interacts with the C++ libraries. The second uses the mmap function to allow separate executables
to read and write to the same block of memory on a node. We also encapsulated the second approach in
Docker/Singularity containers to maximize ease of use. Comparisons of the two approaches using shared
and distributed memory installations of Chapel show that both approaches provide similar scalability and
performance.

1. Introduction. We developed two methods to interface partitioned global address
space programs in Chapel with MPI-based parallel algorithms written in C++, allowing
data to be shared, rather than copied, between them. We demonstrate our methods using
applications in graph analysis: a simple graph connected-component algorithm in Chapel
and a graph hitting-times algorithm in the graph toolkit Grafiki. The general capability to
integrate Chapel and MPI-based libraries is valuable in many applications, as it combines the
simplicity of Chapel programming with the speed and efficiency of existing high-performance
MPI-based algorithms.

Chapel [3, 7] is a partitioned global address space (PGAS) language that is built for
productive parallel programming at scale. It is the foundation for the Arkouda [10, 13]
NumPy-like parallel computing toolkit. Chapel simplifies parallel programming by providing
thread-based parallel loops and managing the layout of arrays within a parallel computer’s
memory. Although Chapel arrays can be distributed across processors, Chapel users can
access any array entry on any processor, without knowing on which processor the data is
stored; Chapel manages the data movement or communication required to retrieve data
entries. Thus, Chapel provides a very easy-to-use programming environment for parallel
algorithm development; algorithms such as parallel graph connected-component labeling
can be implemented in just a few lines of code.

In MPI-based libraries, data is also distributed across the memory spaces of parallel
processors. The distribution, however, is determined by the programmer. Moreover, each
processor can access only the data in its memory. Off-processor data must be explicitly
communicated in the MPI program via message passing. This explicit control of data
distribution and movement allows highly efficient parallel execution, but requires a great
deal more effort on the part of the programmer. For example, Grafiki (the successor of
TriData) [14] is an MPI-based library of high-performance parallel graph analysis algorithms
with linear solvers from the Trilinos [6,12] toolkit; Grafiki’s graph manipulations are done via
Trilinos’ matrix-vector operations, with inter-processor communication managed explicitly
via MPI send/receive operations in Trilinos.

Integrating Chapel and Grafiki allows graph analysts to easily filter and manipulate
graph data via Chapel, and then call high-performance algorithms in Grafiki to analyze the
resulting data. The main challenges in the integration, however, are avoiding duplication of
data between Chapel and Grafiki and insulating graph analysts from the complications of
using external MPI-based libraries.
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Sharing, rather than copying, data between Chapel and MPI-based libraries is crucial
to success of the integration. Doubling the amount of memory required to couple two algo-
rithms is often infeasible. In our demonstration, for example, Chapel users wish to analyze
the largest connected component of graphs that fill much of their computer’s memory; the
available memory is insufficient to copy this component in memory for analysis in Grafiki.
Our approaches rely on library interfaces with sufficient data abstraction to accommodate
Chapel data structures without requiring data to be copied and/or reorganized for Grafiki.

Chapel users should also be insulated as much as possible from the complexities of
building external MPI-libraries. One of our approaches addresses this issue by demonstrating
how Chapel and Grafiki can share data through memory-mapped regions. Grafiki analysis
can then be run as a separate executable or within a Docker container provided to the
Chapel users.

In this work, we present two approaches for integrating Chapel programs with MPI-
based C++ libraries. The first approach uses Chapel’s interface to C-language functions to
share data between Chapel and the MPI-libraries. For the second approach, we developed
a new Chapel data distribution Domain that uses memory-mapped regions to share data
with external processes; to our knowledge, this use of memory-mapped regions in Chapel
Domains has not been done before. We demonstrate our approaches using a simple graph
connected-components algorithm in Chapel and the high-performance graph hitting-times
algorithm in Grafiki. We run on two different Chapel environments: a single-node shared
memory environment and a multi-node distributed memory environment.

2. Background. Chapel uses locales, which are analogous to MPI ranks. Specifically,
a locale is “subset of the target architecture that can be used to control and reason about
affinity for the sake of performance and scalability” [7]. Chapel’s global address space allows
locales to access and manipulate data that are stored on other locales without explicit
communication by the Chapel user. However, there is still an underlying communication
cost that causes data stored on a different locale to be more expensive to access than data
stored on the same locale. In our work, we rely on a one-to-one mapping between Chapel
locales and MPI ranks.

Chapel distributed arrays are the main data structured used in this project. We store
lists of graph edges and vertices in Chapel distributed arrays. A distributed array is a
collection of arrays, with one local array stored on each locale. The Chapel distributed
array manages the global address space indexing that allows access of any array entry from
any locale. Each locale’s local array shares the same indices as its slice of the global array.
Chapel’s Domain maps describe and manage the distribution of arrays to processes. The
Block Domain provides a commonly used distribution; in it, the indices are “partitioned
evenly across the target locales” [7] so that the first locale has the first contiguous chunk of
indices, the second locale has the next chunk, and so on. An example Block array with 64
elements distributed across four locales in depicted in Figure 2.1.

A feature of Chapel distributed arrays is the ability for users to create their own dis-
tributions to fit their requirements. To create a custom distribution, users create custom
Domain map classes that implement the Domain map Standard Interface (DSI). A high-
level overview of the DSI can be found at [1], with details on how to build a custom Domain
map at [2]. For our second approach below, we create a custom Domain map by modifying
Chapel’s Block distribution to use memory that can be shared among processes.

Chapel supports interoperability with C code. This feature allows a user to access C
libraries, variables, functions, structures, and constants using the extern keyword. Chapel
programs can call C functions, and addresses of Chapel arrays can be passed to C functions
to allow Chapel data to be shared with the C functions. We use this capability in our first
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Fig. 2.1: Example of a Block distribution across four locales of a Chapel distributed array
with 64 elements; elements are distributed evenly across locales, with a contiguous chunk of
indices assigned to each locale.

approach below.
Chapel also has a library containing definitions for C datatypes (e.g., long long int).

We use these datatypes for consistency between our Chapel and C code.
The Unix mmap function is a critical tool used in this project; it can be used to create

memory-mapped regions that can be shared by independent Unix processes. With this func-
tion, two separate processes can read and write to the same block of memory by using the
Unix MAP SHARED flag. The mmap function works with the function shm open, which takes
a backing file name (C string) for mmap. This backing file name connects mmap calls on sep-
arate processes to the same block of memory. Chapel has its own mmap function, sys mmap,
which takes the same arguments as the Unix function, invokes the system mmap function
and returns an error code. Because we used the Unix mmap function in sys/mman.h> in
our early explorations, we continued using it with Chapel, specifying the extern keyword
to refer to the Unix mmap function. However, we expect Chapel’s sys mmap would work
identically. In our second approach below, we use mmap capability to share edge and vertex
lists in mapped memory between separate Chapel and C++ processes or containers.

Chapel can be built with an MPI back-end to do its underlying interprocess commu-
nication. When Chapel initializes MPI (via Chapel’s use MPI directive), Chapel locales
and MPI ranks line up; that is, Chapel locale p and MPI rank p see the same local data.
Thus, within locale and rank p, we can share data between Chapel and MPI-based libraries
without the need for additional communication. We exploit Chapel’s alignment between
locales and MPI ranks in both of our approaches.

Grafiki (formerly called TriData) [14] is a library of high-performance graph and hy-
pergraph analysis algorithms written in C++. It contains algorithms for computing hit-
ting times, spectral clustering, and eigenvector centrality. For our demonstrations, we use
Grafiki’s hitting time algorithm, which operates on a square, symmetric matrix that may
be distributed across processors. The symmetric matrix represents the adjacency matrix
of a connected graph (i.e., the graph has a single connected component). Each edge (i, j)
in the Chapel data corresponds to a nonzero aij in the adjacency matrix A; each vertex
corresponds to a row and column of the matrix.

Grafiki’s algorithms rely on linear and eigen-solvers; for these solvers as well as for
abstractions of matrix and vector operations, Grafiki uses the open-source Trilinos [6, 12]
framework. Trilinos has been developed and optimized for both distributed memory, shared
memory, and GPU parallel performance, especially in the realm of physics-based scien-
tific simulations. Trilinos also can operate with arbitrary data distributions, including
two-dimensional matrix distributions favored for reducing communication in graph anal-
ysis applications. In this work, we pass the edge and vertex lists to Grafiki with the same
distribution as specified by the user in Chapel; thus, the distribution of nonzeros to proces-
sors is arbitrary and matches that of the Chapel edge list distribution.

Trilinos provides an efficient compressed sparse row matrix (CrsMatrix) data struc-
ture, but creation of a CrsMatrix from Chapel data would require creating a copy of the
data in CRS format – an unacceptable requirement for this project. However, Trilinos also
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provides a RowMatrix abstraction that allows users to implement matrix operations on
their data using their own underlying data structures. The RowMatrix abstraction sup-
ports any distribution of sparse matrix entries across processors. It does not require that
matrix entries be sorted in any particular manner. Performance of a user’s RowMatrix
strongly depends on the user’s implementation and data distribution. In our work, we sac-
rifice some computational performance by allowing our RowMatrix to use the Chapel edge
lists directly, without any reordering or reorganization, thus avoiding an additional copy of
Chapel users’ data.

3. Methodology. The general use case that we wish to support follows. Graph ana-
lysts load graph data into Chapel edge lists. They then perform some type of filtering of
the graph data to identify vertices and edges of interest. The resulting subgraph is shared
with an MPI-based library for further analysis, and results are shared back to Chapel. Our
goal is to accomplish this workflow without copying and/or reformatting data that is to be
shared between Chapel and the MPI-based library.

Our demonstration follows the pattern of this general use case. We load a graph from
MatrixMarket-formatted files, which contain coordinate pairs (sourcek, targetk) and, op-
tionally, a weight wk for all edges k in the graph (i.e., nonzeros in an adjacency matrix).
The edge are stored in Chapel arrays source and target distributed across locales according
to Chapel’s Block distribution. We then filter the graph by identifying its largest con-
nected component via a parallel label-propagation algorithm written in just a few lines of
Chapel code. We then share the edge lists, along with an array identifying vertices in the
largest connected component, with the MPI-based Grafiki library. Grafiki computes vertex
hitting times on the largest connected component. In our implementation, Grafiki writes
hitting-time results to a file, but it would be straightforward using the mechanisms below
to return an array of hitting-time values back to Chapel for further use.

We have developed two approaches to allow Chapel to interface with Grafiki. Both
methods create a Trilinos RowMatrix (in C++) to describe the matrix that is passed to
Grafiki. The RowMatrix class directly uses our shared, distributed edge lists to answer
queries about the matrix and perform matrix operations. For our demonstration, we imple-
mented only the ten (out of 23) methods of RowMatrix that were needed by Grafiki. The
most important method we implemented was sparse-matrix vector multiplication (SpMV):
y = αAx + βy for matrix A, vectors x and y, and constants α and β. In parallel with
distributed data, SpMV requires communication of off-processor vector entries xj to be
used in multiplication with local matrix entries aij , and of subproducts aijxj to be accumu-
lated into vector entries yi. Fortunately, the communication operations required for SpMV
with our RowMatrix are identical to those in Tpetra’s CrsMatrix implementation, and
we were able to copy them into our RowMatrix. However, the localApply — the on-
processor SpMV operation — needed to be rewritten to use the coordinate-formatted edge
lists from Chapel rather than Trilinos’ compressed-sparse row format. We implemented
localApply with a straightforward loop over the edge lists, multiplying each edge value
(sourcek, targetk) with the appropriate, possibly communicated, x vector entry xtargetk .
For our proof-of-concept demonstration, we did not attempt to optimize this operation;
several possible optimizations are discussed in Section 5.

3.1. Implementation One: Direct Chapel-to-C calls. For our first implementa-
tion, we use a straightforward approach in which a single Chapel executable reads the graph
data file, performs the connected-component label propagation, and then calls directly to a
C function that then calls a C++ function that calls Grafiki. A high-level flow chart of its
execution is in Figure 3.1.

This implementation takes advantage of Chapel’s C interoperability to directly call C
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Fig. 3.1: Implementation One: A single Chapel executable calls Grafiki hitting times

code. An overview of this pathway is shown in Figure 3.2. Chapel can call C code directly,
but we need to eventually call C++ code in the Grafiki library. So we start by having Chapel
call a short C function glueC wrapped in extern "C" controls to allow it to be compiled
by a C++ compiler. The C function then calls a C++ function glueChapelGrafiki with
the same arguments. Function glueChapelGrafiki instantiates a RowMatrix object
using the Chapel edge lists, and calls Grafiki.

The C and C++ code are in a file separate from the Chapel code. The file is compiled
by a C++ compiler and its object file is linked with the Chapel object file during build time.

Each Chapel locale must call the C function in parallel, using Chapel’s coforall
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1 // Chapel main
2 . . .
3 r e q u i r e ” g lue . h” ;
4 extern proc glueC ( nEdges , * src , * tgt , . . . ) ;
5

6 c o f o r a l l l o c in Loca l e s
7 {
8 on l o c
9 {

10 var mySrc = source . localSubdomain ( ) ;
11 var myTgt = t a r g e t . localSubdomain ( ) ;
12 glueC ( mySrc . s i z e : s i z e t , c ptrTo ( source [ mySrc . low ] ) ,
13 c ptrTo ( t a r g e t [ myTgt . low ] ) , . . . ) ;
14 . . .
15 }
16 }
17

1 // g lue . h f i l e
2 extern ”C”
3 {
4 i n t glueC ( nEdge , * src , * tgt , . . . ) ;
5 }
6

1 // g lue C++ f i l e
2 i n t g lueChape lGra f ik i ( nEdge , * src , * tgt , . . . ) ;
3 {
4 Build RowMatrix ( nEdge , src , tgt , . . . ) ;
5 r e turn G r a f i k i h i t t i n g T i m e s D r i v e r ( RowMatrix , . . . ) ;
6 }
7 extern ”C”
8 {
9 i n t glueC ( nEdge , * src , * tgt , . . . ) ;

10 {
11 r e turn g lueChape lGra f ik i ( nEdge , src , tgt , . . . ) ;
12 }
13 }
14

Fig. 3.2: Chapel’s path to call C++ code

parallel-for loop and its built-in Locales array as in Figure 3.2. The coforall loop creates
a parallel task loc for each locale, and the subsequent on loc directive ensures that each
locale calls glueC independently. This parallelism is needed to prevent Grafiki from hanging
in collective MPI communications; all locales (i.e., all ranks) must participate in the call to
glueC.

The short C function passes the locale’s data to C++ function. In our case, we pass
arguments that are needed for Grafiki hitting times. Each locale provides the number of
edges and vertices stored in the locale, pointers to its local source and target arrays, along
with other data such as the local vertex component-label arrays and an identifier for the
largest connected component (for filtering out edges not in the component). The appropriate
way to get the pointer to the local arrays is shown in Figure 3.2: using Chapel’s c ptrTo
function to obtain the C pointer to the lowest-indexed value of the array in the locale.
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This approach provides a simple proof-of-concept pathway for integrating an MPI-based
C++ library with a Chapel application, but it has several drawbacks. It is intrusive to the
Chapel algorithm development. In order for Chapel to directly call to Grafiki, Chapel users
must understand how to call C functions from Chapel. They must ensure that their Chapel
installation, Grafiki library, and Trilinos library were built all with compatible compilers and
MPI libraries. They also need to determine how to link the Grafiki and Trilinos libraries
with their Chapel executable. Our next approach reduces this burden for Chapel users.

3.2. Implementation Two: Separate Chapel and C++ Library Processes.
Our second implementation has a Chapel process interact with an independent C++ process
running Grafiki. A high level flow chart of its execution is in Figure 3.3. We launch the
C++ program before the Chapel program; it waits for a semaphore to be posted by Chapel
before starting execution. The Chapel program reads edges into arrays that use a new
shareBlock Domain that allows them to be shared with the C++ program through a
mmap memory region. It performs its analysis (in this case, connected-component labeling).
It then writes some metadata about the edge lists to a file and sets the semaphore indicating
the C++ program can begin. The C++ program reads the metadata file to get information
on accessing the shared data, creates a RowMatrix with the shared data, and calls Grafiki.
Upon completion, it resets the semaphore, indicating to the Chapel program that the Grafiki
result is ready. Details of these steps follow.

To enable the Chapel data to be shared with the C++ program, we created a modified
version of Chapel’s Block Domain in which the local arrays are built using mmap memory.
We refer to this modified Domain as a shareBlock Domain.

A comparison of constructing Chapel’s Block Domain and our shareBlock Do-
main is shown in Figure 3.4. The Chapel Block Domain stores the local arrays in a
variable named myElems. This variable is typically assigned with a call to Chapel’s
domain.buildArray(). When a distributed array is initialized, the code that initial-
izes myElems is called number of locales plus one times. The “plus one” time requests a
domain of size zero. For the shareBlock Domain, we test the size of the domain, and
use Chapel’s code when the domain size is zero. When the domain size is not zero, we
we replace the call to domain.buildArray() with a new function createMmap() that
calls the Unix mmap function to allocate memory of the same size size (the element’s data
type size times the domain size).

Each locale’s mmap local array uses a separate backing file. The backing file name
is generated by function getBackingFile(); it is a string consisting of the locale’s ID
and a counter to indicate which shareBlock is stored there. An example of these back-
ing file names is shown in Figure 3.7. The files /share.bak0-1, /share.bak1-1,
/share.bak2-1, and /share.bak3-2 store the store the source vertices of the edge
lists on locales 0, 1, 2, and 3, respectively; the source array was the first shareBlock array
allocated. Similar backing files are defined for the target vertices and the component flags
indicating the connected component owning each vertex.

To use the created mmap region for the local array, we pass a pointer to it to
modified versions of Chapel’s makeArrayFromPtr and makeArrayFromExternArray.
A pseudocode overview of the changes is displayed in Figures 3.5 and 3.6. Function
makeArrayFromPtr is a short function that calls makeArrayFromExternArray. Func-
tion makeArrayFromExternArray creates a Domain for the new array and returns a
call to newArray(), returning a new Chapel local array. (Incidentally, newArray()
is also returned by domain.buildArray().) We modified makeArrayFromPtr and
makeArrayFromExternArray to accept a Domain as an extra argument. The Domain
was needed because the original functions created a new Domain from 0 to the size of the
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Fig. 3.3: Implementation Two: Separate Chapel and C++ executables share graph data in
mmap memory.

array minus one, while the Block Domain expected indices matching the global indices
of the array. The change in Domain resulted in Chapel making a copy of the mmap re-
gion to the myElems array, rather than using the mmap region directly. Our modified
shareMakeArrayFromExternArray uses the same Domain as myElems, so we avoid
making a copy, and myElems refers directly to the mmap memory.

After all of the locales’ local arrays are allocated with mmap, we increment a counter
Status that is used to differentiate between separate shareBlock arrays’ backing files.

This shareBlock implementation makes some assumptions about Chapel and the
user’s array. Primarily, some of the Chapel functions above are in a module that is not yet
ready for stabilization and may change in the future. Our testing was performed on Chapel
1.24.0; our code may need to change to address changes in future Chapel releases. In
addition, the shareBlock Domain is not easily mutable. With standard Block Domains,
a user can redefine the domain of a distributed array, and it will grow or shrink to match
the new domain. With our mmap arrays, attempts to resize the array will result in a
segmentation fault. This limitation required us to pad our source and target arrays in
instances where the number of edges is unknown. For example, when reading a symmetric



T.M. McCrary, K.D. Devine, and A.J. Younge 243

1 //Chapel ’ s Block ’ s LocBlockArr
2 c l a s s LocBlockArr {
3 proc i n i t ( ) {
4 . . .
5 t h i s . myElems = t h i s . locDom . myBlock

. bui ldArray ( . . . ) ;
6

7

1 //New shareBlock ’ s LocBlockArr
2 c l a s s LocBlockArr {
3 proc i n i t ( ) {
4 . . .
5 i f ( t h i s . locDom . myBlock . s i z e )
6 {
7 var myPtr = createMmap ( eltType ,

t h i s . locDom . myBlock . s i z e : u int ) ;
8 t h i s . myElems =

shareMakeArrayFromPtr (myPtr , t h i s .
locDom . myBlock . s i z e : uint , t h i s .
locDom . myBlock ) ;

9 a l l L o c a l e s B a r r i e r . b a r r i e r ( ) ;
10 i f ( here . id == 0) then
11 Status += 1 ;
12 }
13 e l s e
14 {
15 t h i s . myElems = t h i s . locDom .

myBlock . bui ldArray ( . . . ) ;
16 }
17

1 // Chapel f u n c t i o n s to c r e a t e mmap array
2 proc createMmap ( type eltType , s i z e : u int ) : c p t r
3 {
4 var myBytes = ( s i z e * c s i z e o f ( e ltType ) ) : u int ;
5 var fd = shm open ( getBack ingFi l e ( ) , . . . ) ;
6 f t r u n c a t e ( . . . ) ;
7 var r eg i on ;
8 r eg i on = mmap( n i l , myBytes : s i z e t , PROT READ | PROT WRITE, MAP SHARED, fd

: fd t , 0 : o f f t ) ;
9 r e turn r eg i on : c p t r ( e ltType ) ;

10 }
11 proc getBack ingFi l e ( ) : c s t r i n g
12 {
13 r e turn ( ”/ share . bak” + here . id : s t r i n g + ”\=” + Status : s t r i n g ) . c s t r ( ) ;
14 }
15

16

Fig. 3.4: Chapel’s path to building mmap arrays for local arrays in shareBlock. If the
size of the domain is nonzero, an mmap array is created to fit the size requirements of the
Domain and datatype. We keep track of backing files by incrementing Status after all local
arrays have been allocated.

Matrix Market file (in which only lower-triangular entries are stored), we allocated an array
for twice the number of nonzeros in the file, to store both edges (i, j) and (j, i). Self-edges
(i, i), however, are not reflected, leading to an overestimate in the allocated memory size.

For the C++ program to access the mmap regions, it needs to know some metadata
about the arrays using shareBlock Domains. Specifically, it needs the names of the
backing files associated with each locale’s local arrays, the size of those arrays, and the
command line arguments passed to the Chapel program. The Chapel program writes these
fields to a metadata file, as in Figure 3.7. While we used a regular file for the metadata,
one could easily use a mmap memory space to share the metadata; beacuse the file is very
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1 //Chapel ’ s makeArrayFromPtr
2 proc makeArrayFromPtr ( va lue : c ptr ,

num elts : u int )
3 {
4 var data =

c h p l m a k e e x t e r n a l a r r a y p t r ( value
, num elts ) ;

5 r e turn makeArrayFromExternArray ( data
, va lue . e ltType ) ;

6 }
7

1 //New shareMakeArrayFromPtr
2 proc shareMakeArrayFromPtr ( va lue : c ptr

, num elts : uint , dom : domain )
3 {
4 var data =

c h p l m a k e e x t e r n a l a r r a y p t r ( value
, num elts ) ;

5 r e turn shareMakeArrayFromExternArray
( data , va lue . eltType , dom) ;

6 }
7

Fig. 3.5: Chapel’s original (left) vs. our new (right) makeArrayFromPtr: in the
new version, a shareBlock Domain is passed as an argument that is then passed to
shareMakeArrayFromExternArray.

1 //Chapel ’ s makeArrayFromExternArray
2 proc makeArrayFromExternArray ( va lue :

c h p l e x t e r n a l a r r a y , type eltType )
3 {
4 var dom = 0 . . number elements \=1;
5 var a r r = new unmanaged

DefaultRectangularArr (dom=dom,
. . . ) ;

6 dom. add arr ( arr , l o c k i n g = f a l s e ) ;
7 r e turn newArray ( a r r ) ;
8 }
9

1 //New shareMakeArrayFromExternArray
2 proc shareMakeArrayFromExternArray (

va lue : c h p l e x t e r n a l a r r a y , type
eltType , dom : domain )

3 {
4 var a r r = new unmanaged

DefaultRectangularArr (dom=dom .
value , . . . ) ;

5 dom. add arr ( arr , l o c k i n g=f a l s e ) ;
6 r e turn newArray ( a r r ) ;
7 }
8

9

10

Fig. 3.6: Chapel’s original (left) vs.our New (right) makeArrayFromExternArray: in the
new version, a shareBlock Domain is passed to Chapel’s DefaultRectangularArr()
to create the local array.

small, using a regular file is feasible and straightforward. This example file shows a matrix
with 25 vertices and 105 edges distributed across four locales, with backing arrays for the
source and target edge lists and the component labels.

After the Chapel program posts the semaphore to flag the C++ program to begin, rank
0 of the C++ program reads the entire metadata file into a buffer and broadcasts it to
the other ranks. Each rank then individually parses the buffer to extract the information
(backing file names and data sizes) associated with its rank. The MPI ranks then set up
pointers to their mmap data (source, target, and component), collectively create a distributed
RowMatrix with the data, and call Grafiki hitting times. This implementation writes the
results to a file, but it would be straightforward to create another shareBlock array to
share results back to the Chapel program.

The key advantage of this implementation is that it is less intrusive to Chapel developers.
A developer can declare a distributed array using shareBlock, and the shareBlock class
handles creating the mmap arrays to fit the required size. In addition, this method allows a
C++ process to be built and executed separately from the Chapel program, eliminating the
need for Chapel programmers to link their Chapel programs with Grafiki, Trilinos and MPI
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1 source / share . bak0=1 / share . bak1=1 / share . bak2=1 / share . bak3=1
2 t a r g e t / share . bak0=2 / share . bak1=2 / share . bak2=2 / share . bak3=2
3 component / share . bak0=3 / share . bak1=3 / share . bak2=3 / share . bak3=3
4 nEdge 27 26 26 26
5 nVtx 7 6 6 6
6 useThisComp 1
7 argc 3
8 argv . / chapelExec . . . . . .
9

Fig. 3.7: Chapel shares matrix data with the separate C++ executable that calls Grafiki
via a small metadata file containing per-locale backing file names and data sizes.

libraries. The disadvantage of this method, for now, is that it is restricted to a block-style
distribution. Extensions to other Chapel distributions are still needed. Also, currently, we
cannot reshape a shareBlock Domain after it is initialized.

3.3. Containerization of the C++ Library. To make Grafiki even easier to use
by Chapel programmers, we have containerized our C++ glue program with Grafiki, and
shown that Chapel and the Grafiki container can share memory through the same mmap
array mechanism. This containerization allows Grafiki developers to provide tools that
are fully encapsulated, sparing Chapel users from have to compile the Grafiki executable.
Our Docker container encapsulates our C++ glue program, Grafiki and all of libraries on
which Grafiki depends (Trilinos, Kokkos, MPI, BLAS). We use Singularity [9], a container
system designed for high-performance parallel computing, to instantiate our container with
MPI parallelism. Our workflow then proceeds as in Implementation Two (Figure 3.3), with
separate Chapel and Singularity containers accessing the same mmap regions.

The primary challenge we faced with integrating Chapel with containers was the use
of semaphores. While mmap memory works across containers, POSIX semaphores do not.
Semaphores are created on the parent process’ stack. They are unusable in the container
after namespace creation, which copies the semaphore rather than addressing it. Thus, the
semaphore never unlocks in the C++ program. Our solution is to implement a “pseudo-
semaphore” signaling mechanism. Since mmap works across containers, we use a single
integer in mmap memory to mimic semaphore functionality. The value of this flag indicates
which process should be working and which should be idling. Currently, we use a spin lock
for this functionality.

With containerization, the Chapel user is spared the chore of building Grafiki and
everything on which it depends. This approach delivers the highest ease of use to graph
analysts.

4. Experiments and Results. We demonstrate our approaches with a simple Chapel
graph analysis application that shares the graph with the C++ library Grafiki. Specifically,
our Chapel program reads a matrix from a Matrix Market file, symmetrizing the matrix
if necessary, and constructs lists of edges corresponding to the matrix nonzeros. It then
identifies the largest connected component of the graph using a simple, commonly used,
label propagation algorithm. For label propagation, each vertex’s label is initialized to its
vertex number. Then the propagation algorithm loops over edges, giving each vertex of an
edge the lower-valued label of the edge’s two vertices. Iteration over edges is done in parallel
with respect to locales (see Figure 4.1) and continues until no vertex labels change. The
Chapel code then counts the number of vertices with each label and identifies the label with
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1 do {
2 changed = 0 ;
3 c o f o r a l l l o c in Loca l e s with (+ reduce changed ) {
4 on l o c {
5 var s r c : c l on g l o n g ;
6 var tg t : c l on g l o n g ;
7 var srcVal : c l on g l o n g ;
8 var tgtVal : c l on g l o n g ;
9

10 f o r i in sourceArray . localSubdomain ( ) {
11 s r c = sourceArray [ i ] ;
12 s rcVal = vtxValue [ s r c ] ;
13 tg t = des t ina t i onArray [ i ] ;
14 tgtVal = vtxValue [ tg t ] ;
15 i f ( s rcVal != tgtVal ) then {
16 vtxValue [ sourceArray [ i ] ] = min ( srcVal , tgtVal ) ;
17 vtxValue [ de s t ina t i onArray [ i ] ] = min ( srcVal , tgtVal ) ;
18 changed = 1 ;
19 }
20 }
21 }
22 }
23 } whi le ( changed != 0) ;
24

Fig. 4.1: Simple label propagation in Chapel: parallelism is done with respect to locales,
with the changed flag set with a reduction across locales.

the most vertices. The label of the largest component is passed, along with the edge lists
and vertex component labels, to Grafiki, which computes hitting times within the largest
component. While vertices that are not in the largest component remain in the edge lists
passed to Grafiki, they are ignored in the RowMatrix sparse matrix-vector multiplication
operation.

We tested our approaches on Sandia’s Kahuna high-performance data analytics (HPDA)
research cluster. We used Kahuna’s Dual Socket Intel E5-2683v3 2.00GHz CPU with 28
cores and 256 GB of memory. Kahuna uses a shared-memory version of Chapel 1.23; all
experiments on Kahuna used a single multi-core node. Thus, for Implementation One,
in which Chapel calls Grafiki directly, only one MPI rank (and, thus, one locale) can be
used. Implementation Two, in which separate processes are used for Grafiki and Chapel,
allows more MPI parallelism, as the MPI parallelism is not tied to Chapel’s shared-memory
implementation; we can run Grafiki and Chapel with up to 28 ranks and locales, respectively.

We also tested on Sandia’s Mutrino Cray computing system with 100 Intel Haswell nodes
with 96 GB of memory per node. Mutrino has a distributed memory version of Chapel 1.24
with an MPI backend. Thus, we could run both approaches with multiple ranks and locales.
We assigned one rank/locale per node.

We tested the performance of our methods with small and large sized graphs. We
obtained test case files from the SuiteSparse matrix collection [4]. The small graph is
bcsstk29.mtx, which contains 28 strongly connected components and a largest connected
component with 13.8K vertices and 620K edges. The large graph is GAP-kron.mtx, which
contains 78M strongly connected components (many of them singleton vertices), and a
largest connected component with 63M vertices and 4.2B edges. The goal of the large test
case is to use over half of the node’s memory for the source and target arrays, making the
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Chapel LabelPropagation Grafiki Hitting Times
Number of Time per iteration (s) Time per iteration (s)

Platform Locales One Two One Two
Kahuna 1 1.24 1.22 0.0285 0.0287

2 NA 1.91 NA 0.0162
4 NA 1.56 NA 0.0087
8 NA 1.00 NA 0.0045

16 NA 0.65 NA 0.0051
Mutrino 1 0.82 0.89 0.0215 0.0230

2 0.65 0.77 0.0113 0.0120
4 0.44 0.47 0.0058 0.0062
8 0.22 0.29 0.0031 0.0033

16 0.11 0.15 0.0018 0.0018

Table 4.1: Runtime of Chapel connected-component label propagation and Grafiki hitting
times on Kahuna and Mutrino using Implementation One (Direct calls from Chapel to
Grafiki, Section 3.1) and Implementation Two (Separate Chapel and Grafiki executables,
Section 3.2) with small graph bcsstk29.mtx

graph too large to be copied; data sharing between Chapel and Grafiki is the only way to
solve the problem.

In Table 4.1, we show the execution times for label propagation in our connected-
component algorithm written in Chapel, and the linear solve time in Grafiki’s hitting time
algorithm using both integration methods and the small graph bcsstk29.mtx. Results are
shown for both the Kahuna and Mutrino systems. Implementation One uses direct calls from
Chapel to C with shared data in regular memory as described in Section 3.1. Implementation
Two uses separate Chapel and C++ processes with shared data in memory-mapped regions
as described in Section 3.2. Execution times for both implementations are comparable, with
no significant loss of performance caused by using mapped memory in Implementation Two.

On both platforms, we see that adding more MPI ranks accelerates the linear solve
in Grafiki, with reasonable scaling even for this small graph. Adding more locales also
accelerates each iteration of label propagation in the Chapel-based connected component
algorithm. Adding locales can increase the number of iterations required for connected
component labeling, as each locale operates on a subset of the edges, slowing propagation
across the full graph. This effect was seen in this small graph, in which the ordering
(sorted by target vertex) of the input graph was optimal for label propagation with one
locale; increasing the number of locales from one to 16 increased the number of propagation
iterations from two to nine in this graph.

We ran the same experiments with the large GAP-Kron.mtx graph; execution times are
shown in Table 4.2. Again, we see that Grafiki’s linear solve time scales reasonably well with
the number of MPI ranks, as does the Chapel label propagation time with the number of
locales. On Mutrino, we see a difference in the label propagation time for our two approaches,
with per-iteration time significantly longer using Implementation Two. This time difference
is not seen for the Grafiki linear solve; indeed, Grafiki linear solve times for both approaches
are nearly identical. Thus, the degredation in Chapel’s label propagation must be due to our
implementation of shareBlock rather than some inherent mapped-memory access issue
on Mutrino. We do not know yet the cause of this increase, although we suspect it arises due
to differences between Chapel versions 1.23 and 1.24. Our shareBlock Domain was built
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Chapel LabelPropagation Grafiki Hitting Times
Number of Time per iteration (s) Time per iteration (s)

Platform Locales One Two One Two
Kahuna 1 8626 7476 1187 1235

4 NA 9103 NA 364
16 NA 3749 NA 188

Mutrino 4 OOM 10333 OOM 371
16 1274 3079 103 105
64 320 824 30 26

Table 4.2: Runtime of Chapel connected-component label propagation and Grafiki hitting
times on Kahuna and Mutrino using Implementation One (Direct calls from Chapel to
Grafiki, Section 3.1) and Implementation Two (Separate Chapel and Grafiki executables,
Section 3.2) with large graph GAP-Kron.mtx

from the Block Domain in Chapel 1.23, which may not exploit performance enhancements
in Chapel version 1.24. More investigation and, perhaps, a transfer of our memory-mapped
approach to newer versions of Chapel are needed.

5. Conclusions and future work. We have shown a proof-of-concept for integrating
Chapel algorithms with MPI-based algorithms. It enables Chapel users to take advantage of
existing, optimized parallel algorithms while maintaining the simplicity of Chapel program-
ming. Our approaches enabled integration of Chapel algorithms with MPI-based libraries
without requiring additional copies of the user data, allowing users to solve problems that
fill the computer’s memory. We have demonstrated our approaches with shared-memory
and distributed-memory implementations of Chapel, as well as with Docker/Singularity
containers.

This project raises many opportunities for future work.
Arkouda [10, 13] is often used for large-scale graph analysis because of its elegant

NumPy-like interface. Arkouda is built on Chapel, so providing interfaces from Arkouda to
Grafiki using the technology from this project would be a natural (and, we expect, straight-
forward) extension to this work.

We plan to refine the software engineering of our demonstration code. The glue code
that served as the interface between Chapel and Grafiki should, ideally, be distributed as
part of Grafiki, rather than exist as a separate layer between Chapel and Grafiki. The
management of semaphores should move into this glue interface as well, rather than reside
in the Chapel code. These changes are structural only, and do not represent algorithmic
changes to our approach.

In our experiments, we saw that our RowMatrix sparse matrix-vector multiplication
was slower than Trilinos’ implementation using its Tpetra::CrsMatrix class. Several
reasons exist for this difference. The Tpetra::CrsMatrix has matrix data organized
into an efficient compressed-sparse row data structure to improve memory accesses during
matrix-vector multiplication. To use Tpetra::CrsMatrix with Chapel data, one could
copy and reorganize the graph data; this copying, however, is often infeasible for extreme-
scale graphs in limited memories. Alternatively, one could write the Chapel data to a file
and read it back into a Tpetra::CrsMatrix in Grafiki; this approach puts arguably the
least scalable part of graph computation – file input and output – directly in the execution
path. By using graph data exactly as it is provided by the Chapel user, our approaches avoid
both data copies and file I/O, at the expense of somewhat slower computation in Grafiki. In
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future work, we can investigate ways to speed-up our matrix-vector multiplication through
the use of thread parallelism.

Distributing the graph’s edge lists differently to increase locality and reduce off-processor
data dependencies would also speed the matrix-vector multiplication (and, likely, other
operations of interest in both Chapel and Grafiki. For example, load balancing algorithms
such as those in Zoltan [5] or ParMETIS [8] balance computational work while attempting to
minimize off-processor data dependencies. Even simple sorting of edge lists has been shown
to reduce cache misses and speed execution [11]. Our current work relies on the users’ data
layout, so users would need to pre-process their data to increase locality.

This work allows Chapel users to take advantage of years of effort in MPI-based parallel
computing for physics-based and graph-based applications by using libraries like Trilinos
and Grafiki. Comparisons between Chapel performance and MPI performance are beyond
the scope of this work, but are important for evaluating the productivity versus performance
trade-off in using Chapel.
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TOWARDS VIABLE USE OF MACHINED LEARNED MODELS IN
PHYSICAL SIMULATION

C. PEREYRA ∗ AND M. A. WOOD †

Abstract. Within modeling and simulation efforts, data science driven methods are quickly becoming
guides for the material selection for next generation fusion reactors. By utilizing high-accuracy quantum
electronic structure (QM) calculations as training we are able to bridge the gap between QM and large scale
(108 particles) molecular dynamics (MD) simulations for material science endeavors. However, training data
is limited to a small number of atoms (< 103 particles) and testing the validity and stability of these ML
models are a current challenge within MD. In this study we demonstrate methods of testing different classes
of ML models within realistic production LAMMPS-MD simulations. Here we (i) perform benchmark speed
tests of the MLIAP/SNAP packages, (ii) integrator stability tests, (iii) mechanical property prediction, and
(iv) uncertainty quantification of these material properties in tungsten. Given these results we are able to
provide methods of diagnosing reliable ML/NN models for future materials beyond accuracy represented in
the training.

1. Introduction. Currently there are a number of computational methods available to
scientists, differentiated by their various length and time scale capabilities. Though quantum
mechanical (QM) calculations are the most accurate methods for acquiring activation en-
ergies, predicting spectra, producing kinetics, and determining correct geometric structures
[3], these predictions come at great computational expense. Classical molecular dynam-
ics (MD) simulations have many use cases ranging from biophysical function to solid-state
mechanical property simulations [9, 15, 16]), while preserving linear computational scaling
O(N) [13] in the number of atoms, N .

With state of the art direct inversion solvers, density functional (DFT) algorithms are
still limited to quadratic O(N2

e ) or cubic scaling O(N3
e ) depending on the system size [11,14].

Where Ne is the number of electrons. A question of whether we can merge linear scaling
and high QM accuracy is a question that Bartok et. al. Gaussian Approximation Potentials
(GAP) largely provides a great answer for [6]. This work among others ten years ago laid
the foundation for machine learned interatomic potentials [7].

GAP potentials allow for an automatic reconstruction of a potential energy surface
(PES) by fitting an atomically local model to many-bodied quantum mechanical energy
and forces [6]. This atomic structure is transcribed into local neighborhood descriptors,
which are the basis of machine learned potentials. These representations of local atom
environments contain minimal invariant operations, called Bispectrum components.

An advancement on GAP is the spectral neighbor analysis potential (SNAP), that differs
by assuming a linear relationship between atom energy and bispectrum components [17].
Both models obey permutational, reflectional, translational, and rotational invariance in
each environment. This facet is absolutely necessary for a good PES to achieve the same
ensemble properties for any structure by utilizing invariant representations of the interatomic
potential. Energy should not be dependent upon arbitrary origin nor on permutational order
of atom indices. Discerning differences between exact or similar structures is one of the main
features of SNAP that enables highly accurate predictions of energy and forces.

Machine learned interatomic potentials have the capability to preserve the accuracy of
O(N3) methods while maintaining their ideal linear scaling. This accuracy hinges on the
search for good descriptors that bridge the gap between quantum and molecular dynamics
and as such have yielded a wide array of interatomic potentials. Promising flavours include
GAP, SNAP, MTP, ACE, etc [20]. Each of these ML descriptor models contain different

∗University of California Davis, Mechanical and Aerospace Engineering, czpereyra@ucdavis.edu
†Sandia National Laboratories, mitwood@sandia.gov
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choice of basis expansions (also known as descriptors or features) in order to map ab-initio
calculations to MD simulation. Given this data driven method we are constructing, it begs
the question does the model still represent physical properties of interest? The focus of our
efforts here are to provide meaningful evaluation metrics for SNAP and Neural
Network interatomic potentials. We demonstrate physical modeling capabilities for a
previously published tungsten SNAP potential [19], and for an emerging neural network
potential that is currently in development.

2. Interatomic Potentials. Testing and validating the models in this article focuses
on two classes of machine learned potentials, (i) lasso regressed models and (ii) neural
network trained potentials [1]. Many of the studies here compare the neural network (NN)
functionals trained on unbiased training datasets that sample a maximal amount of atomic
configuration space. Building on the work of Karabin et. al.[10] a unique training set
that maximizes the information entropy in feature space was generated specifically to train
complex NN models.

The motivation is that most improvements in scalar (RMSE, MAE, etc.) metrics of
model performance do not account for the complexity of the training set, this entropy
maximized set is ideal for comparing trained models in this regard. Additionally, these
entropy maximized training sets can be generated in a highly automated fashion with very
little user input, making them ideal for data-driven materials modeling.
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Fig. 2.1: Expansion and compression of a perfect BCC crystal for assessment of machine
learned interatomic potentials as a function of lattice parameter a (Å). Top panel represents
the total energy of the system, while the bottom panel compares the total energy difference
to linear SNAP. The NN shown on the left and right panels represent linearly increasing
and expanding contracting networks respectively.

A highly optimized linear SNAP model is used as reference to compare NN results,
since this simple ML model has been shown to match equilibrium material properties in
tungsten [19]. Shown in Fig. 2.1 are slices through PES as a function of lattice parameter
of a body-centered cubic(BCC) crystal. Linear SNAP models are taken as the ground truth
when comparing the family of Neural Network models.
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Qualitatively, the SNAP model demonstrates a local minimum approximately near the
experimentally observed tungsten lattice constant 3.1652Å signaling this potential’s struc-
tural accuracy with respect to experiments. The details on the combined linear SNAP &
ZBL model (see section 2.1) is deployed in LAMMPS MD code for physical simulation and
characterization of integration stability in efforts to demonstrate use case limitations in MD.

Currently in development are robust neural network trained models. Fig. ?? shows a few
NN potentials diverging under extrapolation conditions near the repulsion barrier. Despite
this the NN models differ, |∆E| = |ESNAP − ENN |, very little from the linear model near
the local minimum around 3.2Å. While accurate for crystalline and other simple geometries,
linear models lack capability to capture subtle, non-linear features of the PES, so we turn
to NN to acquire these features.

2.1. The SNAP Potential. Here we take a closer look at the SNAP model form to
setup our later analysis. We begin by defining the local atom environments with the local
atom density for a given central atom (2.1), at position r with respect to the domain’s
reference frame. The local environment is limited to atoms within a cut-off radius Rcut
where the sum of density contributions to the central atom i extends to Ncut or the number
of atoms within the radius Rcut. To emphasize a greater or lesser importance for a particular
species on a neighboring atom i′ weight wi′ is added to the expression in equation (2.1), while
fc ensures that the density goes to zero smoothly at the cut off distance. This smoothing
function is absolutely necessary for the numerical stability of these classical simulations, a
point that will be discussed further in later sections herein.

ρi(r) = δ(r) +

Ncut∑
i′

fc(rii′)wi′δ(r − rii′) (2.1)

The density of atoms is transformed from real space to a space defined by expanding
with spherical harmonics (2.2). Now the previous cartesian space is represented on a 3D
sphere, where r̂ is on the unit sphere pointed in the direction of the original coordinates r.

ρi(r) = δ(r) +

∞∑
i=0

l∑
m=−l

clmYlm(r̂) (2.2)

The basis coefficients clm are given by,

clm =
∑
i

Ylm(r̂i)

Bartok et al. demonstrates this yields translational, rotational, and permutational invari-
ance [4]. Furthermore, this representation can be translated into a four dimensional hy-
persphere. Coordinates r0, θ, φ and now θ0 represent the four dimensional space, where θ0

is a measure of radial distance. The surface of the hypersphere’s surface is defined as the
magnitude of s1, s2, s3, and s4.

s1 = r0 cos (θ0)

s2 = r0 sin (θ0) cos (θ)

s3 = r0 sin (θ0) sin (θ) cos (φ)

s4 = r0 sin (θ0) sin (θ) sin (φ)

It is important to note that at r0 = rcut there is no angular component (for θ0 ≈ |r|/r0),
since the hypersphere is at the radial cutoff, this is essentially when we are at the south pole.
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It is best to choose r0 > rcut so there is greater representation in the radial coordinate. The
atom density on the four dimensional hypersphere is defined using hyper-spherical harmonic
functions U jmm′(φ, θ, θ0) [12].

ρ =

∞∑
j=0

 j∑
m,m′=−j

cjm′mU
j
m′m

 (2.3)

Through a series of rotational operations on atom density using analogous four dimensional
Wigner matrices the produced bispectrum array, equation (2.4) is a tensor product of three
matrices, where coupling coefficients H are ordinary Clebsch-Gordan coefficients of SO(4)
and * indicates complex conjugation. Inherently the bispectrum components are invariant
under rotation, and characterize the strength of density correlations along the 3D sphere.

Bj j1 j2 =

j1∑
m
′
1m1

cj1
m
′
1m1

j2∑
m
′
2m2

cj2
m
′
2m2
×

j∑
m′m

Hjmm
′

j1m1m
′
1, j2m2m

′
2

(
cj
m′ m

)∗
(2.4)

Half integer indices j, j1, j2 are defined for values {0, 1/2, 1, ...} and m,m′ are defined for
{−j,−j + 1, ..., j − 1, j}. Since most combinations of are redundant the half integer indices
can be reduced by symmetry. Non-integer combinations of indices j + j1 + j2 change sign
so we must omit indices of this condition [4]. Reducing redundancy is also accomplished by
using the ”diagonal” elements j1 = j2, where also these indices are limited to j, j1, j2 ≤ Jmax.
Ultimately the Jmax factor may be prescribed so that we expand this basis expansion further
and thus more accurately describe the atomic neighborhood [5]. In practice negative indices
are accounted for by symmetry and their corresponding components are scaled or given
correct signage to reduce computational complexity [17].

The SNAP potential energy (2.5) for atom i is a linear combination of coefficients β and
bispectrum components B. More succinctly, the functional form of total SNAP potential
ESNAP is expressed as a weighted sum of linear coefficients β ∈ RN and their corresponding
bispectrum components (rows in bispectrum tensor) B ∈ RN×k shown in equation (2.5).
For any choice of Jmax we have k descriptors which reduces the Bj j1 j2 → Bk formalism.

Esnap(r) =

N∑
i=1

βµi0 +

N∑
i=1

K∑
k=1

βkB
µi
k (2.5)

= Nβµi0 + β ·
N∑
i=1

Bµi (2.6)

In terms of per-atom energies a more granular description of the potential is defined as the
vector-matrix product of the linear coefficients β and the bispectrum array Bµik shown in
equation (2.7). Then by applying the negative gradient of interatiomic distances, rj , to the
bispectrum components of equation (2.7) yields the per atom force [17]. These atomic forces
are precisely what is needed for molecular dynamics simulations. Shifting the bispectrum
components by Bik0 makes sense so that by setting β0 = 0 this constrains isolated atoms to
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zero potential energy [18].

Eisnap = βµi0 +

K∑
k=1

βk (Bµik −B
µi
k0) (2.7)

F isnap = −∇j
K∑
k=1

EiSNAP (2.8)

= −β ·
K∑
k=1

∂Bµi

∂rj
(2.9)

More details for obtaining linear βk coefficients are found in section 2.2.
In general SNAP can be trained for certain relative positions and cutoff distances.

Additionally, these potential energy surfaces can be overlapped with empirical reference po-
tentials shown in equation (2.10). This is necessary for capturing nearby neighbor repulsion
for the SNAP tungsten potential used here [19]. In our case the ZBL potential is used to
define the strongly repulsive terms since training data in this range was limited in displaying
behavior at these distances. To prevent poor model extrapolation, we incorporate reference
repulsion phenomenon.

E(r) = Eref (r) + Esnap(r) (2.10)

In addition to the linear SNAP model we can use non-linear functionals in the form of
a neural network that similarly uses bispectrum components as feature inputs. Part of this
work is to compare linear SNAP to more complex model forms.

2.2. Machine Learning Optimization. In order to extract quantum mechanical ac-
curacy attributes from electronic structure calculations, data science techniques have proved
to be extremely useful for constructing IAPs for atomistic MD simulations.

The SNAP technique provides an optimal set of βk coefficients that minimize the dif-
ference between predicted energy and forces (found in D) and the training set of energy
and forces T . Note the training set contains energy and forces obtained from ab-initio cal-
culations - in our case these are DFT computations carried out in VASP. D also contains
descriptors of energy and force as determined by snap model energy and force equations
(2.7)-(2.9).

Ridge Regression (Tikhonov [2]) method with a norm two loss function is used to fit
the training set to corresponding coefficients β shown in equation (2.11).

argminβ

(∥∥ σ
n×n
· T
n×1
− σ
n×n
· D
n×k

β)
∥∥+ γl

∥∥ β
k×1

∥∥l) (2.11)

The exact composition of the descriptor matrix D ∈ {B; ∂B/∂r} is n training points
deep, and k bispectrum components wide (multiplied by the number of element species).
In practice, the top portions correspond to energies(bispectrum components), while latter
rows contain forces(derivatives of descriptors). Since there are far more training points than
descriptors, D is typically “tall and slim” which protects against over fitting.

Sources of error leading from training are minimized during the linear regression step
(2.11). The norm is taken to be two and specific values of l enforce efficient sparse fits
(l = 1) and over fitting protection (l = 2). The impact of imposing greater regularization
does tend to increase RMSE, see Fig. 2.2 where l = 2.
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SVD γ=0 γ=10 γ=100 γ=1000

Ta 0.380 0.380 0.405 0.404 0.400

4×10−1 5×10−1 6×10−1

Fig. 2.2: RMSEs in atomic energy (eV/atom) of trained Tantalum potentials in FitSNAP
for a regression penalty of order two and penalty weight γ is varied.

Determining β is essential for the linear SNAP model and ultimately for MD simulation
use. In some cases certain descriptors are of greater importance than initially determined
by the training set, so matrix σ of weighted scalars along the diagonal are used to increase
the importance of certain training set elements and their corresponding rows along the
descriptor matrix, as shown in equation (2.11).

2.3. Neural Network Models. The details of this class of ML potentials are not the
main focus of the work presented in this article. However a high level description of the model
forms used in this study are described in brief herein. The first architecture type is a step
down architecture, while the second is an expanding and contracting architecture denoted
’A’ and ’C’, respectively. Additionally, each architecture are given a different number of
hidden layers.

Each of these increasingly complex NNs were generated in order to capture a highly
diverse training set of atomic configurations. As with polynomial SNAP models, training
data for NNs is taken from density functional theory where the energies and forces of small(<
100 atoms) configurations are used as ground truth values. However, the complexity of NNs
requires much more training data than other model forms. As part of another study [10] an
entropy maximized training set deliberately found new configurations of unique bispectrum
components to add to the training set. This is what the NN models are trained on, while
a comparative linear SNAP model uses physically motivated configurations as training.
Performance measures of LAMMPS use internal timers in the code and are measured for
fixed and variable problem sizes on Sandia computing clusters. Numerical stability and
physical modeling viability are demonstrated in sections 3.3 and 3.2.

In particular we explore the top down architecture (A) which utilizes network nodes
in descending fashion to define hidden layers. Studied and compared are their effects on
physical modeling and overall numerical stability.

3. Results and Discussion. Recent updates in our open source parallel MD code base
LAMMPS, allows for streamlined workflows for deploying custom trained potentials through
the ML-IAP package. Additionally, supervised learning SNAP potentials are equally stream-
lined for distributed computing resources when deployed using the ML-SNAP package. See
code base FitSNAP for generating SNAP potentials.

Two criteria that can be used to evaluate the computational effectiveness of a new
potential are its’ speed and scalability, while also evaluating its stability in a well known

https://github.com/FitSNAP/FitSNAP
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time integrator. Proof that the ML-IAP and ML-SNAP package satisfy these criteria will be
demonstrated in performative benchmarking section 3.1, and in a numerical stability section
3.2. Focusing on the connection that these potentials have in the field of computational
materials science will be demonstrated in section 3.3 and 3.4. Finally, we consider the
sensitivity of predictions made with respect to changes in ML trained models. For users
looking to run any material science simulation, their choice of model and simulation method
should consider each of these criteria.

3.1. Computational Performance. Benchmarking scalability of a simulation pack-
age is an essential practice for demonstrating parallel capabilities on large supercomputing
resources. Historically the trend of allowable computational cost of a particular manybody
potential has been shown to increase on an annual basis similarly to Moore’s Law [13]. The
trade off between computational cost and accuracy has enabled models to incorporate more
intricate bonded interactions. This goal is naturally embedded in NN and SNAP models via
the extendable basis expansion in bispectrum components. Choosing a more accurate form
with higher computational cost can be remedied by parallel scaling capabilities as shown
below.
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Fig. 3.1: Performance benchmarking gathered for two different methodologies. (a) Fixed
problem size, and (b) variable problem size, which is proportion to the resources used. SNAP
2jmax = 8 and NN 2jmax = 6 thus SNAP is roughly 1.25 times more expensive than NN.

For weak-scaling behavior we demonstrate parallel efficiency graphically by linearly in-
creasing both atom and node count proportionally. Both the ML-IAP (Neural Network)
and ML-SNAP (Linear SNAP) packages in LAMMPS show near horizontal lines, repre-
senting near 100% parallel efficiency. Downward trends represent slow down in the overall
number of time-steps per second as a function of increased overhead due to increased nodal
communication limitations.

Each of these cases were benchmarked on a Intel Broadwell E5 Chipset, as a CPU
scalability test, these results are shown in Figures 3.1(a) and 3.1(b). We ran NVE(constant
number of particles, volume and total energy) MD simulations for 100 time steps, each
initialized by a BCC crystalline lattice configuration for homogeneous distribution of atoms
in each allocated computational domain. These simulations are long enough to assess the
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cost of occasional tasks such as neighbor-list building and internal modifications that are
required by bispectrum calculations.

Fig. 3.1(b), a relatively small atom per node count (4k atom/node) was chosen yet
amply demonstrates the communication overhead around 8 and 27 nodes for either models
and is sensitive to the communication pattern of neighbor lists within LAMMPS. This
figure demonstrates that the measure for timestep per second remains relatively stable as a
function of proportional increases in atom per node.

3.2. Integration Stability. In addition to the finite size limitations of classical MD,
the ability to simulate long-time scale phenomena is a critical consideration when choosing
a model form. While a larger timestep interval can always be forced into a simulation,
problems arise due to numerical stability and concerns over thermodynamic sampling of
the simulation trajectory. The model form plays a critical role in both of these stability
concerns, as is explored herein.

Again NVE simulations were setup to determine the expected stability of NN potentials
compared with the stability of linear SNAP potentials for tungsten. Conservation of total
energy in a system is a question of the numerical integration scheme, however layered neural
networks represent an almost recursive functional form. So with greater complexity there
may exist higher frequency modes of the PES that may yield greater integration instabili-
ties. For example, consider the integration timestep, ∆t, needed to resolve a high-frequency
carbon-hydrogen bond versus a much lower frequency carbon-carbon bond. This is a seri-
ous concern for simulations of plasma facing materials where high energy particles collide
with cold material, necessitating an adaptive time stepping method to preserve numerical
stability. Here we investigate where an approximate threshold of stability exists for various
timestep.

σEp =
√
〈E2

p〉 − 〈Ep〉2 (3.1)

The discrete integrator for the NVE ensemble is of the Verlet type which is second
order accurate in kinetic measure from the central difference approximation dt [8]. Thus
error translates into ensemble properties (ie. potential energy, temperature, enthalpy, etc.).
The potential energy dependence upon timestep is demonstrated by Figure 3.2, where in all
cases the behavior of average potential energy follows second order accuracy.

Each simulation in Figure 3.2 were run for 50 pico-seconds (and an initial equilibrium
period of 30% of the total run time), the number of simulation steps are related to N =
sim. time/∆t. Simulations were initialized with an ideal BCC unit cell replicated along each
Cartesian axis eight times equaling 1024 atoms generated within a 3D periodic boundary
domain.

These results demonstrate the stability of each model form, albeit with differences in
the fluctuation of the simulation based on the timestep used. This is an important consid-
eration for end users as the amount of simulated time for a fixed resource budget is directly
proportional to the timestep size.
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Fig. 3.2: Panels (a) and (c) represent the comparison between the linear NN architecture
and SNAP; while, (b) and (d) represent the expansion and contraction NN architecture and
SNAP. The panels above demonstrate O(N 2) behavior, while the fluctuation shown below,
calculated by equation (3.1) are higher for SNAP.

3.3. Materials Modeling. Ultimately, practitioners of MD want to make predictions
that can be corroborated or validated against experimental results, to that end much of
the consideration of the accuracy of the model boils down to properties that can be simul-
taneously calculated at the nanoscale and macroscale. An example of such a property is
the mechanical behaviour and failure of a material under tensile(volume increasing) stress
loading. In this section we give brief descriptions and figures from two tungsten nanowire
tensile-test simulations using the same linear SNAP potential shown in previous sections.
These simulations were performed on large scale computing machines to model a 1.93 nm
diameter nanowire of length 15.5 nm deforming with intermediate periods of thermal equi-
librium. In total, 11k atoms integrated with a timestep size of ∆t = 0.002.

Fig. 3.3 demonstrate the search for optimal strain rate values erate = dε/dt, and fric-
tional parameters α to use in the langevin integrator. Two strain rates dε/dt = 5e−2 and
dε/dt = 5e−3 were tested to find an appropriate scale to match physical reality. Tungsten
is known to be a brittle material at room temperature thus a more abrupt fracture(sudden
decrease in stress) is better represented by Fig. ??. This plot shows that while computa-
tionally more expensive, a much slower strain rate works well.
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Fig. 3.3: Multiple tungsten tensile test NVT simulation for diagnosing unstable GJF-2GJ
thermostat damping coefficients α. The strain rate dependence of the yield strain and stress
are characterized in panels (a) and (b).

These simulations were performed at room temperature (T=300 K) with wait periods
for equilibration in between each discrete step in the wire strain. The total number of
simulation steps is given by the total simulation time divided by timestep width Nsteps =
(Nwaitε/erate) 1/∆t.

Interestingly, linear SNAP can be used to perform predictive modeling for something
it may not necessarily have been trained for as no configurations representing the brittle
failure mode were present at training. Meaning the potential energy surface of SNAP is well
mapped to experiments and DFT as demonstrated by the results above. This would lead
us to believe SNAP can be used to predict any number of material properties beyond what
was studied here.

These results open up a larger avenue for material scientists going forward to make
new predictions of differing properties, materials, etc. and will bring insightful questions
into how the model form accuracy varies from property to property. Finally in the future
of applying this to exascale modeling, larger domains will only serve to help improve our
predictions on the macroscopic level.

3.4. Uncertainty Quantification. While the advent of ever larger supercomputers
has quelled many concerns about the finite-size and finite-time approximations in our MD
simulations, questions about uncertainties in our PES models will persist. In particular,
these data-driven models have brought new questions regarding uncertainty such as how
different would the model be if new training was added/subtracted? To approximate these
effects, we can study a perturbation added to regression coefficients. The impact of adding
uncertainty to the linear coefficients is a question that we strive to answer in this section.
In a sense we are attempting to approximate the training set perturbations made while
constructing a linear SNAP model . By adding some uncertainty(Λk(t)) to the βk coeffi-
cients we are gleaning into how sensitive this tensile test model is to changes in the linear
coefficients.

Eisnap = βµi0 +

K∑
k=1

(βk + Λk(t)) (Bµik −B
µi
k0) (3.2)
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In terms of quantifying the robustness of physical results from nanowire tensile tests, we
perform confidence interval calculations. This is one approach to quantifying the fluctuation
in quantities of interest (i.e. mechanical stress and ultimate tensile strength) as we increase
noise on the linear coefficients. Fig. 3.4 demonstrates two 95% confidence intervals (CI)
around the stress-strain curves (using the NVT ensemble). The first is a test with one
standard-deviation of Gaussian distributed noise to βk, while the second represents two
standard-deviations of Gaussian distributed noise to βk.
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Fig. 3.4: Tensile test performed at strain rate dε/dt = 5 × 10−2 ps yielding an elastic
modulus of 280 GPa. Applied noise to linear SNAP coefficients results in differences in
the stress-strain behavior. Confidence interval represents here a standard deviation in the
predicted results sampled over an emulated larger pool of samples.

Computing the CI relies upon re-sampling techniques, in particular we used the ’boot-
straping’ method. An uncertainty in the mean values for each stress-strain curve can simply
be computed by sampling a statistical distribution generated by numerous different tensile
tests. Randomly drawing a stress from the modest collection of stress calculations (random
selection is dictated by uniform distribution) at each strain is a repeatable process that
helps shape the uncertainty. Specifically one-hundred replicates are generated.

Each tensile test is performed with a unique-random Gaussian distributed value Λ(t)
added to the linear SNAP coefficients. The exact initialization of these simulations is a BCC
crystalline lattice with the [100] orientation as the loading direction.

At first adding one standard-deviation of Gaussian distributed noise to βk did not alter
the yield stress or yield strain values much. However, by adding two standard-deviations of
Gaussian distributed noise seems to have changed the physical model quite a bit.

4. Conclusion. The potential energy surface of SNAP is well mapped to experiments
and DFT as demonstrated by the results above. Similar to SNAP, the Neural Network
potentials also demonstrate stability for long time integration evidenced by data. Given
the promise of exascale computing resources, simulating larger domains with these highly
accurate models will only serve to help improve our predictions and connections to the
macroscopic materials of interest.

To achieve more physically accurate representation matching at the macroscale, it is
important to setup larger more experimentally representative simulations. Capturing phe-
nomenon from grain boundaries introduces more active slip systems to the mechanical re-
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sponse and offers a more detailed view of actual mechanical properties.
The multi-step process laid out here of contrasting PES models and their viability in MD

simulations should become standard practice for end users to justify the use of large-scale
computational resources.
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M. A. Wood, and S. P. Ong, A performance and cost assessment of machine learning interatomic
potentials, (2019).



CSRI Summer Proceedings 2021 262

VERIFICATION AND PERFORMANCE TESTING OF THE ADVANCED
TRI-LAB SOFTWARE ENVIRONMENT

CARSON WOODS∗ AND MATTHEW L. CURRY†

Abstract. The Advanced Tri-lab Software Environment (ATSE) is a complex software stack, with
a variety of compilers, optimizations, and package inter-dependencies [4]. Previous efforts to make the
ATSE environment portable allow ATSE to run on a variety of HPC architectures (e.g., AArch64 with
and without NVIDIA GPUs, Fujitsu A64FX, Intel processors supporting AVX-512), which makes verifying
this environment challenging and time-consuming. Using ReFrame, a unit-testing framework for HPC
environments, we have constructed a series of tests that verify a broad range of the programs and libraries
that are provided by ATSE. Coupled with work to port the ATSE environment to Spack (SpATSE), we aim
to create a software environment that can be quickly installed and verified on new systems with architecture-
and accelerator-specific optimizations, easing the path to validation with applications.

1. Introduction. The Advanced Tri-Lab Software Environment (ATSE) is a software
stack built for Vanguard HPC platforms [4]. To support a range of needs from a variety
of users, ATSE includes a combination of compiler toolchains, libraries, utilities, and other
tools. In addition to the wide range of tools that are provided, they are often provided
for several MPIs and compilers, with many libraries being built as often as six times. The
ATSE software stack runs on top of vendor and OS-provided software. Once installed, user
applications can be built against and use all of the provided libraries, tools, and compilers
that ATSE provides. A diagram of this software stack architecture is shown in Figure 1.1.

Fig. 1.1: Position of ATSE environment within a full software stack [4].

Creating, maintaining, and modifying such a complex environment is a time-consuming
task. Previously, we created a portable Spack implementation of this environment (SpATSE)
to simplify the installation and maintenance of the ATSE environment on multiple sys-
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tems [7]. This implementation of the environment is functional and provides near-feature
parity with the more traditional RPM implementation of the ATSE environment.

However, despite our changes, maintaining these environments can still be a time-
consuming process. Provided software has to be trusted by users to be functional, per-
formant, and correct. Spack introduces additional complexities and ambiguities that can
work against these goals. For example, Spack is capable of automatically determining de-
pendent packages and building compatible versions, but these derived dependencies often
do not match explicitly specified versions. This creates duplicate packages within a single
installation. These duplicates may be missing microarchitecture-specific optimizations, sup-
port for specific hardware, or package options (i.e., Spack variants) that ensure correctness
or compatibility. Further, some packages may build correctly but are ultimately nonfunc-
tional because of a specification problem. SpATSE also presents a much broader surface
for problems to be introduced. Previously, ATSE was built using an RPM-based build
farm that heavily leveraged OS-provided packages. In contrast, Spack, and thus SpATSE,
builds many of these packages independently. These issues motivate a need for environment
verification.

Software verification is more than a loosely defined functionality test. Verification, along
with validation, comprise the term “V&V” which is defined as “a collection of analysis and
testing activities across the full life cycle” of a piece of software [6]. In a report on verification
and validation, Wallace and Fujii define verification as: “evaluating software during each
lifecycle phase to ensure that it meets the requirements” [6]. Our testing pipeline aims
to verify an installation of ATSE to ensure that we are meeting specified requirements in
each installation. Validation is completed as a separate step, by building and running user
applications like SPARC [5] and EMPIRE [1] against SpATSE.

We are developing a regression-testing framework to verify the ATSE environment.
This will allow for rapidly testing selective components of the environment to improve the
speed of making changes, as well as allowing for a quick first qualification when setting up
completely new instances of ATSE/SpATSE on systems with new hardware architectures.

2. Methods. Many methods can be used to thoroughly test software environments.
We considered manually writing a collection of scripts that would do the testing we needed.
We also considered the package testing functionality within Spack, which allows for testing
Spack-installed packages [2]. We decided against using Spack for the testing, due to Spack’s
tests being limited to whatever the package supported. Writing and maintaining parallel
package recipes with custom test infrastructure is an alternative; however, it would place an
extended burden on maintaining SpATSE and the testing pipeline. In the end, we selected
Reframe, a unit testing framework designed for the verification of HPC environments [3].

Reframe is a full-featured unit-testing framework. Reframe tests are written as Python
classes and are customizable [3]. While Reframe offers many different types of tests by de-
fault (BuildOnly, RunOnly, Build and Run, etc.), any of these tests can be modified to meet
unique requirements. Reframe simplified the development process of our testing pipeline.
Out of the box, Reframe offered substantial functionality for testing various compilers and
many common build systems easily. It also supports differentiating between systems and
hardware partitions, so that tests that required certain hardware requirements would only
be run on compatible systems.

Reframe also integrates with common module systems, and allows for easily loading spe-
cific modules before a test. Not only does it provide lmod support, but it can directly load
packages that are installed via Spack. This is vital due to the way that Spack generates mod-
ule files. When a package is installed via Spack, it generates a unique hash from the various
build attributes for that package (compiler, variants, version, package name, etc.) [2]. These
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hashes can be used to differentiate between two packages with slight differences. Module
files may incorporate Spack’s package hashes to differentiate between different installations
of the same package. Unfortunately, if changes are made to the environment or the environ-
ment is installed on another system, these hashes will change. As such, they are currently
not viable to use for loading packages for tests. Because of this, Reframe’s direct Spack
integration is useful for loading the specific package needed for a test in a more portable
way.

Another significant feature of Reframe that we wanted to leverage was performance
testing. In addition to functionality testing, performance testing is a vital part of the
environment verification process. There are many possible points of performance problems
that can be uncovered via testing: missing microarchitecture optimizations, enabling options
for networking interconnects failing silently, etc. These performance issues are often more
insidious than traditional errors, as they are difficult to detect and appear only when an
environment is needed for a job where performance is necessary. As a result, it was important
for us to include performance testing when building our test pipeline.

Fig. 2.1: General mapping of ATSE components to planned Reframe tests.

User Libraries User Applications

ATSE Software Environment

Build and Run Tests

Build/Runtime Tests & Benchmarks

Presence 
Tests Correctness

RunOnly
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GNU Compiler 
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QThreadsMPI

Long term, we aim for our testing pipeline to cover most aspects of the ATSE environ-
ment. Figure 2.1 showcases the eventual goal of the testing pipeline. The figure offers a
general mapping of what types of tests will eventually cover what categories of application.
While the scale and scope of tests that we are developing can be extensive, we are focusing
our initial efforts on basic functionality and software-presence tests. Specifically, we are
making sure that every package can be used in some basic way. For libraries, this is com-
piling against the library on a variety of compilers and testing functionality of a program.
Applications such as CMake are tested by downloading and building another package that
implements CMake as its build system. For performance testing, we are using a range of
benchmarks (Intel MPI Benchmarks, OSU Micro Benchmarks, etc.) to validate the perfor-
mance of MPI’s collective operations across multiple compute nodes. Writing performance
tests in Reframe did not involve creating new benchmarks, but instead leveraged and col-
lated commonly used benchmarks into easily launched tests, where results could be made
available in a standardized way.

These tests were developed on Stria and were also run on Mayer to prove the porta-
bility of tests. Since both the Stria and Mayer compute platforms share many hardware
similarities and run ATSE, this was a basic test of portability. In the future, tests that
rely on specific hardware features such as CUDA support could be written to only run on
certain machines that have a specific type of partition in the pre-defined Reframe settings.
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Reframe’s settings.py file is a mechanism provided by Reframe to customize what type
of tests can be run on what machine. It also allows for complete customization of supported
compilers, what information is logged, and which hardware resources can be exposed to
tests.

2.1. Reframe’s System Structure. Before building tests of any type, creating a
detailed Reframe settings file is a necessary prerequisite. Besides controlling many of the
more advanced features of Reframe such as logging customization, the settings.py file’s
primary function is to define systems in the context of Reframe and the types of tests that
can be run on those systems. They are structured in such a way that we can have a single
settings file for all of our HPC platforms. In the context of Reframe settings, there are
three major components to consider: systems, partitions, and programming environments.
A system is the highest level of these components. A Reframe “system” refers directly
to a hardware platform, and using this platform, specific hostnames can be specified, a
module system can be selected, and partitions can be defined. If a system is hostname
limited (does not use “*”), then tests for that system will only be launched on a system
that matches hostnames. Partitions are the next component of a Reframe test. Partitions
define specific portions of a system to be run on. Specifically, they allow tests to differentiate
between launching locally, through various job schedulers, and via various parallel launch
commands (i.e. mpirun, etc.). Additionally, the number of max jobs can be defined, and
additional hardware resources (job time, nodes, etc.) can be specified. Finally, programming
environments for that partition can be selected. Programming environments are the smallest
component of a Reframe test. They define a list of compilers that can be used, the path to
their executables, and (if necessary) the modules that must be loaded to use them.

2.2. Anatomy of a Test. There are many different types of Reframe tests so an il-
lustrative example is included to describe a subset of the available features. The test that
is being described can be found in Appendix 4. The test uses a custom Python decorator
@rfm.simple test to indicate that it is a test to be run. The valid systems variable
is set to any system using a “*” and a “:mpi” specifies that the system must have an MPI
partition. The valid prog environs variable specifies that only programming environ-
ments named “openmpi3” and “openmpi” should be selected. The final setup step is to
make the program aware of the correct source file through the sourcepath variable.

The next major component of a Reframe test is a pipeline hook function. Reframe tests
are broken into predefined stages, and additional steps can be inserted into the test process
via pipeline hooks. For each stage of a test, there can be a “run before” or “run after” hook
that will run custom test code immediately preceding or following that stage of the test.

Continuing through the example test, we have a “run before” run function which passes
-n 4 to the launcher command for the job before the test is run. Finally, there is a
“run before” sanity function which defines the sanity pattern for the test using a combination
of Reframe provided functions and regex parsing.

Reframe tests, both regression and performance, rely on “sanity patterns” to determine
the pass/fail state of a test [3]. In theory, this means that nearly any metric can be either
captured or evaluated so long as it follows a standard format when being output. In practice,
many of the sanity expressions we wrote were simple output checks to ensure that the
expected output was or wasn’t present depending on the type of test being run. Performance
tests followed a similar pattern, instead of timing anything themselves, they rely on self-
reported metrics from whatever is being tested, or user-implemented metrics if necessary.
Performance tests simply capture and log metrics rather than using them to determine if
there is a pass/fail status. Using performance tests, our goal is to collate the important
performance metrics so that they can be run and gathered easily rather than running a
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wide range of benchmarks by hand.

3. Discussion. The testing framework, while still incomplete, is already proving to be
useful. As the environment changes, it is easy to launch new tests that can identify possible
problems. It is not possible to determine how long it takes to run the entire test suite, as
it is often machine dependent and can be affected by compute node queue times, but the
tests take less than an hour to run on Stria when there are no blocking processes inhibiting
runtime.

3.1. Challenges. Reframe is a significant improvement to writing similar tests entirely
from hand, however, it is not without some trade-offs. One major performance bottleneck
is parallelism between tests. Currently, Reframe will launch a test in parallel only when
a test is being run on multiple programming environments within a partition [3]. For
example, if a simple C compiler test is being run on both Slurm and non-Slurm partitions,
jobs will run on one partition before launching on the other. Tests within a partition
(such as testing on different compilers) can be launched in parallel if supported, but this
limits parallelism despite larger quantities of system resources being available for use. As
mentioned previously, the runtime of the current tests is not prohibitively long, and the
testing pipeline offers a massive increase in time saved validating environments. However,
as the test pipeline continues to grow to cover larger amounts of the environment and
package functionality, maintaining performance is desired. One mechanism that could be
implemented to correct this is manually assuming control of launching tests. It would be
possible with custom scripting to launch jobs across multiple tests in parallel however, this
has not been thoroughly explored as it is not yet needed.

It is also challenging to gather performance data from tests with dynamic output.
Benchmarks such as the Intel MPI Benchmarks have performance metrics that scale to
the physical hardware capabilities of the machine. As a result, collecting the proper metrics
on a specific machine while also maintaining portability for yet untested platforms requires
significant work. It is certainly still possible and can be done, however, it is more complex
than collecting data from tests with deterministic output.

3.2. Early Results. As mentioned, the effort to build a comprehensive and exhaustive
testing pipeline is not yet complete. Despite this, some early results reinforce pre-existing
beliefs. We successfully validated our various compiler toolchains and can ensure that they
can be reliably used to build necessary software. Additionally, we were able to validate many
of the auxiliary libraries and applications that are included in ATSE. A major component
of this is ensuring the functionality of OpenMPI across hardware partitions and underlying
compilers.

One unexpected result was the significant differences between the ARM compiler and
the GNU compilers. When building applications that linked against third-party libraries,
build processes that worked for the GNU compilers often failed on the ARM compilers. This
introduced additional complexity in building tests which supported both compilers and their
separate build processes.

4. Conclusions. Building a programming environment testing pipeline offers not only
a significant quality-of-life improvement when developing ATSE and SpATSE, but it encour-
ages and enforces a requirement of correctness that was not previously feasible. Facilitating
testing and providing a framework for continued and future tests to be written will be a key
focus point in environment development moving forward. Creating new tests in line with
new features and software that could be added to ATSE would be a quick process and could
easily keep the test pipeline in line with changing and expanding capabilities of ATSE in
the future. This testing capability will also facilitate the long-term goal of being able to
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provide a portable and reproducible software environment that can be widely relied upon as
a verified computing platform [7]. The testing framework developed by this work will allow
for faster iterations on the ATSE computing environment, will help to ensure correctness for
end-users, and ease the burden of environment maintenance across multiple HPC platforms.

Appendix: Reframe Test. The following is an example Reframe test that could be
used to test if MPI can be initialized.

1 @rfm.simple_test
2 class Init_MPI(rfm.RegressionTest):
3 """
4 Test if MPI can be initialized by running
5 a MPI_Init and hello world program on openmpi3 and openmpi4
6 """
7 valid_systems = [’*:mpi’]
8 valid_prog_environs = [’openmpi3’, ’openmpi4’]
9 sourcepath = ’mpi_hello_world.c’

10

11 @run_before(’run’)
12 def set_core_opts(self):
13 self.job.launcher.options = [’-n’, ’4’]
14

15 @run_before(’sanity’)
16 def set_sanity_patterns(self):
17 num_messages = sn.len(sn.findall(r’Hello from processor \d+ of \d+’, self.

stdout))
18 self.sanity_patterns = sn.assert_eq(num_messages, 4)

Listing 1: MPI Init Reframe Test
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III. Applications

Articles in this section discuss the application of computational techniques to simulate phys-
ical systems.

1. Alsup and Catanach employ Bayesian Optimal Experimental Design to opti-
mize the configuration of a network of sensors, maximizing the expected information
gain.

2. Callahan and Catanach deploy an importance sampling method to approximate the
Expected Information Gain used in the optimal placement of sensors.

3. Clements, Geraci, and Olson use a non-deterministic sampling approach for uncer-
tainty quantification for Monte Carlo Radiation Transport Solvers through
variance deconvolution strategies.

4. Frink, Campbell, Smith, Baczewski, and Albash analyze the accuracy and efficiency
of a variety of neural networks for simulating the ground states of small molecules
with applications in Quantum Chemistry.

5. Gaiewski, Sockwell, Connors, and Bochev present a simplified model of the ocean-
atmosphere system based on the DOE E3SM Model. This new model enables
rapid testing and prototyping of various coupling methods for the ocean-atmosphere
system.

6. Gerot and DiPietro determine necessary preprocessing steps needed to use Pre-
cipitation Data in optimal transport models, and provide initial results for an
optimal transport based model for precipitation impact.

7. Hartland, Perego, and Petra deploy Bayesian approximation error theory to
estimate the basal friction parameter within an ice sheet model.

8. Hoy, Tezaur, and Mota develop a novel simulation method using the Schwarz al-
ternating method for simulating Contact within Mechanical Systems.

9. Lennon and Rajamanickam leverage modern machine learning techniques in an
effort to produce surrogate models that transfer and adapt quickly for Molecular
Dynamics applications.

10. Torchinsky and Taylor examine four modifications to the piecewise-parabolic
method used in the Atmospheric Dynamical Core component of the Energy
Exascale Earth System Model. These modifications target the treatment of domain
boundaries and aim to eliminate noise.

11. Valaitis and Maupin implement a neural network to predict Single Particle Mo-
tion in Plasmas in an effort to provide a computationally efficient alternative to
the Boris-Bunemann algorithm.

J.D. Smith
E. Galvan

November 1, 2021
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UNCERTAINTY QUANTIFICATION FOR EXPECTED INFORMATION
GAIN ESTIMATES

TERRENCE A. ALSUP∗ AND THOMAS A. CATANACH†

Abstract. Sensor networks are a ubiquitous tool for detecting events in many applications. Here
a network of sensors is deployed to gather data for estimating an event’s properties. Bayesian optimal
experimental design (OED) provides a framework for optimizing the configuration of the network of sensors.
In particular, the sensors are configured to maximize the expected information gain (EIG). For a given sensor
configuration, the EIG takes the form of a nested expectation and therefore is computationally intensive
to accurately estimate by sampling. For the Bayesian optimization of the network we use a sub-division
method to estimate the uncertainty in the EIG estimate. We find that, in practice, the proposed sub-division
method provides a close approximation to the true mean-squared error. In this work we will consider both
the general problem of robust EIG estimation and its specific application to Bayesian OED for seismic
monitoring networks.

1. Introduction. Seismic monitoring networks are an important tool for detecting
seismic events such as earthquakes and nuclear tests. An array of seismic sensors is de-
ployed to gather data that is then used to estimate an event’s properties such as origin
location and magnitude. Different configurations of the sensor network will determine the
data that is observed for the same event. Since in practical applications the events are
unknown ahead of time, it is prudent to configure the sensors to perform well for typical
events by maximizing the expected information gain (EIG), which intuitively, is the average
amount of additional information obtained after observing an event for a given sensor con-
figuration. A Bayesian optimization procedure is then used to determine the optimal sensor
network configuration. For this technique, one must know, or be able to estimate, the EIG.
Moreover, it is advantageous to also quantify the uncertainty in the estimate itself. Sen-
sor placements that yield high-variance estimators indicate regions where additional sensors
would be beneficial to improve estimates. This work proceeds as follows. First we outline
the Bayesian approach to optimal experimental design in the context of seismic monitoring
with sensor networks. Second, we describe a procedure to estimate the EIG and its uncer-
tainty, quantified by the mean-squared error of the estimator. Finally, we present numerical
results on how our uncertainty estimation procedure performs.

2. Bayesian optimal experimental design for seismic monitoring. In this sec-
tion we start by describing the underlying Bayesian inference problem of inferring an event’s
properties in Section 2.1. In Section 2.2 we describe optimal experimental design problem,
where we want to choose the configuration of the network of sensors.

2.1. Bayesian inverse problem. Sensor networks can monitor seismic events through
a variety of measurements, such as arrival time and amplitude of a seismic phase, at each
individual sensor’s location. Let θ ∈ Θ denote the parameters or properties of the seismic
event that we are interested in inferring, such as the location of the event’s origin and its
magnitude, with Θ ⊂ Rd being the parameter domain or space of possible events. In this
work we consider a d = 4 dimensional parameter defining the event

θ = (longitude, latitude, depth, magnitude) .

The event origin time could be an additional variable, but we instead treat it implicitly in
the likelihood by marginalizing it out in order to reduced the dimension of the parameter

∗Courant Institute of Mathematical Sciences, alsup@cims.nyu.edu
†Sandia National Laboratories, tacatan@sandia.gov
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space. Figure 2.1 shows an actual physical domain in Utah where a dense network of seismic
sensors were temporarily installed as part of the 15 year rolling Transportable Array (TA)
deployment that eventually covered the entire Continental United States.

Fig. 2.1: The array of sensors over Utah used for seismic monitoring. The pink region
indicates the region used to gather sensor data for the parameters of the likelihood models.
The orange region is the domain in which we monitor seismic events.

A physics-based model for how seismic events propagate through the earth can be
combined with a model for the sensors themselves and the uncertainty of the measurements
in order to derive a likelihood model p(D | θ), which is the probability of observing some
data D ∈ D conditioned on a particular event θ ∈ Θ. In this work we consider a likelihood
model comprised of two components: a detection model for seismic phases and an arrival
time model. The seismic detection model is a logistic regression model similar to that used
by NET-VISA [1]. The arrival time model is largely based on the IASP91 Earth velocity
model. An uncertainty model for the arrival time is constructed using the Crust1.0 [5]
shallow Earth model and the TauP [3] travel time prediction software package. Correlations
between travel times to different sensors can also be incorporated in the model. We refer to
[2] for a detailed description of the likelihood model.

The likelihood model also presents a way to generate synthetic data from a given event.
To infer θ, one method would be to maximize the likelihood to determine the most likely
event. However, oftentimes we have additional prior information about where the seismic
events are likely to occur before-hand, typically from historical data. This can be incorpo-
rated through the use of a prior distribution p(θ) over Θ. Thus, through Bayes’ formula, we
can formulate the posterior p(θ | D) over events given the observed data D, which depends
on the sensor network configuration, as illustrated in Figure 2.2. Constructing the posterior
distribution also gives us uncertainty about the parameter estimate which is important for
high consequence decision making.

2.2. Bayesian optimal experimental design. In Bayesian optimal experimental de-
sign one would like to configure the network of sensors to be as informative as possible. The
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Fig. 2.2: The Bayesian approach to seismic monitoring combines prior information with a
likelihood model to update the distribution over possible events.

posterior p(θ | D), which depends implicitly on the sensors through the observed data D, en-
capsulates the information obtained by sensors’ measurements. To quantify the performance
of the sensors for given observed data D we use information gain or the Kullback-Leibler
(KL) divergence from prior p(θ) to the the posterior p(θ | D)

KL [p(θ | D) || p(θ)] =

∫
Θ

p(θ | D) log

(
p(θ | D)

p(θ)

)
dθ . (2.1)

The KL divergence is a useful measure for determining how informative some observed data
is. Ideally, the data will be such that the posterior is very different from the prior and the
information gain (i.e. KL divergence) will be large. Because the events are random, and
hence the observed data D is as well, one must look at many different hypothetical events to
see what the typical information gain is for a fixed network of sensors. This is made precise
by the expected information gain

I(S) = ED [KL [p(θ | D) || p(θ)]] . (2.2)

On the right-hand side of Equation (2.2) the dependence on the sensors S is again implicit
through the data D. The optimal experimental design problem is to maximize the expected
information gain over a set S of all possible sensor configurations to consider

S∗ = argmax
S∈S

I(S) . (2.3)

This approach of using expected information gain as a design criterion was first proposed
in [6] and has been widely used since [4, 8, 10]. Note that the optimization problem (2.3)
is different from the problem of estimating the expected information gain, and has been
approached from various directions. In general one would like to use a derivative-free op-
timization algorithm such as Bayesian optimization [2, 10], but stochastic approximation
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algorithms which approximate derivatives have also been used [4]. We approach solving the
optimization (2.3) via Bayesian optimization where the objective function I(S) is evaluated
to build a surrogate model of the optimization surface, for example, via a Gaussian process.
The points at which to evaluate the objective function requires some measure of uncertainty
over the parameter space. The purpose of this work is to provide accurate estimates of
the uncertainty in the evaluation of the objective function. In other words, we want to
determine the accuracy of the expected information gain calculation.

3. Uncertainty quantification for expected information gain estimates. In
this section we describe a procedure to estimate the expected information gain (2.2) for
a fixed sensor configuration S as well as a method for estimating the uncertainty of the
estimate itself. Section 3.1 describes an implementable algorithm for estimating the expected
information gain, while Sections 3.2 and 3.3 are focused on estimating the uncertainty.

3.1. Estimating expected information gain. The expected information gain (2.2)
is computationally challenging to compute as it requires first solving many inference prob-
lems for the posteriors p(θ | D), then computing the KL divergence, and finally computing
an expectation over all possible observed data. Recall that the data D can be sampled by
first sampling a hypothetical event θ′ ∼ p(θ′) according to the prior and then using the
likelihood model to simulate the data. Therefore, the expected information gain can be
alternatively represented as

I(S) =

∫
Θ

p(θ′)
∫
D
p(D | θ′)

∫
Θ

p(θ | D) log

(
p(θ | D)

p(θ)

)
dθ dD dθ′ . (3.1)

We note here that, in practice, there is an implicit assumption that the likelihood model is
a good approximation of the true underlying process of seismic events.

Virtually all approaches to estimating the expected information gain follow from the
nested expectation form of (3.1). However, there is some variation in estimating the infor-
mation gain for given data such as importance sampling [8], Markov chain Monte Carlo [8],
polynomial chaos expansions [4], or simplified analytic expressions with Gaussian posteriors
[10]. Depending on the method for inference one can obtain different estimates and there-
fore methods for quantifying uncertainty of these estimates will also necessarily be different.
Here we follow the approach introduced in [2] which presents a method for computing the
expected information gain by sampling many hypothetical data observations and computing
the information gain for each of the corresponding posteriors (see Algorithm 9 below). The
expected information gain is the sample mean of these individual information gains.

From looking at Algorithm 9 there are two main complications that arise in the compu-
tation. First, we cannot exactly compute the outer expectation with respect to the observed
data D, or equivalently with respect to the prior and then using the likelihood model as
in Equation (3.1). Therefore, we need to draw some finite number m samples of the data
{Dj}mj=1 ⊂ D and then compute the sample mean of the corresponding information gain
values. The second complication that arises is that we also cannot compute the information
gain values exactly. Instead we use a discrete approximation pn(θ | D) to the posterior for
which we can evaluate the KL divergence exactly. The discrete approximation is constructed
by selecting a grid of n points {θi}ni=1 ⊂ Θ and then evaluating the true un-normalized pos-
terior p̃(θ | D) on the grid and re-normalizing, so that

pn(θ | D) =
1∑n

i=1 p̃(θi | D)

n∑
i=1

p̃(θi | D)δθi(θ) , (3.2)

with δθi denoting the delta measure at point θi. The prior p(θ) is discretized similarly
to obtain pn(θ). An illustration of the discretization is shown in Figure 3.1. Because the
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Algorithm 9 Expected Information Gain (EIG) Calculation

Input: Sensor configuration S
1: Construct the set of plausible events θ′ ∈ Θ with parameters: θ′ ∼ p (θ′);
2:

3: for each plausible event θ′ do
4: Use the likelihood model to draw many samples of data D ∼ p (D | θ′);
5: for each simulated data set, D do
6: Compute the likelihood p (D | θ) for each event θ ∈ Θ;
7: Compute the posterior probability of each event from the likelihood, p (θ | D) ∝
p (D | θ) p (θ);

8: Compute the KL divergence i.e. information gain for this realization
KL [p(θ | D) || p(θ)];

9: Compute the expected information gain I (S) as the sample mean across all event hy-
potheses and simulated data (Equation (3.1));

10: return Expected information gain I (S)

approximations to the posterior and prior are discrete distributions the KL divergence can
be computed exactly

KL [pn(θ | D) || pn(θ)] =

n∑
i=1

pn(θi | D) log

(
pn(θi | D)

pn(θi)

)
, (3.3)

and is well defined because the prior and posterior are discretized on the same grid of points.
Moreover, (3.3) converges to the continuous KL divergence (2.1) as the number of grid points
n → ∞. One computational advantage of this approach, besides its simplicity, is that it
can easily be vectorized so that the posteriors corresponding to different observed data can
all be evaluated on the same grid points. Using the discrete approximations pn(θ | D) as
well as finitely many samples of the observed data leads to the following estimator for the
expected information gain

În(S) =
1

m

m∑
j=1

KL [pn(θ | Dj) || pn(θ)] . (3.4)

Although it remains computationally expensive to compute, this estimator is implementable
since the data can be simulated and the information gain computed exactly now. In the
next section, we present a method to determine the error of this estimate.

3.2. Error estimation for expected information gain estimates. In order to
successfully apply the Bayesian optimization as described in Section 2.2 we need some
estimate of the uncertainty in the expected information gain estimator (3.4). We quantify
the uncertainty through the mean-squared error (MSE) defined as

MSE = E
[(
În(S)− I(S)

)2
]
. (3.5)

The discrete approximation pn(θ | D) to the posterior introduces a bias into the estimator
În(S), while the finite number of observed data samples used introduces a variance. Indeed,
the classical bias-variance decomposition can be applied to the mean-squared error (3.5) in
order to see each of these individual effects on the estimator. First define

In(S) = ED [KL [pn(θ | D) || pn(θ)]] , (3.6)
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Fig. 3.1: The discrete approximation to the posterior.

which is just the expected information gain (2.2) but with the posterior and prior replaced
by their discrete approximations using n grid points chosen according to some pre-specified
sequence (e.g. the Sobol sequence). Then, the bias-variance decomposition can easily be
derived.

MSE

= E
[(
În(S)− I(S)

)2
]

= E
[(
În(S)− In(S) + In(S)− I(S)

)2
]

= E
[(
În(S)− In(S)

)2

+ 2
(
În(S)− In(S)

)
(In(S)− I(S)) + (In(S)− I(S))

2

]
= Var

[
În(S)

]
+ (In(S)− I(S))

2

(3.7)

Note that in the last line of Equation (3.7) we have used the fact that În(S) is an unbiased
estimator for In(S) and so the middle term vanishes.

In light of the bias-variance decomposition (3.7), we will estimate the mean-squared
error by estimating the bias and the variance terms separately and then add them together.
We will start by estimating the variance, which is straight-forward because we can consider
the different observed data as i.i.d. and hence the corresponding information gain values
KL [pn(θ | Dj) || pn(θ)] for j = 1, . . . ,m are i.i.d. as well. Thus, the estimator În(S) is
really just a sample mean of i.i.d. samples from the distribution of information gains, see
Figure 3.2. A simple method to estimate the variance is to then take the sample variance
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of the information gains and divide by the number of samples m

V̂ar
[
În(S)

]
=

1

m(m− 1)

m∑
j=1

(
KL [pn(θ | Dj) || pn(θ)]− 1

m

m∑
i=1

KL [pn(θ | Di) || pn(θ)]

)2

,
(3.8)

which simply comes from the fact that the variance of a sample mean is the population
variance divided by the number of samples m. Another alternative for estimating the
variance is to use bootstrap resampling by resampling the computed information gain values
and constructing many replicates of the sample mean, which is the expected information
gain estimate. Then an estimate of the variance of the estimator is given by the variance
of the bootstrap replicates. Either method for estimating the variance tends to work well
in practice and in fact we will see in the next section that estimating the bias is both more
challenging and more important.

Fig. 3.2: A histogram of the information gain values with 10 uniformly randomly placed
sensors. The bootstrap method re-draws samples from this empirical distribution.

3.3. Estimating the bias. The bias arises from computing the information gain using
a discrete approximation to the posterior, which is effectively a discretization of the integral
for the information gain of the original posterior. Thus, one can bound the bias by bounding
the integration error by using the grid points θ1, . . . , θn. There is some theory in this
direction. Of course, in one dimension and for higher dimensions with regularly-spaced grid
points there are bounds on the integration error. Moreover, if the grid points are randomly
sampled from a uniform distribution or according to some quasi-Monte Carlo scheme, then
one must rely on an upper bound of the integration error, which depends on two factors:

1. The variation in the sense of Hardy and Krause of the function being integrated,
which is the posterior and log-likelihood in this case.

2. The star discrepancy of the grid points, which for uniformly-distributed random
points is O(n−1/2) and for quasi-Monte Carlo, or low-discrepancy, sequences it is
O(n−1).
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One approach would be to estimate these two factors separately and although the discrep-
ancy is known, the variation of the integrand is intractable to compute because it requires
the computation of many derivatives. Moreover, even if these factors were known exactly,
there is still no guarantee that the upper bound on the integration error would be useful.
Indeed, in many cases the bound does not become tight until many grid points have been
chosen. See [7] for more details. Thus, we cannot rely on analytical methods to estimate
the bias.

An even simpler approach to estimating the bias is to evaluate the information gain for
each event using a very fine grid of N � n points and then comparing the two information
gain estimates

b̃ias =
1

m

m∑
j=1

(KL [pn(θ | Dj) || pn(θ)]−KL [pN (θ | Dj) || pN (θ)]) . (3.9)

While this method is simple, the most immediate drawback is that it requires computing the
information gain on a much finer grid than is necessary, and indeed if we have to compute
it on a much finer grid, then we may as well have just used the more accurate information
gain values to estimate the expected information gain in the first place.

Instead of resorting to a finer grid, which is computationally inefficient, we propose
a sub-division method to re-use the n grid points where the posterior has already been
evaluated. The key idea is to observe the bias of smaller sub-grids (subsets of the original
grid points) relative to the current grid and then extrapolate to the current grid size. One
starts by dividing the current grid into roughly equal sets of training grid points and hold-
out grid points. In particular, the points should be divided so that each subset populates
the parameter domain Θ. For example, if the grid points are generated by the Sobol se-
quence θ1, θ2, . . . , θn, then an appropriate choice of the training and holdout grid points are
Θtrain = {θ1, . . . , θdn/2e} and Θholdout = {θdn/2e+1, . . . , θn}, respectively. If the grid points
are uniformly distributed, then any random partition of the points is also viable. Next, a
reference expected information gain estimate is computed using the holdout points. The
training grid is further sub-divided into smaller grids of size approximately n/2k, where k
is the number of sub-divisions as illustrated in Figure 3.3. Next the expected information
gain is estimated on each of these sub-grids and the estimates are compared to the reference
value from the holdout set to obtain estimates for the bias of the smaller grid sizes. Finally,
a curve is fit between the estimated bias and the smaller grid sizes and we extrapolate to
the current grid size n to obtain an estimate of the bias. The proposed method is outlined
in Algorithm 10 and is similar to a method discussed in [9].

One problem with this sub-division method, at least empirically, is that it frequently
under-estimates the information gain as well as the bias. Figure 3.4 demonstrates this where
the information gain values computed on a sub-grid and a reference grid for different events
are compared. An easy way to interpret this plot is that points above the dashed black
curve indicates that the sub-grid is over-estimating the information gain (relative to some
accurate reference value), whereas those underneath are underestimating. Because we are
using a discrete approximation to the posterior, the largest information gain possible on a
grid of size n is log(n) (shown in red). In fact we can see that many points actually lie on
this upper bound, which is an artifact of using a small discrete grid of points.

Although it is expensive to evaluate the posterior on a fine grid of points, and should
be avoided, we can still know the grid points themselves ahead-of-time. Thus, a better
approach that circumvents this artificial upper bound is to use the sub-grid and interpolate
to a fine grid, which is relatively cheap. For this purpose, we make a simplifying assumption
that the posterior can be approximated by a Gaussian. For large information gain values
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Fig. 3.3: The sub-division procedure used to estimate the bias by splitting into a training
and holdout set of grid points and then further sub-dividing the training grid.

Algorithm 10 Bias estimation via the sub-division method

Input: Current grid points θ1, . . . , θn, with n = 2k for some k ∈ N, and the corresponding
posterior density values p(θi | Dj) for j = 1, . . . ,m

1: Split the grid points into a training set Θtrain = {θ(t)
i }

n/2
i=1 and a holdout set Θholdout =

{θ(h)
i }

n/2
i=1 with Θtrain ∩Θholdout = ∅

2: Compute an estimate of the expected information gain using only the holdout grid points
and their corresponding posterior density values

3: Set the current training sub-grid to Θsubgrid = Θtrain

4: for k = 1, . . . , log2(n)− 1 do
5: Split the current training sub-grid into two sets and set Θsubgrid to be the first set
6: for each simulated data Dj with j = 1, . . . ,m do
7: Compute the information gain using the current training sub-grid

8: Compute an estimate of the expected information gain by taking the sample mean
over all information gains

9: Estimate the bias of the current training sub-grid by taking the absolute value of
the difference between the estimated expected information gain value and the reference
value from the holdout set.

10: Fit a curve for the estimated bias as a function of grid size

11: Extrapolate by evaluating the curve at n to estimate the bias, b̂iasn for the original grid

return Estimated bias on the current grid of n points, b̂iasn

and with enough sensors the posterior will frequently be very concentrated in one region,
giving some empirical evidence to support this assumption. The Gaussian interpolant is
fitted by computing a weighted mean µ̂ and covariance Σ̂ using the current grid of points as

µ̂ =
1

n

n∑
i=1

pn(θi | D)θi, Σ̂ =
1

n

n∑
i=1

pn(θi | D)(θi − µ̂)(θi − µ̂)T . (3.10)

Here the weights correspond to the posterior approximation’s probabilities and are necessary
because the grid points are uniformly distributed. Thus, these estimates can be thought of
as discrete approximations to the expectations for the mean and covariance. We can then
evaluate the density of the fitted Gaussian to interpolate onto the new grid of points. These
interpolated values are then used to compute the information gains needed in Line 7 of
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Fig. 3.4: A scatter plot of the information gain estimates for each data Dj for j = 1, . . . ,m
and for different grid sizes n = 28, . . . , 216. The x-coordinate of each point is the information
gain computed on a very fine grid of N = 216 points and the y-coordinate is the information
gain computed on a smaller sub-grid of size n. The dashed black curve is the line y = x. The
red horizontal line is the value log(n). The yellow square is located at the mean information
gain (EIG) for both the fine reference and the corresponding sub-grid.

Algorithm 10. Some care has to be taken when fitting the covariance matrix to ensure that
it is positive definite. When the posterior is very concentrated for large information gain
values, almost all of the mass is placed on the most likely grid point. Thus, the covariance
matrix becomes singular. A simple fix is to simply add a small multiple of the identity
matrix, and an even better fix empirically is to add a small multiple of the identity that
goes to zero as n → ∞, such as n−1. Figure 3.5 shows that using a Gaussian interpolant
does alleviate the problem of underestimating the information gain. In the next section we
will see that it provides a better estimate of the bias as well.



Terrence Alsup and Thomas Catanach 279

Fig. 3.5: A scatter plot of the information gain estimates using the Gaussian interpolant for
each data Dj for j = 1, . . . ,m and for different grid sizes n = 28, . . . , 216. The x-coordinate
of each point is the information gain computed on a very fine grid of N = 216 points and
the y-coordinate is the information gain computed on a smaller sub-grid of size n. The
dashed black curve is the line y = x. The red horizontal line is the value log(n). The yellow
square is located at the mean information gain (EIG) for both the fine reference and the
corresponding sub-grid.

4. Numerical results. In this section we briefly present some numerical results for
the performance of our sub-division method described in Algorithm 10 with and without
the Gaussian interpolant on a problem with 10 uniformly randomly placed sensors with grid
points chosen uniformly randomly as well. Figure 4.1 shows a reference for the mean-squared
error using a reference value computed on a grid of N = 217 points and with m = 2048
sampled data observations. We see that while the original sub-division method greatly
underestimates the bias, adding the Gaussian interpolant provides a much more accurate
approximation to the reference mean-squared error.

Recall that, following from Equation (3.7), we estimate the mean-squared error by
estimating the bias and variance separately and then add them together. Figure 4.2 shows
the break-down of the separate bias and variance estimates. Here the importance of correctly
estimating the bias is revealed. We see that, by far, the bias is the dominant term for the
mean-squared error. This is due to the relatively large number of sensors. Nearly any
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Fig. 4.1: The mean-squared error of the expected information gain estimates as the number
of grid points n increases. The black curve is computed using a high-fidelity reference
estimate. The blue curve shows the estimated MSE using the sub-division procedure outlined
in Algorithm 10 and the red curve is the MSE estimate using a Gaussian interpolant as well.

observed data will result in a large information gain and a concentrated posterior. Because
the posterior is so concentrated, the variance will be extremely small. For fewer sensors, and
more diffused posteriors, the role of the variance becomes more prominent. Overall, using a
Gaussian interpolant gives a good approximation to the bias as shown by the magenta and
yellow curves.
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Fig. 4.2: The bias-variance decomposition for the mean-squared error. The red and black
curves are the same as in Figure 4.1. The yellow curve is an out-of-sample estimate of the
bias using a very fine grid as in Equation (3.9). The magenta curve shows the estimated bias
using the sub-division procedure with the Gaussian interpolant and the cyan curve shows
the variance estimate by using the bootstrap method with 100 bootstrap replicates.

5. Conclusions. Expected information gain estimates are needed to approximate the
objective function in the Bayesian optimal experimental design (2.3) for determining sen-
sor configuration. Adding uncertainty estimates, in terms of the mean-squared error, can
help construct better surrogate models, such as a Gaussian processes, which can serve as a
model for errors of estimators obtained from different sensor configurations. These surrogate
models can help determine new sensor configurations to evaluate the objective function at,
for example, by placing more sensors in regions where estimators currently have high vari-
ance. With this application in mind, the mean-squared error can be estimated by estimating
both the bias and the variance of the expected information gain estimator separately. The
variance is easily estimated using the bootstrap method and the bias can be estimated by
continually sub-dividing the grid of points and interpolating from the sub-grid to a finer
grid by fitting a Gaussian.

In addition to these mean-squared error estimates being useful for the Bayesian opti-
mization, they can also be used to determine the number of grid points needed to control the
error to within some tolerance and how to trade-off the number of grid points and sample
data observed by trading-off the bias and variance. Future work will explore more efficient
methods for estimating the bias as well as scenarios in which the Gaussian interpolant is
and is not a valid assumption. Of particular interest are scenarios with few sensors and
when the posterior is noticeably non-Gaussian.
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IMPORTANCE SAMPLING IN BAYESIAN OED FOR SENSOR
PLACEMENT

JAKE P. CALLAHAN∗ AND THOMAS A. CATANACH†

Abstract. The goal of Bayesian optimal experimental design (OED) is to find experiments that reduce
uncertainty in an optimal way. We use Bayesian OED to find optimal sensor configurations for detecting
seismic events as part of a seismic monitoring network. It is useful to be able to easily sample from different
event priors that represent various situations in which these events are manifest Some such priors are
irregular and difficult to sample from. Importance sampling can be used to sample other, easier-to-sample
distributions, and use those samples to obtain good approximations of the parameter of interest. In this
work we implement an importance sampling method to approximate Expected Information Gain (EIG),
examine the effects of importance distribution choice on the quality of EIG approximation, and compare
the effect of prior choice on sensor placement.

1. Introduction. Seismo-acoustic monitoring networks are powerful tools for detect-
ing nuclear tests and other events that generate seismo-acoustic energy. One area for im-
provement in seismo-acoustic monitoring methods is the reduction of estimate uncertainty
in quantities of interest (QoIs). In this work we take a Bayesian approach to reducing un-
certainty and employ a framework known as Bayesian Optimal Experiment Design (OED).
Bayesian OED works to choose an experiment design, in our case a sensor configuration,
that minimizes uncertainty by maximizing information gain. This framework allows us to
both design effective monitoring networks and understand the quality of QoI estimates they
generate. In this work we focus on minimizing uncertainty about event location and mag-
nitude, but this framework is general enough to target other QoIs if desired. An important
contributor to estimate quality is the choice of likelihood and prior distribution used to
analyze a given dataset. In [2], Catanach and Monogue present both a Bayesian OED algo-
rithm for sensor configurations and a methodology for choosing likelihood models for seismic
monitoring data. However, they do not present a method for choosing a prior distribution.

In this work we seek to improve upon that algorithm by implementing the ability to
sample from any specified prior distribution whose pdf can be evaluated. We do this by using
an importance sampling algorithm that re-weights samples from easy-to-sample distributions
in order to approximate quantities of interest. We explore how choice of this easy-to-sample
distribution, called the importance distribution, affects the quality of QoI approximation.
Finally, using this importance sampling algorithm, we examine the effect that choice of prior
has on the final network configuration chosen by the Bayesian OED algorithm.

2. The Bayesian OED Problem.

2.1. Bayesian Inference. Bayesian inference is a method for using both stated belief
and observed data to quantify uncertainty and inform predictions. To perform Bayesian
inference, we begin by expressing belief about parameters of interest θ in the form of a
probability distribution, p(θ). In our specific case, we are interested in seismo-acoustic
events, so we may state belief about the distribution of magnitude, the distribution of
latitude and longitude, or the distribution of depth of a potential earthquake.

We then gather data D and use some measure of the likelihood of this data given θ,
p(D|θ), to update our prior belief. In this work we consider data measured using seismic
sensors such as arrival time of a seismic phase and seismic source descriptors. Combining
our prior and likelihood functions gives us a new distribution on θ called the posterior. The
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posterior is given by

p(θ|D) =
p(D|θ)p(θ)
p(D)

In practice, computing this posterior distribution analytically is not usually feasible, so
we use approximate computational methods to solve for the posterior distribution. Common
methods to represent the posterior distribution, such as Monte Carlo or Markov Chain Monte
Carlo methods, generate samples from this posterior and use those samples to estimate QoIs.

2.2. Optimizing Information Gain. Once we have a posterior distribution on our
seismic source parameters, we wish to measure how much observed data from a given sensor
configuration S changes our prior belief. To do this we use the Kullback-Leibler (KL)
divergence between the posterior and the prior:

KL[p(θ|D)||p(θ)] =

∫
p(θ|D)log

p(θ|D)

p(θ)
dθ

To compute Expected Information Gain (EIG) for a given sensor configuration, we seek
to compute the average KL divergence over all possible realizations of data:

I(S) = ED|S [KL[p(θ|D)||p(θ)]|D]

=

∫
p(D|S)

∫
p(θ|D,S)log

p(θ|D,S)

p(θ)
dθdD

We thus seek to maximize I(S). We do this using greedy optimization algorithms
which add sensors one at a time for the chosen sensor network, choosing the sensor with the
highest information gain at each step. While not the optimal optimization method (such
a method would require computing EIG for every possible sensor location at once), greedy
optimization works reasonably well under our optimization conditions and offers a much
lower computational cost.

In total, the full EIG calculation algorithm [2] is summarized Algorithm 1.

2.3. Problem-specific Setup. In order to use Bayesian OED to place seismic sensors,
we must first formulate a problem space. For a visual representation of the problem setup,
see Figure 2.1. We describe seismic events (our event of interest θ) in terms of 4 parameters:
latitude, longitude, depth, and magnitude. We define all subsequent prior and posterior
distributions on these 4 parameters. We note that the event origin time may be an additional
parameter, but we use marginalization to remove this variable.

2.3.1. Domain. Unless otherwise stated elsewhere, our experiments examined the lat-
itude range [40,42], the longitude range [-112,108.38], the depth range [0,40] and the mag-
nitude range [.5,3].

2.3.2. Data and Likelihood. Once we have sampled our events θ, we use these
events to generate our data D. We describe D by an arrival time parameter and several P
Phase detection parameters. Our models were built based off the USArray Transportable
Array experiment catalog [1], which contains data observations from sensor arrays in the
latitude/longitutde domain specified in 2.3.1.

The likelihood function for P Phase detection is a Gaussian Process error model with
station correlation of 147.5 km. Events with smaller magnitudes have smaller probability
of being detected at distant stations.

The likelihood model for arrival time is built using predicted wave travel time µp, stan-
dard deviation σp, correlation matrix ΓGP , and an independent and identically distributed
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Algorithm 1 Expected Information Gain (EIG) Calculation

Result: Information gain, I (S | θ), for individual events, θ, and total EIG, I (S), given
sensor configuration, S

1: Construct the set of plausible events θ′ ∈ Θ with parameters: locations L′, depth x′,
and magnitudes m′ such that θ′ ∼ p (θ′):

2: for each event hypothesis, θ′ do
3: Simulate hypothetical datasets of which stations detect an arrival ac-

cording to the distribution D ∼ p (D | L′, x′,m′,S)
4: For each arrival dataset, simulate the arrival time according to the dis-

tribution A ∼ p (A | L′, x′,D,S)
5: for each simulated data set, D = {A,D} do
6: Compute the likelihood p (D | θ,S) of the observation data D = {A,D}

given each event in the event space θ ∈ Θ using the detection and arrival
time likelihood functions

7: Compute the posterior probability of each event from the likelihood,
p (θ | D,S) ∝ p (D | θ,S) p (θ)

8: Compute the KL divergence i.e. information gain for this realization

I (S | θ′,D) =
∫
p (θ | D,S) log p(θ|D,S)

p(θ) dθ

9: Compute the EIG for the event hypothesis, I (S | θ′), as the average over
KL divergences of the simulated data realizations, I (S | θ′,D)

10: Compute the total EIG, I (S), as average across all event hypotheses and simulated
data

noise term with covariance ε21. The predicted travel times are derived from a set of ray
tracing models that consider earth model uncertainty. These terms are defined in [2]. Thus
we first sample θ from the prior distribution, and then sample from the likelihood p(D|θ) to
generate synthetic data observations.

Using this data and likelihood function, we seek to generate a posterior on our θ pa-
rameters given our data and a sensor configuration in order to compute EIG and thus find
the optimal sensor configuration. The final choice we must make is of the prior distribution
on our θ parameters.
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Fig. 2.1: A visual representation of the seismic Bayesian OED problem set up.

3. Importance Sampling. In our application, there are many reasonable
choices of prior from which sampling is prohibitively expensive or even impossible. Thus,
to be able to fully utilize domain knowledge about areas of interest it is important that we
have a way to representatively sample from these challenging priors. Importance sampling
is one such way. It is a method where we draw samples from an importance distribution (a
distribution different from the prior but one that is possible to sample), weight those samples
according to the probability density function (pdf) of our target distribution (prior), and
use these weighted samples to approximate our quantities of interest.

3.1. Theoretical Justification. Mathematically, the EIG of a sensor configuration
can be expressed as an expected value [2]:

I(S) =

∫
I(S|θ′)p(θ′)dθ′ (3.1)

where θ′ ∈ Θ is the set of possible seismic events such that θ′ ∼ p(θ′). Observe that

I(S) = E[I(S|θ′]

=

∫
I(S|θ′)p(θ′)dθ′

=

∫
I(S|θ′)p(θ

′)
q(θ′)

q(θ′)dθ′

Thus, when θ′ ∼ q(θ′), we have that∫
I(S|θ′)p(θ

′)
q(θ′)

q(θ′)dθ′ = E[I(S|θ′)p(θ
′
i)

q(θ′i)
]

≈ 1

N

∑
i

I(S|θ′i)
p(θ′i)
q(θ′i)

and therefore

I(S) ≈ 1

N

∑
i

I(S|θ′i)
p(θ′i)
q(θ′i)

(3.2)
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Thus we can approximate EIG with samples from a distribution different from the prior
distribution. For a detailed discussion of importance sampling see [3].

3.2. Approximation Quality. Of course, choice of importance distribution and num-
ber of samples from the importance distribution can affect the quality of approximation.
We measure quality of approximation by Effective Sample Size (ESS). After performing
the importance sampling process, we can calculate the ESS to determine the ”worth” of
our samples, or, in other words, how effectively our samples achieve the same result that
samples from the actual target distribution would. For example, if we drew 1000 samples
from the importance distribution and calculated an ESS of 200, then our 1000 samples from
the importance distribution are achieving the same result that 200 samples from the target
distribution would. ESS is defined as follows:

ESS =
(
∑
i wi)

2∑
i w

2
i

(3.3)

where wi = p(θi)
q(θi)

are the importance weights.

We chose to examine the approximation quality for a mixture prior distribution that
resembles a fault line (see Figure 3.1). The seismic events which are sampled from this
distribution have four parameters: latitude, longitude, depth, and magnitude. Thus, the
random variable X sampled from the prior is a vector of length 4. Each parameter is
assumed to be independent of the others. The depth and latitude are assumed to be uniform
across the intervals [0, 40] and [40, 42], respectively. The magnitude is assumed to follow
an exponential distribution with rate parameter λ = 10. The longitude is assumed to be
sampled from a mixture distribution comprised of a Gaussian N (−110.19, .125) with weight
.98 and a uniform U(−112,−108.38) with weight 0.02. Thus, the probability of the longitude
is given by

p(long) = .98f(long) + 0.02g(long)

where f and g are the PDFs of N (41, .125) and U(−112,−108.38), respectively. The total
probability of the event is thus given by the product of each individual probability.

Fig. 3.1: Prior distribution used for examining importance sampling approximation quality
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Our importance distribution was chosen to be a standard multivariate normal for the
latitude, longitude, and depth with mean µ = [41,−110.19, 20], representing the center of
the area of interest for each parameter. We chose to sample from the true prior for the
magnitude, and multiplied the evaluations of the PDF for these two distributions to give us
the importance distribution PDF.

To examine how importance distribution affects sample size, we modified the covariance
of the multivariate normal and calculated the EIG and ESS for a fixed set of data and sensors.
In Figure 3.2 we see that as the covariance of the multivariate normal increases, there is a
marked improvement in sample quality that levels off at roughly 3 times the length of the
area of interest. We can conclude that with a prior sufficiently wide, we can achieve a high
enough ESS for a good approximation.
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Fig. 3.2: Effective Sample Size as a function of importance distribution width. As the
covariance of a multivariate Gaussian importance distribution increases, a sample size of
8192 more closely approximates a set of samples from a uniform prior.

4. Effect of Prior Choice on Sensor Placement. We wish to examine how a non-
uniform prior affects the sensor placement and therefore the Expected Information Gain.

4.1. Prior Definition. To sample the latitude and longitude we chose to use a mixture
distribution representing a fault line and a point source as our prior distribution. The
first mixture component was a bivariate Gaussian centered at (40.25,-109) with covariance

matrix

[
.125 0

0 .125

]
. The second mixture component was a 1-dimensional Gaussian in the

longitude direction with mean -110.19 and standard devation .125 multiplied by a uniform
in the latitude direction. The final mixture component was a uniform distribution across
both latitude and longitude. These components were given mixture weights .49, .49, and
.02 respectively. See Figure 4.1 for a visual representation. The depth was sampled from
a uniform distribution and the magnitude was sampled from an exponential distribution
with λ = 10. The total probability for a single event is thus given by the product of the
probability for each parameter.

4.2. Sensor Placement. Using this prior distribution, we used the Bayesian OED
process to place 8 sensors in addition to an initial sensor grid of 9 evenly-spaced sensors
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Fig. 4.1: Fault and point source prior distribution on latitude and longitude. It is comprised
of 3 mixture components: a bivariate Gaussian representing the point source, a univariate
Gaussian in the longitude direction multiplied by a uniform in the latitude direction repre-
senting the fault, and a uniform in both directions representing the background probabilities.

to create a 17-sensor network. We then examined the Expected Information Gain surface
generated by this sensor configuration at various cross sections of the magnitude and depth,
and compared these sensor configurations and EIG surfaces to those generated by using a
uniform prior. These results are visualized in Figure 4.2 and Figure 4.3

When using the fault-and-point-source prior, sensor placement follows the shape of the
prior on the latitude and longitude. We see sensors placed in a horizontal line that follows
the shape of the fault line Gaussian, and which start to drift longitudinally toward the point
source as they get closer to it latitudinally. This is what we would expect to see, especially
on a event dataset that contains mostly low magnitude event such as ours; if the magnitude
of our events is generally low, we would want sensors placed close to the areas of high event
probability to better guarantee detection.

It is clear that events that occur away from the high-density regions of the prior provide
the most information gain, since these are more “surprising” than events that occur in the
high-density regions. As event magnitude increases, EIG becomes stronger. However, EIG
seems to be strongest at depths in the middle of the depth range, weaker at the top of the
depth range, and weakest at the bottom of the depth range.

Compare these results to sensors placed using a uniform prior distribution (see Figure
4.3). We see that, in contrast to the sensor placement generated by the fault-and-point-
source prior, there is no discernible pattern in the sensor configuration placed using the
uniform prior. Further, the information gain generated by uniform sensor configuration is
much lower than that of the configuration placed on the fault-and-box prior. This is not
surprising, given that the uniform distribution is equally dense everywhere. Since our test
prior is very dense in certain areas and has almost no density everywhere else, we would
expect a posterior with density in these areas of low prior density to be more dissimilar to
our test prior than to a uniform distribution.



290 Importance Sampling for Sensor Placement

Fig. 4.2: Cross sections of the Expected Information Gain of the sensor configuration pro-
duced by the Bayesian OED process using the fault-and-point-source prior. Orange dots
are the nine evenly spaced sensors in the initial grid, while the red dots show the sensors
placed to maximize EIG. We see sensor placement clustered around the point source Gaus-
sian and along the fault line Gaussian, as expected. The events that happen at locations
away from the areas of high density in the prior give the most information gain. Events of
higher magnitude are more informative, and events at shallower or deeper depths are less
informative than events at middle depths.
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Fig. 4.3: Cross sections of the Expected Information Gain of the sensor configuration pro-
duced by the Bayesian OED process using a uniform prior. We see no truly discernible
pattern of sensor placement with respect to information gain. The information gain from
this set of priors is also much more uniform and far lower than that of the sensor configu-
ration generated by the fault-and-point-source prior.
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5. Conclusion. In this work, we reviewed a framework for Bayesian optimal experi-
ment design and implemented an importance sampling method for sampling from various
complex prior distributions, allowing us to perform experiments with a variety of new priors
we would not otherwise have been able to use. We examined how well EIG was approxi-
mated when using a prior distribution sampled with this importance sampling method and
found that with a large enough sample size we can achieve reasonably good approximation.
Finally, we examined how prior choice affects sensor placement and EIG, finding that the
choice of prior greatly affects both the EIG of a given sensor network and the actual place-
ment of sensors. Based on these results, we have identified several next steps for future
work:

1. In an attempt to understand exactly how prior choice affects sensor placement, re-
peat the experiment comparing uniform prior to a new prior, this time using a prior
with even higher densities concentrated in two corners of our latitude/longitude
domains and at very low magnitude.

2. To better understand the effect of prior choice on Expected Information Gain, com-
pare the EIG generated by the fault-and-point sensor network when evaluated on
the uniform prior to the EIG generated by the uniform sensor network when eval-
uated on the fault-and-point prior.

3. Examine how number of synthetic data events affects sensor placement.
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A VARIANCE DECONVOLUTION APPROACH TO SAMPLING
UNCERTAINTY QUANTIFICATION FOR MONTE CARLO RADIATION

TRANSPORT SOLVERS

KAYLA B. CLEMENTS∗, GIANLUCA GERACI† , AND AARON J. OLSON‡

Abstract. Radiation transport computations in realistic systems are affected by the presence of un-
certainty sources, e.g. nuclear cross section data and variability in geometric arrangement. Therefore, it is
of paramount importance to statistically characterize the response of quantities of interest by performing
efficient and accurate uncertainty quantification (UQ). Traditionally, UQ is focused on evaluating how the
statistics, e.g. variance, of quantities of interest from a numerical code response are affected by sources of
uncertainty, which can be propagated through several runs of the numerical code. For radiation transport
problems, solved using Monte Carlo particle transport methods, one sample (in the parameter space) of
the quantity of interest is obtained by averaging various particles’ random walks, and, therefore, the non-
deterministic nature of the solver itself introduces an additional source of variance. In this contribution,
we describe how we can obtain efficient sample variance estimators by taking into account the additional
variability introduced by a non-deterministic solver. We provide a rigorous mathematical treatment of these
variance contributions and their sampling estimator counterparts. In particular, we present numerical test
problems in which this variance deconvolution strategy is deployed with and without scattering, in 1D slabs,
and with uncertain material properties. We also demonstrate how our novel estimator is more precise than
a related variance estimator recently introduced in [9].

1. Introduction. Uncertainty Quantification (UQ) is the process of propagating
sources of uncertainty through numerical codes in order to evaluate the statistics of Quan-
tities of Interest (QoIs). It is nowadays well established that truly predictive numerical
simulations can be obtained only when UQ is included in the analysis workflow. Over the
years, several UQ strategies have been proposed to address different challenges; however,
virtually all of them still face challenges when dealing with a large parameter dimension.
Like other computational science applications, radiation transport applications are impacted
by a large number of uncertainty sources, which roughly correspond to a number of uncer-
tainty parameters that scale with the complexity of the models. In this contribution, we
want to consider radiation transport applications in which a Monte Carlo transport method
is used to evaluate the QoI and a sampling strategy, whose convergence is unaffected by
the input parameter dimension, is then used for the UQ forward propagation. We note
that two sources of uncertainty are often considered in UQ, namely epistemic and aleatory
uncertainty. In this contribution we only consider aleatory uncertainties, which are sources
of uncertainty that can be characterized and analyzed by using a statistical approach.

Monte Carlo (MC) methods can be used to solve for QoIs in a radiation transport
problem as an alternate to deterministic methods, which explicitly solve the Boltzmann
transport equation for a complete profile of average particle behavior throughout the phase
space of the problem [2]. Instead, MC methods treat the physical system as a statistical
process, using nuclear data to construct probability distributions that describe the various
ways particles could behave in the system. Individual particles are simulated and their
behavior (e.g. colliding with other particles, exiting the system, etc.) is recorded in tallies
based on what information the user might want. The central limit theorem can then be
applied to extrapolate the tallied behavior of the simulated particles to the average behavior
of all particles in the system, with some associated uncertainty based on the number of
particles simulated. Monte Carlo methods are useful depending on the information needed
by the user or the problem space itself; for example, they can be used to handle complex
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†Sandia National Laboratories, ggeraci@sandia.gov
‡Sandia National Laboratories, aolson@sandia.gov
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geometries more effectively than deterministic solvers [2].

On the other end, UQ can be performed using a variety of strategies such as surrogates
[7], sampling-based strategies [11], or hybrid strategies in which a sampling technique is
used for the construction of a surrogate [1,4,8]. Sampling-based methods are generally more
robust and flexible for applications characterized by noisy QoIs, poor solution regularity and
large input dimensions, and, therefore, in this contribution we focus on them since these
features are well suited for solving radiation transport problems based on MC transport
solvers. Moreover, purely sampling approaches can be incorporated into hybrid approaches
for the surrogate construction without extensive modifications, e.g. in the case of Polynomial
Chaos Expansion (PCE) (see [4, 8]). The main sampling method is Monte Carlo, which is
a provably convergent method for obtaining statistics of problems with arbitrary dimension
and regularity. Notably, MC is also popular due to the possibility of implementing it in an
embarrassingly parallel fashion. Another important feature of MC is its ability to provide an
estimate of the error in resolving statistics of the QoI, e.g. the expected value, and therefore
provide a rigorous mathematical framework to assess its convergence. Our goal in this
contribution is to show how these properties can be used to study the convergence properties
of an MC UQ method applied to an MC radiation transport code. The combination of these
strategies can be in fact interpreted as a nesting of two MC estimators for which convergence
to the true statistics can be studied as a function of the number of both the UQ samples
and radiation transport particles.

The remainder of this paper is organized as it follows. In Section 2, the theoretical
contributions of the paper are introduced. In Section 3, the radiation transport problem
that we want to solve is described along with the definition of the relevant uncertainty
parameters. In Section 4, we present numerical results for several UQ scenarios concerning
the 1D radiation transport problem in which we we corroborate our theoretical findings.
Concluding remarks close the paper in Section 5.

2. Theory for nested sampling estimators. In this section, we describe the math-
ematical foundations behind the use of sampling estimators for MC radiation transport
(RT) codes. We present the nested estimators in a general context and highlight how these
concepts can be applied to other applications in which there is a source of randomness that
cannot be explicitly controlled, i.e. in the presence of a generic non-deterministic code. The
framework that we want to present and analyze here consists of an MC sampling estimator
for the UQ that is used to compute statistics (we will focus here on the variance) of a QoI.

We introduce here some definitions and the notation that will be used in the rest of
the manuscript. We consider for simplicity a generic scalar QoI Q, which is a function
of a vector of input parameters ξ ∈ Ξ ⊆ Rd, where d ∈ N0 is the number of uncertain
parameters. As is typical for UQ, we consider a joint probability density function p(ξ) for
ξ, such that

∫
Ξ
p(ξ) dξ = 1.

Moreover, we are interested in computing (central) moments of Q, such as

E [Q] =

∫
Ξ

Q(ξ) p(ξ) dξ and Var [Q] =

∫
Ξ

(Q(ξ)− E [Q])
2
p(ξ) dξ, (2.1)

with E [Q] and Var [Q] denoting the mean and the variance of Q, respectively.

The MC approximations for the mean and variance can be written by drawing Nξ
samples for the QoI, each of them corresponding to the solution of a possibly expensive
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computational code (the RT in our case), as

E [Q] ≈ 1

Nξ

Nξ∑
i=1

Q(ξ(i))

Var [Q] ≈ 1

Nξ − 1

Nξ∑
i=1

Q(ξ(i))− 1

Nξ

Nξ∑
k=1

Q(ξ(k))

2

.

(2.2)

Both estimators in Eq. (2.2) are unbiased; for more details, the interested reader can refer,
for instance, to [11].

In RT applications, as well in all applications involving non-deterministic codes [5], it is
common to be interested in QoIs that are obtained as statistics of elementary and observable
events. Without a loss of generality, we consider here observing an elementary realization
f(ξ, η) of each code run. We have introduced a random variable η, possibly a random vector,
to notionally represent the code’s stochastic behavior. We note here that the knowledge of
η is neither implied nor required for the following derivation, however it reflects the fact
that multiple realizations of the code will produce event realizations f corresponding to a
different realization of η (even for a fixed UQ random input ξ). On the other hand, we
assume to be able to sample ξ from p(ξ) and to be able to obtain multiple code evaluations
for the same value of ξ. In the RT case, the elementary event f would correspond to a
particle history response (i.e. tally), ξ would be the set of UQ parameters, and η would be
the inaccessible vector of random variables used by the code to generate the particle history
and transport events (absorption, scattering, etc.) during a particle ‘random walk.’

In the following, we consider that Q(ξ) is obtained as an expected value of elementary
events f over multiple realizations of η, generated internally in a non-deterministic code, as

Q(ξ)
def
= Eη [f(ξ, η)] , (2.3)

where Eη [·] is a shorthand used to indicate the expected value over realizations drawn with
respect to the variable η. For RT applications, this corresponds to the expected value
over a number of particle histories. In practice, RT codes can only be queried a finite
number of times for a fixed UQ parameter configuration, so the value of Eη [f(ξ, η)] can
only be approximated. Our contribution here is to understand the effect of the MC RT
approximation of this term and how it propagates and affect the statistics we want to
evaluate for the UQ. An MC estimator can be written for the approximation of Eq. (2.3) as

Q(ξ) = Eη [f(ξ, η)] ≈ 1

Nη

Nη∑
j=1

f(ξ, η(j))
def
= Q̃(ξ), (2.4)

where our approximation Q̃(ξ) also introduces the notation ·̃ to indicate a quantity that
embeds the noise/stochasticity introduced by the MC solver, observed with a finite number
of instances. If we combine Eqs. (2.2) and (2.4), we can obtain an MC-MC estimator for
the expected value of the QoI

E [Q] ≈ 1

Nξ

Nξ∑
i=1

Q(ξ(i)) ≈ 1

Nξ

Nξ∑
i=1

Q̃(ξ(i)) =
1

Nξ

Nξ∑
i=1

 1

Nη

Nη∑
j=1

f(ξ(i), η(j))

 def
= Q̂, (2.5)

where we introduced the notation ·̂ to indicate a sample estimator over the UQ parameter
space.
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Our goal in the next sections is to present several features of this estimator and the
variance estimator, under the assumption that the number of histories Nη is constant for
each UQ sample. Though not strictly required, this simplifies the derivation while still
providing insights into the more general case.

2.1. Statistical properties of the MC-MC estimator. In this section, we discuss
the features of the MC-MC estimator. We start by considering the estimator bias

E
[
Q̂
]

= E

 1

Nξ

Nξ∑
i=1

Q̃(ξ(i))

 = E
[
Q̃(ξ)

]
= Eξ [Eη [f(ξ, η)]] = Eξ [Q(ξ)] , (2.6)

where we explicitly indicate the space over which we compute the expected value1.
The estimator is unbiased due to the linearity of the expected value operators, so it is

important to study its variance to understand the impact of the number of both UQ samples
Nξ and histories Nη. The variance of the MC-MC estimator Eq. (2.5) is

Var
[
Q̂
]

= Var

 1

Nξ

Nξ∑
i=1

 1

Nη

Nη∑
j=1

f(ξ, η(j))


= Var

 1

Nξ

Nξ∑
i=1

Q̃(ξ(i))


=

1

Nξ
Var

[
Q̃
]
.

(2.7)

The variance of the quantity Q̃ is indeed a function of the set of samples drawn for both
ξ and η. In order to evaluate this term, we can turn to the law of total variance

Var [Z(X,Y )] = VarY [EX [Z]] + EY [VarX [Z]] , (2.8)

where X,Y and Z = Z(X,Y ) are three random variables.

Applied to Var
[
Q̃
]
, the law of total variance provides a strategy to decompose this

variance into the variance associated with the UQ parameters ξ and the variance associated
with the set of particle histories η. It is important to remark here that, due to computational
cost limitations, it is not always possible to obtain an approximation of Q̃ with a large
number of histories, in the context of a UQ workflow in which multiple Q̃ should be evaluated
for several values of the input vector ξ. Therefore, it is important to be able to quantify the
additional estimator variance introduced by the MC over η, which can be written as

Var
[
Q̃
]

= Varξ
[
Eη
[
Q̃
]]

+ Eξ
[
Varη

[
Q̃
]]

= Varξ

Eη
 1

Nη

Nη∑
j=1

f(ξ, η(j))

+ Eξ

Varη
 1

Nη

Nη∑
j=1

f(ξ, η(j))


= Varξ [Eη [f(ξ, η)]] + Eξ

[
Varη [f(ξ, η)]

Nη

]
= Varξ [Q] + Eξ

[
σ2
η

Nη

]
= Varξ [Q] + Eξ

[
σ2
RT,Nη

]
,

(2.9)

1Please note that we do not always write explicitly that space and use E [·] in order to simplify the
notation whenever the integration variables are easy to identify by the context.
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where σ2
η is defined as the variance of the histories for one fixed UQ parameter, i.e. σ2

η
def
=

Varη [f(ξ, η)], and σ2
RT,Nη

def
=

σ2
η

Nη
is the corresponding MC RT estimator variance. The

expression above relates the true variance of the QoI with respect to the UQ parameters,
Varξ [Q], and the variability introduced by the use of a finite number of particle histories
in the RT Monte Carlo solver, σ2

RT,Nη
, averaged over the UQ parameter space. Both terms

contribute to the polluted variance Var
[
Q̃
]
, which is the variance that one could observe

by sampling the QoI obtained for each RT calculation using Nη particles. In practice,
without realizing that an additional contribution to the variance is introduced by σ2

RT,Nη
, a

practitioner would overestimate the parameter variance by assuming Varξ [Q] ≈ Varξ
[
Q̃
]
.

Similarly, the variance of the MC-MC estimator for the QoI is obtained by combining
Eqs. (2.7) and (2.9)

Var
[
Q̂
]

=
Varξ [Q] + Eξ

[
σ2
RT,Nη

]
Nξ

. (2.10)

The goal of a precise estimator is to obtain statistics with the lowest possible variance
for a prescribed computational budget. In the case of this MC-MC estimator with the
assumption of constant Nη for all Nξ UQ runs, the total computational budget is C =

Nξ × Nη. Therefore, it is possible to note how the variance Var
[
Q̂
]

is minimized for

Nη = 1, which suggests that the most effective estimator for the mean is obtained by using
a single particle history per UQ simulation2. The interested reader can refer to [4], where
these estimators have been discussed in the context of non-intrusive spectral projection for
polynomial chaos computations. In the next section, we discuss the impact of the number
of particles Nη in the variance estimation.

2.2. Variance deconvolution and practical implementation. The law of total

variance allows for the decomposition of the total variance, namely Varξ
[
Q̃
]
, into two

contributions: the true QoI variance, Varξ [Q], and the average over the UQ parameter

space of the noise introduced by the limited number of particle histories, Eξ
[
σ2
RT,Nη

]
,

which also corresponds to the estimator variance of the RT MC solver. A few considerations
are in order here. In general, we are interested in characterizing the variance of the QoI
Varξ [Q], referred to hereafter simply as Var [Q]. However, we cannot access this quantity

directly. As previously discussed, the QoI Q can be only approximated with Q̃, and this
latter quantity can be considered to be polluted by MC noise. On the other hand, the
possibility of obtaining several evaluations of Q̃ (for several sample of ξ) makes its variance
an accessible quantity, i.e. it can be estimated. Similarly, given multiple particle histories
per UQ sample, it is possible to estimate the term σ2

η = Varη [f ] at each UQ parameter
location, and, consequently, σ2

RT,Nη
.

It follows that the true variance can be written by removing the noise introduced by
the finite number of particles from the polluted variance

Varξ [Q] = Var [Q] = Var
[
Q̃
]
− Eξ

[
σ2
RT,Nη

]
, (2.11)

and its sample estimator counterpart can then be written as

Var [Q] ≈ S2 = S̃2 − µ̂σ2
RT,Nη

, (2.12)

2We note that in the case of Nη = 1, it would not be possible to estimate the term Eξ
[
σ2
RT,Nη

]
.
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where S2 and S̃2 represent the sample estimators for the true (inaccessible) and polluted
variances, respectively and µ̂σ2

RT,Nη
indicates the sample mean of the MC RT transport

variance over the UQ space.
If the event associated with each particle history is available, i.e.

{
f(ξ(i), η(j))

}
with

i = 1, · · · , Nξ and j = 1, · · · , Nη, we can define

S̃2 =
1

Nξ − 1

Nξ∑
i=1

Q̃(ξ(i))− 1

Nξ

Nξ∑
k=1

Q̃(ξ(k))

2

µ̂σ2
RT,Nη

=
1

Nξ

Nξ∑
i=1

σ2
η(ξ(i))

Nη
,

(2.13)

where the term σ2
η is approximated, for each UQ sample, with an additional sample variance

estimator

σ2
η(ξ(i)) ≈ σ̂2

η(ξ(i)) =
1

Nη − 1

Nη∑
j=1

f(ξ(i), η(j))− 1

Nη

Nη∑
k=1

f(ξ(i), η(k))

2

. (2.14)

We note here that a similar variance deconvolution strategy has been also adopted for
radiation problems in [9], in which an embedded implementation has been also discussed un-
der the name of Embedded VAriance DEconvolution (EVADE). More recently, the EVADE
algorithm has been also used to improve the efficiency of RT computations in the presence
of stochastic media in [13]. The primary difference between Eq. (2.12) and the estimator
adopted in [9] is that in [9], the total variance is written for the case of a single particle

history per UQ sample, and therefore the term Var
[
Q̃
]

is always approximated by using

only one particle history. We discuss the properties of both estimators in more detail in the
following section.

2.3. Connection with estimator proposed in [9]. We consider here the relationship
between the estimator proposed in [9] and the estimator derived in Eq. (2.12). We first note
that in the original estimator formulation, only one history per UQ sample was used in the

computation of the variance Var
[
Q̃
]
, effectively approximating Q̃(ξ(i)) = f(ξ(i), η(1)), even

in the case where multiple particle histories were used for other calculations3.
If one particle history per sample is used we can write Eq. (2.12) as

Var [Q] ≈ S2
I = S̃2

I − µ̂σ2
RT,Nη

, (2.15)

where

S̃2
I =

1

Nξ − 1

Nξ∑
i=1

f(ξ(i), η(1))− 1

Nξ

Nξ∑
k=1

f(ξ(k), η(1))

2

. (2.16)

As a first result, we note that the estimators S̃2, S̃2
I and µ̂σ2

RT,Nη
are unbiased estimators,

3We note here that the notation f(ξ(i), η(1)) represents an useful conceptual aid, however the analysis
would be exactly the same if Q̃(ξ(i)) was approximated with a single particle history randomly picked among

the vector
{
f(ξ(i), η(j))

}Nη
j=1
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i.e.

E
[
S̃2
]

= E
[
S̃2
I

]
= Varξ

[
Q̃
]

E
[
µ̂σ2

RT,Nη

]
= Eξ

[
σ2
RT,Nη

]
,

(2.17)

and, therefore, both estimators, S2 and S2
I , are also unbiased estimators of Var [Q].

On the other hand, the variances of the estimators S2 and S2
I can be written as

Var
[
S2
]

= Var
[
S̃2
]

+ Var
[
µ̂σ2

RT,Nη

]
− 2Cov

[
S̃2, µ̂σ2

RT,Nη

]
Var

[
S2
I

]
= Var

[
S̃2
I

]
+ Var

[
µ̂σ2

RT,Nη

]
− 2Cov

[
S̃2
I , µ̂σ2

RT,Nη

]
.

(2.18)

Although we are not providing here a closed-form solution for these terms, it is possible
to infer that the variances associated to the terms involving S̃2

I would be larger than their
counterpart for S̃2 due to the larger number of histories used in the current estimator.

In the remainder of this paper, we provide numerical evidence on how the current
estimator can be used for an efficient unbiased estimation of the parameteric variance of a
RT QoI and how the present formulation can outperform the estimator based on a coarse

approximation of Var
[
Q̃
]

for several UQ scenarios in radiation transport.

3. 1D Radiation Transport Problem. Both the MC-MC estimator developed in
Section 2 and the estimator developed in [9] are applied here to an example radiation
transport problem such that the inner MC loop is a Monte Carlo radiation transport solver
described in further detail in Section 3.2, and the outer MC loop is over the UQ parameter
space. Our goal is to provide an estimate of the variance of the QoI, over the UQ parameter
space, which for this example problem is transmittance through a slab.

3.1. Problem Description. We solve the stochastic, one-dimensional, neutral-
particle, mono-energetic, steady-state radiation transport equation with a normally incident
beam source of magnitude one:

µ
∂ψ(x, µ, ξ)

∂x
+ Σt(x, ξ)ψ(x, µ, ξ) =

∫ 1

−1

dµ′ψ(x, µ′, ξ)
Σs(x, µ

′ → µ, ξ)

2
, (3.1)

0 ≤ x ≤ L; −1 ≤ µ ≤ 1, (3.2)

ψ(0, µ, ξ) = 1, µ > 0; ψ(L, µ, ξ) = 0, µ < 0 (3.3)

where ψ(x, µ, ξ) is angular flux, Σt(x, ξ) is total cross section, Σs(x, µ, ξ) is scattering cross
section, and x, µ, and ξ respectively denote dependence on space, angle, and the vector of
independent uncertain variables. The problem boundaries are fixed, i.e. x ∈ [0, L], as are
the locations between material regions. The problem is solved for two different scenarios:
attenuation only, in which Σs(x, µ, ξ) = 0; and with both attenuation and isotropic scatter-
ing. For both scenarios, the total cross section of each material is assumed to be uniformly
distributed. In the scenario which also involves scattering, the ratio of scattering to total
cross section c is distributed uniformly and independently of Σt. We consider a slab with a
total of M materials, where for each region m the total cross section is defined as

Σt,m(ξm) = Σ̄t,m + Σ∆
t,mξm (3.4)

with Σ̄t,m representing the average total cross section and Σ∆
t,m the deviation from the mean

value. Furthermore, a random parameter ξm ∼ U [−1, 1] is used to represent the variability
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of Σt,m(ξ) ∼ U [Σ̄t,m − Σ∆
t,m, Σ̄t,m + Σ∆

t,m]. For cases with scattering, the scattering ratio is
defined analogously using

cm(ξM+m) = c̄m + c∆mξM+m (3.5)

where ξM+m ∼ U [−1, 1], with m = 1, . . . ,M , is a uniformly distributed random variable.
We note that in the attenuation-only case the problem contains a number of uncertain
parameters equal to the number of materials, i.e. ξ ∈ Rd with d = M , whereas in the case
of both attenuation and scattering d = 2M .

3.2. Monte Carlo Particle Transport and Woodcock Delta Tracking. Though
Equation 3.1 can be thought of as the governing equation for this example problem, Section
1 points out that an estimate of our quantity of interest is obtained not by analytically
or numerically solving the Boltzmann equation, but by averaging the tallied responses of
individual particles [2]. In this example problem, the tallied QoI is transmittance; a response
is tallied when a particle exits the far end of the slab, and a history is terminated when a
particle is either absorbed or scatters to exit back through the beam-incident side of the
slab. The series of random samples used to determine when the particle will reach a position
of interest and what will happen when it does is described stochastically using η, as outlined
in Section 2.

Particles’ ‘random walks’ begin with the initial conditions in Eq. (3.1). They’re moved
through the system by randomly sampling the distance to their next collision4, dc ,

dc =
−ln(Γ)

Σt
, Γ ∈ [0, 1) (3.6)

where Γ is a randomly sampled number on [0,1) [2]. Equation 3.6, and therefore the cal-
culated distance to collision, remains accurate as long as Σt is constant. For homogeneous
media where Σt,m is constant across material m, this is uncomplicated 5. However, for het-
erogeneous media modeled as having different material sections separated by boundaries,
this can become computationally expensive [12]. If the distance to a boundary is less than
the calculated distance to collision and the particle would move from material m to mate-
rial m′, traditional collision-distance tracking methods only move the particle so far as the
boundary location, then re-calculate dc using Σt,m′ [12].

Instead, Woodcock-delta tracking calculates dc using a majorant cross section ΣM ,
which is typically taken to be the largest total cross section the particle might encounter
along its direction of travel. Using the largest possible cross-section renders checking whether
a particle has crossed a material boundary unnecessary; the probability of collision is either
correct or overestimated, making the calculated distance to collision either correct or under-
estimated. This is corrected for by taking the ratio between Σt at the collision site and ΣM
to be the probability of whether the collision has actually occurred. For a particle moved
to a possible collision site in material i, if for a randomly sampled ω ∈ [0, 1),

ω <
Σt,i
ΣM

, (3.7)

the collision has actually occurred and is evaluated accordingly. Otherwise the collision is
rejected as hypothetical (also referred to as “delta-collisions”) and a new distance to collision

4Readers interested in the derivation of the distance to collision can see ref [2], and a detailed derivation
of Monte Carlo transport methods can be found in Ch. 9 of [3].

5Our problem assumes constant Σt,m across material m. However, Σt,m in reality can vary with energy,
temperature, density, or changing material composition [6].
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is sampled [6]. Eventually, the particle will either exit the system via the right-hand-side
and be tallied for transmittance, or exit the system in some other way and not be tallied
for this problem. The transmittance is averaged over all histories in the sample, and this is
then repeated Nξ times for UQ analysis.

3.3. Analytic Solution. For a problem in which Σs(x) = 0, i.e. attenuation-only, an
analytic solution for uncollided transmittance of a normally incident beam through a slab
is

T (ξ) = ψ(L, 1, ξ) = exp

[
M∑
m=1

Σt,m(ξm)∆xm

]
. (3.8)

The pth raw moment for the transmittance, as derived in [10], can be written as

E [T p] =

d∏
m=1

exp
[
−pΣ̄t,m∆xm

] sinh [pΣ∆
t,m∆xm

]
pΣ̄t,m∆xm

, (3.9)

which allows for an exact evaluations of central moments by adopting the well-known trans-
formations from raw to central moments. For instance, for the variance, which is the second
central moment, we can write

Var [T ] = E
[
T 2
]
− E [T ]

2
. (3.10)

Moreover, as it is also possible to compute the variance Eξ
[
σ2
RT,Nη

]
in closed form for

this problem, this example is well suited for verification purposes.

4. Numerical Results. In this section we present the performance of the variance esti-
mators described in the previous sections for two UQ analysis scenarios, namely attenuation-
only and attenuation with scattering. We consider a 1D slab with 3 material sections6 and
fixed boundaries between them. Each problem is solved using a fixed computational cost
of Nξ ×Nη = 1500 particle histories, however we consider different combinations of Nξ and
Nη. Moreover, we run 25 000 repetitions of the estimators, which correspond to realizations
of all random variables, both ξ and η, to generate estimators’ distributions and statistics.

4.1. Scenario 1: Attenuation only. In Table 4.1, we report the right boundary
location, average total cross section, and deviation from the mean for the cross section for
each of the material sections. In Table 4.2, we report the statistics (mean and variance)
for the new estimator S2 and previous estimator S2

I of Var [T ] where T is the calculated
transmittance, obtained over 25 000 repetitions of the estimator and for different combi-
nations of Nξ and Nη. We also compare the calculated variance to the analytic solution
outlined in Section 3.3 using the mean squared error (MSE), which measures both the bias
and variance of the estimator distribution, thus providing combined metrics for both the
accuracy and precision of our estimator. It should be noted again here that no matter the
number of histories run for calculation of other QoI such as transmittance, the previous
method [9] specifies the use of only one history (typically the first one) to calculate total
polluted variance.

6The approach can be extended to higher number of sections without any modifications to the algorithm.
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m = 1 m = 2 m = 3
xR 2.0 5.0 6.0

Σ̄t,m 0.90 0.15 0.60
Σ∆
t,m 0.70 0.12 0.50

Table 4.1: Stochastic Attenuation Problem Parameters

(Nξ, Nη) (100,15) (300,5) (500,3) (750,2) Exact

E
[
S2
]

5.506e-03 5.501e-03 5.519e-03 5.498e-03 5.505e-03
E
[
S2
I

]
5.557e-03 5.446e-03 5.522e-03 5.508e-03 5.505e-03

Var
[
S2
]

4.328e-06 5.172e-06 7.636e-06 1.276e-05 -
Var

[
S2
I

]
4.716e-04 1.392e-04 7.270e-05 4.543e-05 -

Var
[
S2
I

]
/Var

[
S2
]

108.96 26.91 9.52 3.56 -

MSE[S2] 4.328e-06 5.172e-06 7.636e-06 1.276e-05 -
MSE[S2

I ] 4.716e-04 1.392e-04 7.270e-05 4.542e-05 -

Table 4.2: Parametric variance (Var [T ]) results for the stochastic attenuation-only problem
using 25000 repetitions. Note that the previous estimator [9] specifies the use of one history
to calculate total polluted variance, causing the higher variance and mean squared error.

We first note that one would expect the MSE of an unbiased estimator to be equal to
the variance, as it is possible to observe in Table 4.2, corroborating the unbiased nature
of both estimators. We also observe from these results that for the same computational
cost Nξ × Nη = 1500, the variance and MSE of S2 using the novel estimator increase as
the number of histories decreases. We observe the opposite using the previous estimator.
Because the previous estimator’s lower precision results from the use of only one history
to estimate the total variance, as the number of histories gets closer to 1 this effect is
minimized. Even with Var

[
S2
]

increasing as Var
[
S2
I

]
decreasing, each of the four cases

shows a reduction in Var
[
S2
]

when using the new estimator over the old.
In Figure 4.1, we provide the results of the 25 000 repetitions, considering all tested

combinations of Nξ and Nη, for both estimators and we compare them with the exact
solutions which is available for this problems.

The distributions from both methods centering around the analytic solution for Var [T ]
provides additional evidence that both estimators are unbiased. However, Var [T ] calculated
using our novel method has a tighter distribution around the analytic variance, correspond-
ing with its higher statistical reliability. This is also evident from looking at the ratio between
Var

[
S2
I

]
and Var

[
S2
]

reported in Table 4.2, which for this case varies approximately from
3 to 100. This holds even when comparing the estimators’ respective most efficient cases,
Var

[
S2
I

]
(100, 15)/Var

[
S2
]

(750, 2) = 10.50, approximately an order of magnitude of im-
provement. In a practical application, we would only be able to obtain a single realization
for S2 or S2

I ; therefore, it is preferable to use an estimator with a higher precision, i.e.
smaller variance thus higher probability of being closer to the true statistics.

4.2. Case 2: Attenuation and scattering. For this test case, in Table 4.3 we report
the right boundary location, average total cross section and deviation from its mean, and
average scattering ratio cs,m and deviation from its mean for each of the material sections.
The results of the estimators are summarized in Table 4.4. It is worth noting that though
the mean variance appears to systemically change as a function of Nη, this is not the case;
all of the solutions are within the statistical uncertainty, and for this series of repetitions
happened to increase as Nη does. All calculated variances are higher than their attenuation-
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only counterparts, caused by the inclusion of the second stochastic parameter for each of
the materials, the scattering ratio. As with Case 1, Var

[
S2
]

decreases as the number of

histories increases, and Var
[
S2
I

]
behaves inversely. Though Var

[
S2
I

]
/Var

[
S2
]

is higher in
Case 1 than Case 2, we still observe improvement when using the new estimator over the
old, and the ratio of their respective best cases Var

[
S2
I

]
(100, 15)/Var

[
S2
]

(750, 2) = 9.11,
still close to an order of magnitude of difference.

m = 1 m = 2 m = 3
xR 2.0 5.0 6.0

Σ̄t,m 0.90 0.15 0.60
Σ∆
t,m 0.70 0.12 0.50
c̄s,m 0.50 0.50 0.50
c∆s,m 0.40 0.40 0.40

Table 4.3: Stochastic Absorption and Scattering Problem Parameters

(Nξ, Nη) (100,15) (300,5) (500,3) (750,2)

E
[
S2
]

9.689e-03 9.148e-03 8.201e-03 6.587e-03
E
[
S2
I

]
9.879e-03 9.098e-03 8.345e-03 6.591e-03

Var
[
S2
]

9.143e-06 9.830e-06 1.158e-05 1.555e-05
Var

[
S2
I

]
5.481e-04 1.611e-04 8.327e-05 4.965e-05

Var
[
S2
I

]
/Var

[
S2
]

59.95 16.39 7.19 3.19

Table 4.4: Parametric variance (Var [T ]) results for the attenuation and scattering problem
using 25000 repetitions. Note that the previous estimator [9] specifies the use of one history
to calculate total polluted variance, causing the higher variance.

In Figure 4.2, we show the distributions of S2 and S̃2 over 25 000 repetitions for all tested
combinations of (Nξ, Nη). The variance is about an order of magnitude larger compared to
the attenuation-only case, reported in Figure 4.1. This is further evidence of the increased
variability induced by the second parameter for each material section.

Although there is no analytic solution for comparison, it is evident that the variance
distributions are wider when calculated using the previous method compared to those from
the novel one, as expected. We also note that the advantage of the novel estimator grows
as Nη increases since it can take advantage of the additional particle histories to decrease

the variability of the term Var
[
S̃2
]
. Moreover, the contribution of the MC RT estimator

variance is better resolved and, therefore, the polluted variance and the parametric variance
are closer when the number of particle histories increases.
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Fig. 4.1: 1D radiation transport problem with absorption only (d = 3). 25 000 repetitions
for the estimators: the new S2 and the previous S2

I , [9], estimators are reported. Exact
solutions are reported as vertical lines.
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Fig. 4.2: 1D radiation transport problem with absorption and scattering (d = 6). 25 000
repetitions for the estimators: the new S2 and the previous S2

I , [9], estimators are reported.
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5. Conclusions. In this contribution, we focused on the derivation of statistical prop-
erties for nested Monte Carlo estimators that can arise in applications involving stochasticity
in the solver. In particular, we focused on radiation transport solvers that rely on a Monte
Carlo method to obtain quantities of interest, e.g. transmittance, by tallying particle histo-
ries. We proposed a variance deconvolution approach which has the potential to improve the
efficiency of parametric variance computations by taking into account the noise introduced
by a limited number of particle histories. First, we demonstrated how the total variance (the
variance of a quantity of interest over the space of UQ parameters and particle histories) is
affected by the variance of a MC radiation transport solver. Second, we designed an unbi-
ased estimator for the parametric variance based on the variance deconvolution. Moreover,
we compared our newly derived estimator with the one previously introduced in [9] and
demonstrated, through a series of numerical tests, that the new estimator has the potential
to yield higher precision results. For the numerical tests, we considered the transmittance
of neutral particles through a 1D slab whose material sections had uncertain properties, i.e.
total and scattering cross sections.

Current research directions include the derivation of a closed-form solution for the esti-
mator variance in order to study the role of the number of UQ samples and particle histories,
efficient parallelization of the method for GPUs, and the integration of this strategy within
larger UQ workflows such as the efficient construction of polynomial chaos expansion surro-
gates, following [4], and stochastic media UQ algorithms such as Conditional Point Sampling
(CoPS) [13].
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BENCHMARKING NEURAL NETWORK ANSÄTZE FOR QUANTUM
CHEMISTRY APPLICATIONS

COLLIN FRINK∗, QUINN CAMPBELL† , CONOR SMITH‡ , ANDREW D. BACZEWSKI§ , AND

TAMEEM ALBASH¶

Abstract. Quantum computers promise to enable the accurate and efficient simulation of certain chal-
lenging many-body systems, where classical computers force the user to choose accuracy or efficiency. As
quantum computers mature it is increasingly critical to develop benchmarks that distinguish their simu-
lation capabilities relative to classical computers. This requires the identification and analysis of classical
algorithms that are in some sense representative of the classical state of the art. Recently, ansätze for
many-body wave functions based on neural networks have been shown to be particularly promising. The
goal of this article is to analyze the accuracy and efficiency of a variety of neural networks for simulating
the ground states of small molecules. Specifically, we compare a relatively simple network architecture
(restricted Boltzmann machines) to a more complex network architecture (PauliNet) that has been studied
elsewhere in the literature and to full configuration interaction (FCI) exact calculations of the energy for a
given basis. For restricted Boltzmann machines, errors and runtimes as functions of the number of hidden
nodes and learning rates are reported.

1. Introduction. Among the most promising applications of quantum computing
technologies appears to be the simulation of physical systems [5,11]. Classical algorithms for
approximating the energies of physical Hamiltonians tend to force a choice between system-
atically improvable accuracy and computational efficiency. Simply put, classical algorithms
that require polynomial resources in the number of degrees of freedom (e.g., electrons, spins,
etc.) deliver accuracies that are difficult (perhaps impossible) to quantify a priori, and those
that deliver quantifiable and improvable accuracy require resources that scale exponentially.
This is a broad and empirical statement and formal results in complexity theory paint
a much more nuanced picture [9, 14], but for the simulation of molecular systems where
high-accuracy experimental thermochemical data and numerous algorithms are available
for comparison this appears to be true. The promise of quantum simulation algorithms is
that they obviate this choice, requiring polynomial scaling quantum resources to achieve
systematically improvable accuracy. Thus we expect that quantum computers will exceed
the capabilities of classical computers at simulating some physical systems at some level of
accuracy. This suggests the question, for a target level of accuracy how large of a quantum
computer will be needed to surpass the abilities of any realistic classical computer? To
answer this question we first need to assess the state-of-the-art in classical algorithms for
simulating ground states of quantum many-body systems.

While there is a wide array of algorithms available for this task, in this work we focus
specifically on stochastic variational algorithms. Variational Monte Carlo algorithms have a
long history of delivering accurate estimates for ground state energies, limited primarily by
the expressivity of the variational ansatz. In recent years, ansätze based on neural networks
have been shown to be especially promising. While the initial work used restricted Boltz-
mann machines [16] in the context of spin Hamiltonians [2], more complex architectures
(PauliNet [6] and FermiNet [15]) have been studied in the context of the electronic struc-
ture problem for small molecules. In this article we examine the performance of restricted
Boltzmann machines (RBMs) for electronic structure problems (see also [4]) by using a
fermion-to-qubit encoding to reframe the electronic structure problem for small molecules
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†Sandia National Laboratories, qcampbe@sandia.gov
‡University of New Mexico, cssmith36@unm.edu
§Sandia National Laboratories, adbacze@sandia.gov
¶University of New Mexico, talbash@unm.edu
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in terms of a spin Hamiltonian. While this architecture is not necessarily as physically in-
tuitive as PauliNet or FermiNet, it provides a straight forward starting point for comparing
the performance of stochastic variational algorithms on classical and quantum hardware.

The contents of this article are arranged as follows. In Section 2, we state the electronic
structure problem, review the supporting software, and describe our methods for solving it.
Section 3 provides results that illustrate the accuracy of this ansatz for different basis sets
and numbers of hidden layers. We conclude with a discussion of the implications of our
findings and future work in Section 4.

2. Methods.

2.1. Problem Statement. We consider the generic electronic structure Hamiltonian
of the form

Ĥ =

Ns∑
pq

hpqâ
†
pâq +

Ns∑
pqrs

vpqrsâ
†
pâ
†
qârâs, (2.1)

where hpq and vpqrs are real-valued coefficient tensors representing the one- and two-body
terms for a given molecular configuration, Ns is the number of spin orbitals, and âp (â†p) is a
fermionic annihilation (creation) operator that acts on vectors in the Fock space generated by
those spin orbitals. The generation of such a Hamiltonian from a description of a molecular
geometry and Gaussian basis set is straight forward [19]. We note that the particular form
of the electronic structure Hamiltonian has the total number of fermions as a good quantum
number, and we will typically focus on a projection of Eq. 2.1 onto a Hilbert space, HNe,Ns ,
with a fixed number of electrons, Ne, occupying the spin orbitals. Specifically, we are
interested in finding vectors in that Hilbert space with a high degree of overlap with the
eigenvector of Ĥ with the least eigenvalue.

To do so, we require a variational ansatz that implicitly or explicitly defines a trial
vector in that Hilbert space as a function of p parameters,

|ψ〉 = |ψ(α1, . . . , αp)〉 ∈ HNe,Ns , (2.2)

where αi is the ith parameter indexed by integers from 1 to p and we will henceforth vectorize
the parameters as α = (α1, . . . , αp). In this article we will consider ansätze generated by
an RBM architecture first introduced for quantum many-body problems in Ref. [2]. Given
such an ansatz, we are interested in estimating the energy

E(α) =
〈ψ(α)|Ĥ|ψ(α)〉
〈ψ(α)|ψ(α)〉 , (2.3)

and specifically finding the minimum value that this functional takes for a particular
parametrization,

E0 = min
α

〈ψ(α)|Ĥ|ψ(α)〉
〈ψ(α)|ψ(α)〉 . (2.4)

The dimension of HNe,Ns is Ne!/Ns!(Ns−Ne)!, so working directly with |ψ〉 in a basis that
spans this space rapidly becomes classically intractable as the number of electrons (i.e., the
size of the molecule) or spin orbitals (i.e., the resolution) increases. Fortunately, stochastic
methods provide us with an efficient means by which we can estimate E0 in spite of the
combinatorial growth of the Hilbert space dimension.

Before proceeding, we review the form of the RBM ansatz, described in Ref. [2],
that we use in this study. The visible layer of the RBM consists of Ns nodes,
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each of which is a weighted (ai) Pauli Z operator (σi,z) describing the occupation
of a single fermionic mode in the computational basis states encoding HNe,Ns =
span (|n1, . . . , nNs〉|ni = (1 + σi,z)/2 ∈ {0, 1}). The single hidden layer of the RBM con-
sists of a variable number of Nh auxiliary spins that are each weighted (bi) and coupled to
all of the visible nodes (Wij). After tracing out the variables in the hidden layer, the RBM
ansatz takes the form

|ψ(ai, bi,Wij)〉 =
∑

n1,...,nNs

2 exp

[∑
i

aiσi,z

]
Nh∏
i=1

cosh

bi +

Ns∑
j=1

Wijσi,z

 |n1, . . . , nNs〉,

(2.5)
where it is evident that α = (ai, bi,Wij) for i ∈ 1, . . . , Ns and j ∈ 1, . . . , Nh, such that there
are p = Ns+Nh+NsNh variational parameters in aggregate. To use this ansatz to describe
the ground state of the electronic structure Hamiltonian in Eq. 2.1, we will need to compute
its coefficients in the Pauli basis so that Eq. 2.3 can be estimated for a particular value of
α.

2.2. Supporting software. For a given molecular geometry we generate an instance
of the second quantized Hamiltonian in Eq. 2.1, and then use the Jordan–Wigner transfor-
mation [8] to map it onto an interacting spin model using the OpenFermion software package
[12]. The resulting spin Hamiltonian, specified in terms of Pauli operators acting on a qubit
Hilbert space, is one of the inputs for a bespoke software package that variationally opti-
mizes the parameters of this ansatz, producing an estimate for E0 in Eq. 2.4. The stochastic
reconfiguration (SR) algorithm [17] is used to do so and described in Section 2.3. We will
also present comparisons to results obtained using the PauliNet package, which instead uses
artificial neural networks in a Slater-Jastrow framework [6]. Full configuration interaction
(FCI) calculations were undertaken using the PySCF software package [18].

2.3. Overview of the solution algorithm. The SR algorithm efficiently finds the
value of α that estimates E0 by iteratively updating α (and the associated wave function)
starting from some initial guess. This particular approach follows the gradient of the energy
functional in Eq. 2.3, requiring the use of the gradient of the RBM ansatz with respect to
its parameters, the specification of which is beyond the scope of this article. Ultimately, a
linear system of equations are defined at each iteration of the SR algorithm, the solution of
which is used to update the value of α. Monte Carlo (MC) sampling is used to efficiently
estimate expectation values of the requisite matrix elements and MINRES-QLP [3] is used to
iteratively solve the equations. The use of an iterative solver allows us to avoid precomputing
and storing the entire SR update matrix, leading to a cost per iteration, in time and memory,
that scales linearly with the number of parameters in our RBM ansatz and the number of
MC samples used to estimate matrix-vector products. We will examine the impact of the
learning rate in the SR algorithm on its performance. Heuristically speaking, the learning
rate is a constant of proportionality that determines the extent to which the solution of the
SR update equations is mixed with the previous value of α to arrive at a new value after
at each iteration [13]. The learning rate is decreased throughout the training and thus we
will later refer to the initial and final values of the learning rate. The total time to solution
will depend on the number of iterations required to reach convergence, which will itself be
a function of the landscape associated with the problem instance, starting guess, and both
learning rates. Unlike the cost per iteration, the total time to solution is not necessarily
linear in the number of parameters or MC samples. We note that it may be advantageous
to ultimately implement an adaptive learning rate solver to avoid manual tuning [1].

3. Results.
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Fig. 3.1: Full configuration interaction calculations of the H2 dissociation curve. The dashed
lines indicate the equilibrium bonding (lower) and fully dissociated (upper) energies for this
molecule. We note that the latter is simply twice the energy of two hydrogen atoms.

3.1. H2 full configuration interaction results. Full Configuration Interaction
(FCI) calculations provide exact solutions for a given basis and, thus, a convenient point
of reference for qualifying the accuracy of the RBM and PauliNet ansätze. In what follows
we will consider the dissociation of molecular hydrogen, H2, chosen for its simplicity and
ubiquity as a benchmark problem. Fig. 3.1 compares FCI results for three different basis
sets that will be subsequently investigated using RBMs: STO-3G, 6-311G, and cc-PVDZ.
4-31G and aug-cc-PVDZ are also included, though we leave studying its performance in the
RBM ansatz to future work.

Notably, the smallest basis set, STO-3G (4 orbitals), does not produce quantitatively
accurate solutions even for such a simple problem. It requires moving to a 6-311G basis (12
orbitals) before we achieve quantitatively accurate results in the dissociated limit. Further
increase in the basis set size to cc-PVDZ basis (20 orbitals) gets closer to the experimental
dissociation energy [7], but we note that a more formal and precise comparison will require
consideration for vibrational, radiative, and relativistic effects [10]. Regardless, the basis
sets under consideration will not always capture the chemistry with high fidelity relative to
experiment, but we can still benchmark the performance of our RBMs within a given basis
accepting that they cannot outperform the FCI result for that basis.

3.2. Initial RBM investigations. Initial investigations into the effectiveness of RBM
ansätze involved calculating the dissociation curves of H2 for some of the basis sets considered
in the previous Section. As described in Section 2.2, once a Jordan-Wigner transformation
is applied to the H2 Hamiltonian, the associated Pauli decomposition is given as input to
the RBM. The structure of the RBM depends on said operators as the number of visible
nodes in the RBM equals the number of qubits needed to span the mapped Hilbert space.
The relevant qubit counts are: 4 (STO-3G), 8 (6-31G), 12 (6-311G) and 20 (cc-PVDZ).
For these results, initial and final learning rates were set at 0.01 and 0.001 respectively,
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Fig. 3.2: Preliminary H2 dissociation curves using RBM as functions of the basis set and
number of hidden units. FCI curve using the cc-PVDZ basis is included in each plot for
comparison to exact results. The initial and final learning rates were 0.01 and 0.001, respec-
tively.

and the number of MC sweeps1 per sample was set at 10, with a total of 200 samples.
Each RBM instance ran for 20,000 iterations. As noted in Section 2.1, we are concerned
with finding the ground state energy for a fixed number of electrons. In the Jordan–Wigner
transformed picture, computational basis vectors corresponding to the same particle number
will correspond to a fixed Hamming weight. However, in this first set of results we do not
constrain the Hamming weight to be conserved and our estimated ground state might not
have particle number as a good quantum number. Fig. 3.2 illustrates the results of this
study, comparing the output of our RBM to the FCI result for the most complete basis set
under consideration (cc-PVDZ).

Within each subplot, we vary the ratio of hidden nodes to visible nodes from 0.5 to 3,
reasonable values for an RBM network structure. Only one unique RBM was used for each
data point, and we report the sample mean of the last 1000 energy values from the training
of said RBM. This helps explain some of the roughness of many of the curves, especially
for the smaller basis sets, and this is found to be smoothed out by running multiple RBMs
per data point in Section 3.5. Note that error bars are the standard deviation of the same
sample, and are used as a measure of convergence. With some isolated exceptions, for all

1A MC sweep is defined as proposing an update for every visible node once.
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Fig. 3.3: Convergence of the 1.25 Å and 1.5 Å separation distance data points from the
cc-PVDZ subplot in Fig. 3.2. The last 1000 values from each plot (of which are averaged to
generate the two data points) are included as inset plots.

basis sets, when the number of hidden nodes is greater than the number of visible nodes
the RBM converges well. The most notable failure to converge is evident on the cc-PVDZ
subplot, at a proton-proton separation of 1.25 Å. Fig. 3.3 contrasts the training convergence
of the cc-PVDZ 1.25 Å data point with a better converged cc-PVDZ 1.5 Å data point.

Both estimates appear to converge well before the last 1,000 iterations that are used in
Fig. 3.2. However, in both plots there are large spikes that are quickly smoothed out after an
iteration or two. Two such spikes occur in the last 1,000 iterations for the 1.5 Å data point,
which increase its error bar. In order to obtain smoother results, either these spikes can be
filtered out as outliers or more RBMs per data point can be run. One other takeaway from
Fig. 3.3 is that the RBMs converge significantly before 20,000 iterations. This is useful for
future calculations not just in reducing computational time, but also in estimating potential
runtimes for more complicated geometries. Fig. 3.4 is a plot of the RBM wall time associated
with the training stage as a function of the basis set and number of hidden nodes for the
results from Fig. 3.2. For each basis set, we observe a linear trend in runtime as a function
of number of hidden nodes because the number of network connections increases linearly in
the RBM with respect to an increase in hidden nodes.

3.3. PauliNet performance. We next compare our RBM ansatz to an ansatz ex-
plored elsewhere in the literature, PauliNet. PauliNet takes advantage of a deep neural net-
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Fig. 3.4: Runtime for performing 20,000 iterations for the H2 benchmark problem (see
Fig. 3.2 for energies), as a function of the ratio of hidden to visible nodes and the basis set.
It is approximately linear in the number of parameters defining the RBM.

work architecture that has been shown to achieve highly accurate results in various quantum
chemistry applications while maintaining computational efficiency [6]. Results for the H2

dissociation curve are included in Fig. 3.5. It is evident that PauliNet outperforms our RBM
in accuracy for all proton-proton separations. However, per H2 data point, Paulinet takes
10,800 seconds (3 hours), averaged over all runs, while the slowest RBM tested took just
over 3,000 seconds. Considering Fig. 3.3 again, 3,000 seconds is likely an overestimate of the
run time needed to achieve the observed accuracy and this suggests that it may be possible
to realize a speedup using RBMs if we can improve their accuracy. It may also be worth
investigating whether the time for PauliNet results can be similarly decrease by examining
convergence plots similar to 3.3. We note that, with a single exception, the PauliNet en-
ergies are just below the FCI values for a cc-PVDZ basis set, which match experimental
values well.

3.4. Determining ideal parameters for training RBMs. Our initial RBM results,
reported in Section 3.2, exhibited irregular convergence and jagged dissociation curves.
We subsequently performed a high-throughput search over input parameters for the SR
algorithm with the goal of finding the optimal parameters for the H2 benchmark problems.
In Fig. 3.6 we examine how the initial and final learning rates used can influence the results
using a cc-PVDZ basis at the equilibrium distance. The optimal learning rate is likely highly
specific to the problem being examined. For this problem, we find that the lowest energies
and standard deviations are achieved with both initial and final learning rates of 0.1 and
0.01.

In Fig. 3.7, we study the impact of using different numbers of samples and sweeps for
each step of the training algorithm. These results are obtained using a 6-311G basis at
the dissociation limit where we know the exact energy that should be reached and can
therefore report error. As the sample size increases, accuracy increases using both measures
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Fig. 3.6: The energy, standard deviation, and time to result as a function of the initial and
final learning rates. We use the cc-PVDZ basis (20 qubits) with 40 hidden units running
for 8000 steps.

of average training. Altering the number of sweeps does not appear to have a clear impact
on the accuracy of results. Unlike our initial results in Section 3.2, we conserve Hamming
weights in these calculations as to constrain the number of electrons.

3.5. Updated H2 dissociation curve. Based on the results in Section 3.4, we se-
lected an initial learning rate of 0.1, a final learning rate of 0.01, a sample size per step of
1,000, and 10 sweeps, and re-examined the problems studied in Section 3.2. The results for
this parametrization are presented in Fig. 3.8, which is intended to be a refined version of
Fig. 3.4. As discussed in Section 3.4, Hamming weight was constrained to 2 (the number
of electrons) in generating Fig. 3.8. Each data point was generated by taking the average
of the last 1000 training values for 5 independent RBMs, and is thus an average over 5000
training samples. Given the previous convergence results, the number of training iterations
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Fig. 3.7: Heatmap of the error in the calculated energy for an H2 system where the H atoms
are separated by 3 Å(i.e. there should be no interaction between the atoms and we know
the energy should be -1.0 Hartree). The heatmaps are an average of 5 different RBMs on
the same problem. We run the RBMs for 8000 training steps with an initial learning rate of
0.1 and final learning rate of 0.01. We use a basis of 6-311g with 12 qubits and 24 hidden
nodes with Hamming weight conservation.

was lowered to 8000.
Compared to Fig. 3.2, the results in Fig. 3.8 are significantly improved by the hyperpa-

rameter tuning arrived at in Section 3.4 and running multiple RBMs per data point. This
improvement is most evident near full dissociation (i.e. > 2.5 Å) for the basis sets 6-31G,
6-311G, and cc-PVDZ, as the initial curves did not converge to the FCI solution whereas the
updated curves do. However, all basis set/hidden node combinations still did not achieve
high precision near the minimum, which is significant because this results in inaccurate un-
derestimated dissociation energies. It is also significant to point out that the STO-3G basis
still appears to struggle at both the equilibrium and dissociated limits but examination of
the FCI results in Fig. 3.1 indicates that the RBM is coming close to the values for that
minimal basis set. For all basis sets, however, averaging multiple RBMs per data point re-
sulted in generally smoother curves and smaller standard deviations, despite decreasing the
number of training iterations from 20,000 to 8,000. Fig. 3.9, then, is another runtime plot
generated for the results in Fig. 3.8. As expected, for all basis sets a linear trend in runtime
is observed when increasing the number of hidden units per qubit (visible unit). Compared
to Fig. 3.4, the runtimes for a single RBM have significantly decreased as expected, due to
both the decreasing in training steps and the constraining of the Hamming weight. We note
that preliminary results suggest that increasing the sample size per step may also improve
the performance of the RBM ansatz and this is a topic of ongoing research.
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4. Conclusions. In this work, we study the performance and tuning of an RBM neural
network ansatz applied to a simple benchmark problem from quantum chemistry, the disso-
ciation of molecular hydrogen. We find that the accuracy and efficiency of this architecture
is highly dependent on the parametrization of the SR algorithm used to find the minimum
energy of a given system, particularly the learning rate and sample size. We demonstrate
smooth dissociation curves for H2, showing systematic improvement based on initial results
derived from a more naive tuning. We further show that by thoroughly examining the pa-
rameter space of optimization, we can improve the accuracy of our results. While we are
generally able to find excellent agreement with the total energy when the two hydrogen
atoms are highly separated, achieving good agreement with FCI results at the equilibrium
bonding distance remains an open problem. While artificial neural networks may prove to be
highly accurate tools for electronic structure theory, their performance is highly dependent
on tuning the hyperparameters properly. The problem of more systematically and reliably
choosing these parameters for larger problem instances will be examined in future work. We
will also examine the performance of the RBM variational ansatz relative to ansätze that
are amenable to implementation on near-term quantum computers.
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AIR-SEA LIGHT: COUPLING ATMOSPHERE AND OCEAN MODELS
THROUGH THE BULK CONDITION

M. GAIEWSKI† , K.C. SOCKWELL‡ , J. CONNORS§ , AND P. BOCHEV¶

Abstract. The Multilayer Thermal Rotating Shallow Water Equations are often used to model weather
and climate [1, 3, 4, 7]. The variables are the velocities, heights, and temperatures (sometimes represented
as buoyancy) of vertically “stacked” layers of fluid with varying densities. The layered model can be used
to represent the stratified ocean-atmosphere system at climatic scales and their interaction. There is a
large discontinuity in the densities at the interface of the atmosphere and ocean, requiring the so called
bulk condition, a homogenization of the boundary layer, to couple the models in an accurate and stable
fashion [2, 9]. In this paper we present a simplified model of the ocean-atmosphere system, based on the
DOE E3SM model, which we call air-sea light. This model is implemented in MATLAB and is intended to
enable rapid testing and prototyping of various coupling methods for the ocean-atmosphere system.

1. Introduction. The Rotating Shallow Water Equations (SWE) are used to model
fluids where the horizontal scale is much larger than the vertical scale. This makes the
Rotating SWE ideal for modeling the ocean and atmosphere, which possess a large ratio
between the horizontal and vertical scales. The equations can be derived from vertically
integrating the Naiver-Stokes Equations, and applying the hydrostatic pressure principle
as well as a mass balance equation. Several variations of the SWE have been developed
to model more complex phenomena in the climate. Some of these include the Multilayer
Rotating SWE, which model stratified fluids, and the Single Layer Thermal Rotating SWE
which include thermal effects [1, 3]. The various varieties of SWE can be viewed as an
approximation to the primitive equations used in global circulation models for the ocean and
atmosphere [1, 3, 4, 7]. The existence of the Hamiltonian framework in the SWE makes the
derivations, and combinations of variations of the various models a rather straight-forward
task. In this report, we will derive a Multilayer Thermal Rotating Shallow Water model
for the ocean and atmosphere. Our goal is to develop and verify in MATLAB a simplified
ocean-atmosphere model, which we will call the air-sea light model, representative of a
simplified global circulation model using data from the Southern Ocean Mesoscale Activity,
(SOMA) test case [3,8]. For this task, the coupling at the interface is of central interest and
the so called bulk condition is utilized in this coupled ocean-atmosphere model [2, 9].

The coupled air-sea light model is being developed for future use in rapidly prototyping
newly developed coupling methods under the CANGA project (Coupling Approaches for
Next Generation Architectures). The model is a stepping stone between coupled advection
diffusion and a full climate model like E3SM (Energy Exa-scale Earth System Model),
with respect to complexity. The MATLAB implementation makes the rapid prototyping of
various coupling methods in the future more viable than using a large code like E3SM, while
the underlying model in air-sea light is still representative of the physics in a coupled ocean
atmosphere model. Therefore the air-sea light model provides a sweet spot in complexity
just right for prototyping methods and proof of concept beyond simple advection-diffusion
models. The code base will also be used to investigate couplings between data-based models
(Reduced order Models - ROMS, Koopman operator based models, Machine learned models,
etc.) with conventional models in a climate and weather prediction context. Once again,
the simplicity of the code base lends itself to rapid development and testing before testing
on larger code based like E3SM.

†University of Connecticut Department of Mathematics, michael.gaiewski@uconn.edu
‡Sandia National Laboratories, kcsockw@sandia.gov
§University of Connecticut Department of Mathematics, jeffrey.connors@uconn.edu
¶Sandia National Laboratories, pbboche@sandia.gov
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2. Derivation of Equations.

2.1. Hamiltonian Framework. Three key elements required to define a Hamiltonian
system are the following: the variables, the total energy or Hamiltonian (H), and the Poisson
tensor (J). Consider the total energy H(h,u, t) of a system as a function of fluid thickness
or “height” h, velocity u, and time t [1, 3]. The Hamiltonian can be used to derive the
equations of motion for variables h and u in the following way. Let v = [h,u] so that
H(h,u, t) = H(v, t). Letting (·, ·)L2(Ω) be the L2 inner product, the time evolution of the
Hamiltonian is given by the chain rule in the sense of Gateaux derivative

dH(v, t)

dt
=

(
∂V

∂t
,
∂H

∂v

)
L2(Ω)

= 0 (2.1)

noting that the evolution is zero by conservation of energy, and that these derivatives are
known as the functional derivatives from variational calculus. The pair of h and u that
satisfy Equation 2.1 must also satisfy the following equation:

∂v

∂t
= J

∂H

∂v
(2.2)

for some unknown operator J , where J is a skew-symmetric matrix [1,3]. J must also satisfy
the Jacobi identity in order for Equation 2.2 to describe a Hamiltonian system [1, 5]. Of
course, Equation 2.2 is the equation of motion, but it can also be interpreted as a condition
on the solutions to Equation 2.1. Solutions which satisfy Equation 2.2 naturally lead to
energy conservation by skew-symmetry of the operator J ,(

∂H

∂v
, J
∂H

∂t

)
L2(Ω)

= 0. (2.3)

We will use this idea of the Hamiltonian framework to derive the Multilayer Thermal Ro-
tating SWE [1,3].

2.2. Multilayer Rotating Shallow Water Equations. The Hamiltonian for the
Multilayer Rotating SWE is

H(h,u, t) =
N∑
j=1

ρj

∫
Ω

hj u2
j

2
+ ghj

b+

N∑
i=j+1

hi +
hj
2

 dx (2.4)

where N is the number of layers, g = 9.81 m/s2 is the gravity acceleration, b is the
bathymetry which contains the bottom topography of the model, k is the unit normal
vector in the Cartesian z direction, f is the Coriolis parameter, and ρj is the density at
layer j [1,3]. The Multilayer Rotating SWE can be derived through the Hamiltonian frame-
work, as in [5]. The derivation requires the functional derivatives and the Hamiltonian; then
the operator J can be inferred. Typically J is inferred using a-priori knowledge of the form
of the desired equation. However, this is especially useful when deriving new models where
the Hamiltonian changes but the J operator remains the same. The functional derivative
of the Hamiltonian with respect to hj is

∂H

∂hj
= ρj

u2
j

2
+ g

j−1∑
i=1

ρihi + ρj

b+

N∑
i=j

hj

 . (2.5)
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Let for notation

Kj =
u2
j

2
(kinetic energy) (2.6)

pj =

j−1∑
i=1

ρihi + ρj

b+

N∑
i=j

hj

 (pressure). (2.7)

Then

∂H

∂hj
= ρjKj + gpj . (2.8)

The functional derivative of the Hamiltonian with respect to uj is

∂H

∂uj
= ρjhjuj . (2.9)

The operator J can now be inferred given that the Multilayer Rotating SWE, [1,3,4,7], are ∂hj
∂t

∂uj
∂t

 =

 − grad ·hjuj

− grad(Kj + g
ρj
pj)− q(hj ,uj)k × hjuj

 (2.10)

where q(h,u) = (k · grad×u+ f)/h is the potential vorticity. The potential vorticity is not
simplified to the total vorticity to achieve the correct form for the Hamiltonian framework.
This leads to the operator Jj having the form

Jj =
1

ρj

 0 − grad ·()

− grad() −q(hj ,uj)k × ()

 . (2.11)

It can be verified that each Jj satisfies the Jacobi identity [1, 5]. The JML operator is
the composite operator for the multilayer equations, and is a direct sum of the blocks Jj ,
therefore the the multilayer equations are also a Hamiltonian system since the direct sum
JML also satisfies the Jacobi identity. This will also be the case for the subsequent multilayer
versions of each Hamiltonian models presented in this work. We will use a similar process
to derive the Single Layer and Multilayer Thermal Rotating SWE.

2.3. Single Layer Thermal Rotating Shallow Water Equations. To account for
thermal effects in the ocean and atmosphere, a third equation representing buoyancy effects
can be included in the Hamiltonian framework for the Rotating SWE. Consider the two
following variables: s = gρ and σ = sh = gρh which are the same variables as buoyancy
(s) and mass-weighted buoyancy (S) as seen in [1]; however, both have been multiplied by
the density ρ̄, which comes from the Boussinesq approximation, where we will let ρ̄ be the
initial density [7]. Observe that σ is a pressure. From [1], the Hamiltonian for the Single
Layer Thermal Rotating SWE multiplied by ρ̄ so we can use the newly defined variables is

H(h,u, t) =

∫
Ω

σh

2
+ σb+ ρ̄h

u2

2
dx. (2.12)

When solving for J , multiplying by a factor of 1/ρ̄ makes this derivation mathematically
equivalent to the derivation in [1], where [1] uses the variables s = g(ρ/ρ̄) and S = gh(ρ/ρ̄)
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and does not multiply J by this scalar. This method is now consistent with that of Sub-
section 2.2 and will be consistent with the derivation of the multilayer case described in
Subsection 2.4. From [1] and using the new variables, the Single Layer Thermal Rotating
SWE are then

∂h
∂t

∂u
∂t

∂σ
∂t

 =


− grad ·hu

− gradK − 1
ρ̄ grad

(
σ
2

)
− σ

ρ̄h grad
(
h
2 + b

)
− q(h,u)k × hu

− grad ·σu

 (2.13)

for K = u2

2 . Using that

∂V

∂t
= J gradvH (2.14)

and that

∂H

∂h
=
σ

2
+ ρ̄

u2

2
,

∂H

∂u
= ρ̄hu,

∂H

∂σ
=
h

2
+ b (2.15)

then we must find a skew-symmetric operator J such that
∂h
∂t

∂u
∂t

∂σ
∂t

 = J


∂H
∂h

∂H
∂u

∂H
∂σ

 = J


σ
2

+ u2

2

hu

h
2

+ b

 =


− grad ·hu

− gradK − 1
ρ̄

grad
(
σ
2

)
− σ

ρ̄h
grad

(
h
2

+ b
)
− q(h,u)k × hu

− grad ·σu

 .

(2.16)
Let

J =
1

ρ̄


0 − grad ·() 0

− grad() −q(h,u)k × () −s grad()

0 − grad ·(s ) 0

 , (2.17)

which can be verified to be skew-symmetric with respect to the L2 inner product and that
J satisfies the Jacobi identity [1, 5]. We will use a similar J to construct the Multilayer
Thermal Rotating SWE.

2.4. Multilayer Thermal Rotating Shallow Water Equations. To derive the
Multilayer Thermal Rotating SWE, we extend the Single Layer Thermal Rotating Shallow
Water Hamiltonian to having multiple layers as follows:

H(h,u, t) =

N∑
j=1

∫
Ω

ρ̄jhj u2
j

2
+ σj

b+

N∑
i=j+1

hi +
hj
2

 dx. (2.18)

However, instead of dividing by a constant density ρ̄, we will divide each layer by ρ̄j , its
corresponding initial density when we formulate the Jj matrix for each layer. Since each σj
and therefore ρj is changing, we use the Boussinesq approximation on each layer. Observe
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that we did not need to use the Boussinesq approximation in Subsection 2.2 as none of the
densities were changing, so ρ̄j always would equal ρj . Observe that

∂H

∂hj
= ρ̄j

u2
j

2
+
σj
2

+

j−1∑
i=1

σi,
∂H

∂uj
= ρ̄jhjuj ,

∂H

∂σj
= b+

N∑
i=j+1

hi +
hj
2
. (2.19)

Using a Jj similar to the J from Equation 2.17, let

Jj =
1

ρ̄j


0 − grad ·() 0

− grad() −q(hj ,uj)k × () −sj grad()

0 − grad ·(sj ) 0

 . (2.20)

It can be verified that each Jj satisfies the Jacobi identity [1, 5]. We can define the JML

operator similar to how way we did in Subsection 2.2, and will satisfy the Jacobi identity
for the same reason. Then we can derive the Multilayer Thermal Rotating SWE as follows:


∂hj
∂t

∂uj
∂t

∂σj
∂t

 = Jj


∂H
∂hj

∂H
∂uj

∂H
∂σj

 =


0 − grad ·() 0

− grad() −q(hj ,uj)k × () −sj grad()

0 − grad ·(sj ) 0





Kj +
σj
2ρ̄j

+ 1
ρ̄j

j−1∑
i=1

σj

hjuj

1
ρ̄j

b+

N∑
i=j+1

hj +
hj
2





=



− grad ·hjuj

−q(hj ,uj)k × hjuj − gradKj − 1
ρ̄j

grad
(σj

2

)
− 1

ρ̄j
grad

(
j−1∑
i=1

σj

)
− σj

hj ρ̄j
grad

b+

N∑
i=j+1

hi +
hj
2


− grad ·σjuj


(2.21)

and we are done.

2.5. Temperature Equations. The temperature of each layer Tj , given in units of
Kelvin, is a key attribute and informative quantity to output from the model. For the air
model, we refer to the Ideal Gas Law pj = ρjRTj , where pj =

∑j
i=1 σi and R = 287 J/(kg

K) is the air gas constant [7]. Then we solve for Tj as follows:

Tj =
pj
Rρj

=

∑j
i=1 σi
Rρj

=
ghj

∑j
i=1 σi

Rσj
. (2.22)

For the ocean temperature, we use the linear equation of state found in [6]:

ρj = ρ0 − α(Tj − T0) + β(Sj − S0). (2.23)

We let β = 0 as we are not considering the salinity terms Sj and S0 in this model. Using
some of the default values in [6], we let α = 0.255 kg/((m3)(◦C)) and T0 = 19◦ C. Lastly, we
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let ρ0 = 1026.5 kg/m3 for the scalar density value used in the Boussinesq approximation [7].
This value is close to the average of the three ocean densities that will be used in the model,
all of which are similar in value motivating the use of the Boussinesq approximation [7].
Solving for Tj in units of Kelvin, gives

Tj =
ρ0

α
+ T0 −

ρj
α

+ 273.1 =
ρ0

α
+ T0 −

σj
αghj

+ 273.1. (2.24)

2.6. Modifying Thermal Variable. The bulk condition given in Equations 4.15-
4.18, is given defined in terms of temperatures and velocities through the vertical diffusion
terms, acting like forcing terms in the interface layers. There are several ways the bulk
condition can be incorporated into the model in Equations 2.21: algebraically manipulating
the bulk condition into buoyancy-like variables, such as s or σ, or adopting a model that is
more like the primitive equations in structure and possesses a temperature tracer equation
instead of a buoyancy equation. Using a temperature based tracer equation instead of a
buoyancy based tracer equation, leads to a more natural enforcement of the bulk conditions
which are defined in terms of temperature. For this reason, we test the coupling by
replacing the buoyancy equation with a temperature tracer equation. Although this breaks
the Hamiltonian structure, we mainly depended on the Hamiltonian structure for derivation
purpose. Additionally, external terms such as forcing, smoothing, and vertical mixing break
the Hamiltonian framework, so the Hamiltonian framework has served its purpose at this
point. The Multilayer Rotating Thermal SWE with temperature tracer equations are given
by


∂hj
∂t

∂uj
∂t

∂(Tjhj)

∂t

 =



− grad ·hjuj

−q(hj ,uj)k × hjuj − gradKj − 1
ρj

grad
(σj

2

)
− 1

ρj
grad

(
j−1∑
i=1

σj

)
− g grad

(
b+

N∑
i=j+1

hi +
hj
2

)

− grad ·Tjhjuj

 ,

(2.25)
and the system must be closed by an appropriate equation of state such as Equations 2.22
and 2.24. Now Tjhj are prognostic variables and σj are diagnostic variables for j = 1, 2, 3.

3. Implementation.

3.1. Description of Model and Input Parameters. Our test models use the do-
main and data from the SOMA test case as described in [3, 8] with a flat bathymetry in
the ocean. The horizontal domain is a circle on the sphere with diameter 1.25 × 106 m,
and the depth of the is given by the flat bathymetry b and the height of atmosphere model
is given by the sum of the fluid thickness in each atmosphere layer. The ocean and atmo-
sphere domains are partitioned in a sense that the bottom topography is flat, and not the
sea surface height. This was done to avoid coupling the pressure terms in the ocean and
atmosphere is this arrangement is typical in coupled climate models. We discretize each
model in space using the so called TRiSK scheme as described in [4]. This is a finite volume
scheme that is formally second order but depends on the mesh quality. It uses centroidal
voronoi tessellations as the mesh on the sphere. The cells are on average 32 km in diameter
on the quasi-uniform mesh. The TRiSK scheme is a staggered scheme and is mimetic so
it maintains a discrete Hamiltonian framework leading to favorable properties. The TRiSK
scheme also reduces the number of velocity variables by only requiring the velocities which
are normal with respect to each grid cell. This is opposed to using both the normal and tan-
gential velocity components and is achieve through the Flux reconstruction operator defined
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Parameter Value (Air) Value (Ocean) Unit Description

b 0 -2500 m Bottom topography (flat)

uj 0 0 m/s Initial velocities for j = 1, 2, 3

ρj [0.6599,0.9803,1.225] [1025;1027;1028] kg/m3 Initial densities

Tj [283.1,293.1,303.1] From ocean temp eq K Initial temperatures

hj From Tj and σj [250,450,1800] m Initial heights

σj gρjhj gρjhj kg/(ms2) For j = 1, 2, 3

Table 3.1: 3-layer Air and 3-layer Ocean Models

in [3], which reconstructs the tangential flux and velocities. The grid used for the numerical
results for each layer of either ocean or atmosphere has 8521 cells, 25898 edges, and 17378
vertices. The boundary conditions in the atmosphere are currently no penetration for the
velocity, which creates an artificial boundary but is sufficient for these first tests. The
height hj and thickness weighted temperature Tjhj are defined on the cells, the normal
component of the velocities with respect the cell edges uj are defined on the edges, and the
potential vorticities q(hj ,uj) are defined on the vertices.

For test cases used in this paper, the model given by Equations 2.25 is implemented
by discretizing spatially as in [4] and by using the time stepping method Runge-Kutta 4
(RK4). We used the numerical data parameters from the SOMA test case [3, 8] in our
models. We consider a 3-layer air model and a 3-layer ocean model. For both models, using
that σj = ρjghj , and that the densities are always chosen initially by the user, the user can
either choose heights initially and the algorithm will find the corresponding σj variables and
temperatures, or the user can choose the σj variables or temperatures for and the algorithm
will find the corresponding heights. We add a drag term in the ocean

Fd =
cdrag

hj
|uj |uj , cdrag = 10−3 (3.1)

as well whenever we have ocean layers as seen in [3]. This does not get applied to air layers.
These additional components are defined in Equations 3.2 and Table 4.1 and applied to 2.25
as seen in Equations 4.19 along with the terms from the bulk condition later. We also add
the horizontal and vertical smoothing to the velocity and tracer equations, Dhuj and Dvuj ,
DhTjhj and DvTjhj [3], defined as

Dhuj = −νu∆2
huj , (3.2)

Dvuj = Km
j ∆vuj (3.3)

DhTjhj = νT∆hTjhj , (3.4)

DvTjhj = Kt
j∆vTjhj , (3.5)

for j = {a, o}, where the various viscosity and mixing values are obtained from [8]. The ∆2
h

term is the thickness-weight h vector-biharmonic operator in the horizontal direction used
in [6], ∆h is the thickness-weighted scalar Laplacian operators in the horizontal direction
from [6], and ∆v is the vertical Laplacian used for vertical mixing in [6].

A description of these two models can be found in Table 3.1. We chose densities similar
to well-known densities across literature. For all of the test cases in this paper, assume we
are always starting at this base model and making any modifications thereafter.

3.2. Verification/Validation of Implementation. We want to verify that the rate
of convergence for our RK4 implementation is correct, which we expect to be approaching
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Parameter Units Description

N N/A Number of Layers (3)
i N/A Index of cells
e N/A Index of edges
j N/A Index of layers
h m Heights on cells
u m/s Velocities on edges
σ kg/(ms2) ρgh
Ai m2 Areas of cells
Ae m2 Areas of edges
Tr N/A Corresponds to “true” solution

Table 3.2: Description of Error Calculation

k Rk

1 3.9070
2 3.9995
3 4.0014
4 3.9990

Table 3.3:
Convergence Re-
sults

4 as the time step size approaches 0. Verifying this correct rate on one test case should
be sufficient to show this. The initial conditions were chosen for the 3-layer model such
that bottom layer had a rotating Gaussian which was in geostrophic balance [3]. The initial
condition for the fluid thickness was chosen to be a Gaussian (G), centered at the midpoint
of the domain, a maximum height of 2 meters and standard deviation 8×1010. The velocity
on the bottom layer was chosen so that the test case was in approximate geostrophic balance:

v3 = − g
w

gradG , (3.6)

where w = 0.00008 [3]. The simulations were run for 600000 seconds, approximately a
week, and the time step ∆tm for ∆t1 = 192, ∆t2 = 96, ∆t3 = 48, ∆t4 = 24, and ∆t5 = 12
all in seconds. In order to verify our code, we looked at the variables hj , vj , and σj for
j = 1, 2, 3 at the final time of 600000 seconds. We used a time step of 1 second as an
over-refined solution, acting in place of a true solution, which is difficult to define on this
particular domain on the sphere. For the other five runs, we calculate the error Em and
rate of convergence Rk as follows:

Em(Um) =

N∑
j=1

(∑
i

(hi,j,m − hi,j,Tr)2Ai +
∑
e

(ue,j,m − ue,j,Tr)
2Ae +

∑
i

(σi,j,m − σi,j,Tr)2Ai

) 1
2

,

(3.7)

Rk = log(Ek(∆tk)/Ek+1(∆tk+1))/ log(∆tk/∆tk+1) : ∆tk > ∆tk+1 (3.8)

where the remaining parameters are defined in Table 3.2. Observe ∆tk/∆tk+1 = 2 for all
k ∈ {1, 2, 3, 4}. Since RK4 is a fourth order method, we expect that Rk → 4 as k moves
from 1 to 4. The results from this are in Table 3.3. We can see that the convergence
asymptotically approaches fourth order in ∆tm, showing we have indeed implemented RK4
correctly.

4. Coupling Ocean and Air at Interface. We now present the numerical results
from the coupled ocean-atmosphere model.

4.1. Bulk Condition. The so called bulk condition is a set of Robin boundary condi-
tions [2,9] that describe the bulk effect of the shear stress of the 2-layer interface dragging on
one another. It is important to note that the current configuration of the ocean-atmosphere
model does not couple the pressures between the two models, which would lead to a very



M.J. Gaiewski, K.C. Sockwell, J.C. Connors, and P.B. Bochev 329

Parameter(s) Value Units Description

z N/A m Positive Cartesian “upwards” direction

ẑ 1 m/s Unit vector in the z direction

Γ N/A N/A Air-sea interface

n̂a, n̂o 1, −1 m/s Unit normal vectors w.r.t. Γ such that n̂a = −n̂o
τ N/A kg/(m2s) Surface wind stress

T N/A s Final time

Q N/A J/m2 Heat flux

ρa, ρo N/A kg/m3 Densities

ua, uo N/A m/s Horizontal velocities

Ta, To N/A K Temperatures

ha, ho N/A m Layer heights

Km
a , Km

o 10−5, 10−5 m2/s Eddy viscosities

Kt
a, Kt

o 10−4, 10−4 m2/s Eddy diffusivities

νu 5× 1013 m4/s Scaling constant

νT 105 m2/s Scaling constant

cpa, cpo 1000, 4190 J/(kg K) Specific heats

CD, CH 10−3, 10−3 N/A Friction parameters

||∆U || ((uo − ua)2)1/2 m/s Exponents are entry-wise operators

Table 4.1: Description of Bulk Condition

restrictive CFL condition from the accompanying gravity wave at the interface. This is
typically done in partitioned ocean-atmosphere models.

ρaK
m
a ∂zua(ẑ · n̂a) = ρoK

m
o ∂zuo(ẑ · n̂o) = τ on Γ× [0, T ] (4.1)

ρac
p
aK

t
a∂z(Taha)(ẑ · n̂a) = ρoc

p
oK

t
o∂z(Toho)(ẑ · n̂o) = Q on Γ× [0, T ] (4.2)

τ = ρaCD||∆U ||(ua − uo) (4.3)

Q = ρac
p
aCH ||∆U ||(Taha − Toho) (4.4)

where the subscripts a and o refer to the air and ocean, respectively, and the other param-
eters are described in Table 4.1:

4.2. How to Insert into Model. The bulk condition gives the four following condi-
tions:

Wind forcing for air: Km
a ∂zua(ẑ · n̂a) = τ/ρa (4.5)

Wind forcing for ocean: Km
o ∂zuo(ẑ · n̂o) = τ/ρo (4.6)

Thermal forcing for air: Kt
a∂z(Taha)(ẑ · n̂a) = Q/(ρac

p
a) (4.7)

Thermal forcing for ocean: Kt
o∂z(Toho)(ẑ · n̂o) = Q/(ρoc

p
o) (4.8)

Now we choose a normal convention for interface by letting nΓ = n̂a = −n̂o. This just puts
negative signs on one side so that the flux is conserved.

Km
a ∂zua = −τ/ρa (4.9)

Km
o ∂zuo = τ/ρo (4.10)

Kt
a∂z(Taha) = −Q/(ρacpa) (4.11)

Kt
o∂z(Toho) = Q/(ρoc

p
o) (4.12)

The bulk condition, a term representing the vertical stress at the interface is introduced as
a boundary condition of the vertical mixing operator Dv for each of the respective equation.
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To demonstrate this, we want to consider taking the discrete Laplacian over N layers of
the same type of fluid. This means we have N variables, one for each layer, and N + 1
interfaces, where the top and bottom maybe contain boundary conditions. Observe that for
a given function F , (which will be uj or Tjhj for j = a, o) then Km

j ∆vF = Km
j ∂z∂zF are

the vertical mixing terms in F . Now consider Fi and hi for i = 1, 2, ..., N are the functions
and heights at the N layers, and consider the discrete partial derivatives

(∂zF )i+1/2 =
Fi − Fi+1

1
2 (hi + hi+1)

(4.13)

where i = 1/2, 3/2, ..., N + 1/2 are the layer interfaces. Now the discrete Laplacians are

(∂z∂zF )i =
∂zFi−1/2 − ∂zFi+1/2

hi
. (4.14)

For the two values that do not exist: ∂zF1/2 and ∂zFN+1/2, we replace them with the bulk
condition. Note that at the bottom of the ocean the boundary condition is represented by
the drag term. Thus, for the coupled model, the bottom layer of air or the top layer of
ocean have boundary conditions on the vertical mixing (vertical stress) that are represented
by the bulk condition terms, which act like forcing terms in these layers. These four terms
now have the correct units and are simplified as follows:

Km
a

∂zua
ha

= −CD
ha
||∆U ||(ua − uo) , (4.15)

Km
o

∂zuo
ho

=
CDρa
hoρo

||∆U ||(ua − uo) , (4.16)

Kt
a

∂z(Taha)

ha
= −CH

ha
||∆U ||(Taha − Toho) , (4.17)

Kt
o

∂z(Toho)

ho
=
ρac

p
aCH

ρohoc
p
o
||∆U ||(Taha − Toho) , (4.18)

where the introduction of the factors 1/ha and 1/ho come from the vertical viscosity. We
now add all of the forcing terms and bulk conditions into Equations 2.25.

∂hj
∂t

=− grad ·hjuj

∂uj
∂t

=− q(hj ,uj)k × hjuj − gradKj −
1

ρj
grad

(σj
2

)
− 1

ρj
grad

(
j−1∑
i=1

σj

)

− g grad

b+

N∑
i=j+1

hi +
hj
2

Dhuj +Dvuj − Fd + δa,j
∂zua
ha

∣∣∣∣
top

+ δo,j
∂zuo
ho

∣∣∣∣
bottom

∂(Tjhj)

∂t
=− grad ·Tjhjuj +DhTjhj +DvTjhj + δa,j

∂z(Taha)

ha

∣∣∣∣
top

+ δo,j
∂z(Toho)

ho

∣∣∣∣
bottom

(4.19)

where δi,j is the Kronecker delta.

4.3. Tests and Results. We have created an air-sea light test case that takes a single
layer of air and a single layer of ocean and couples them together at the interface. For proof
of concept, we would like to provide a thermal forcing in the ocean, which then spins up
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Fig. 4.1: Test Case 1: 1 Hour

the velocity in the atmosphere and ocean models through the coupling terms. We choose a
temperature forcing that gives a larger temperature in the top of the domain so a double-
gyre velocity can be achieved. The difference in temperatures creates a higher pressure in
the top of the domain, and then through geostrophic balance, gives rise to a double-gyre.

To create this test-case, we took the parameters from the bottom layer of the 3-layer air
model and the top layer of the 3-layer ocean model as described in Table 3.1 and coupled
them using the bulk condition. We, however, made the height of the ocean layer 2500 meters
instead of 250 meters. We used a time step of 180 seconds on the air, the ocean, and the
coupling explicitly using the previous time step values tn which are inserted in the coupling
terms in the RK4 method, essentially lagging the bulk terms. The first test was to apply
solar forcing to the ocean layer as follows:

S1 = C1(sin(πdy) + 1)− C2|T2h2|T2h2 (4.20)

where these parameters are defined in Table 4.2. The second term acts an artificial heat
dissipation terms to keep the temperature at a reasonable value. This solar forcing should
create a double gyre in the ocean, as in the SOMA test case, and through coupling, a double
gyre should be created in the air as well [3,8]. Furthermore, we expect to see the air and the
ocean to follow similar patterns to each other over time in velocity, height, and temperature.
We see in Figure 4.1 what the velocities, heights, and temperatures looked like after 1 hour
to show the early effect of the solar forcing on each layer. We see that since the model is
coupled, the solar forcing in the ocean indeed has an effect on the atmosphere. Figure 4.2
shows the solution after 3 days to show the air and ocean each having a double gyre formed
in their velocities. This indeed shows that the coupling is working as the ocean successfully
created a double gyre in an atmosphere that started at rest. This test case serves as a proof-
of-concept to show off the effects of coupling; however, it still needs some fine tuning in order
to achieve more realistic velocities and temperatures in the long run. We present a second
test case to show a coupled model in the long run. We now have applied a thermal restoring
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Fig. 4.2: Test Case 1: 3 Days

Parameter(s) Value Units Description

C1
1

100 N/A Scaling constant
C2

1
752 × 10−10 N/A Scaling constant

r 6371220 m Radius of Earth
l N/A rad Latitude coordinates at cell centers
dy Mr(l − 70π/360) rad For all cells
dY0 1.4684× 106 rad Maximum dy across all cells
dy0 −1.4637× 106 rad Minimum dy across all cells
M 1/(dY0 − dy0) m−1 Scaling constant

Table 4.2: Description of Additional Forcing

force in the ocean and atmosphere. The thermal restoring forces for the atmosphere is

S2 = −10−3(T1 − 283) , (4.21)

and for the ocean is

S3 = −10−3(T2 − (295 + 10 sin(πdy))) . (4.22)

This choice of forcing maintains a desired temperature profile in each domain for long periods
of time, avoiding the fine tuning required for the previous forcing. Once again the ocean
has a sinusoidal based forcing to induce a double-gyre while the atmosphere has constant
forcing to keep the temperature from getting too large or too small. These parameters
are also explained more in Table 4.2. Figure 4.3 shows what this new model looks like
after 1 year. We see in particular that the velocities between the ocean and atmosphere
look similar to each other. Moreover, the model remains stable for the entire year and the
restoring forces keep the temperatures from becoming unrealistic.
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Fig. 4.3: Test Case 2: 1 Year

5. Conclusions. In this proceeding, we derived the Multilayer Thermal Rotating SWE
using the Hamiltonian framework. We have implemented these equations in MATLAB using
the RK4 time-stepping method [1, 3, 4, 7]. Using the data from the SOMA test case, we
constructed a 3-layer air, and a 3-layer ocean model, and verified using the ocean model the
correct RK4 convergence rate to show this implementation works correctly [3, 8]. We then
applied the bulk condition to the air-sea light model and coupled a single layer of air and
a single layer of ocean together at the interface [2, 9]. Future work would entail coupling
together a multilayer model, such as 3 layers of air and 3 layers of ocean.
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PRECIPITATION MODEL AGGREGATION USING OPTIMAL
TRANSPORT

KATHERINE E. GEROT∗ AND KELSEY L. DIPIETRO†

Abstract. In the management of infrastructure, the need for accurate precipitation models is crucial.
For example, precipitation models inform the release of water to maintain safe water levels in reservoirs
during rainfall. Some of the current forecast systems include the North American Mesoscale Forecast System
(NAM), the European Centre for Medium-Range Weather Forecasts (ECMWF), and The Weather Channel
Forecast System (TWC). These forecast systems provide model run predictions on a grid which are used in
aggregation models to predict precipitation events at given locations. Current aggregate models use linear
techniques, either nearest-neighbor or weighted nearest-neighbor, to verify the model predictions against
observed data. This does not provide the most accurate model because precipitation is a more spatially
varied phenomenon than can be measured in a linear system. Our model proposes using optimal transport
and Wasserstein distance to spatially inform the validation between the observed values from Quantitative
Precipitation Estimate (QPE) data and model runs and thus provide more accurate aggregate precipitation
models. The model weights all nearby grid points by calculating the optimal transport cost for each forecast
model using the optimal transport distance that contribute to a weighted regression model which creates a
more informed aggregation model than a standard linear weighting could provide. In this article, we detail
the necessary preprocessing steps required to use the precipitation data in optimal transport models and
provides initial results for the optimal transport based model.

1. Introduction. The National Centers for Environmental Prediction’s (NCEP) Na-
tional Blend of Models (NBM) contains assorted forecast models which use various weather
forecasting techniques. Examples include the Global Ensemble Forecasting System which
generates 21 models to account for uncertainty in weather patterns, the flagship model for
NOAA called the Global Forecast System, and the High-Resolution Rapid Response En-
semble. While ensemble members of the NBM provide a well-rounded aggregated forecast,
using dynamic weighting has been shown to improve forecasting ability [1].

Through our collaborations with the Developmental and Operations Hydrologist and
the Senior Hydrometeorological Analysis and Support Forecaster of the National Oceanic
and Atmospheric Administration’s West Gulf River Forecast Center (NOAA WGRFC), we
have determined there is a need for an aggregation model that can more accurately predict
the magnitude of large precipitation events. According to their internal studies, their models
perform well for precipitation events of less than half an inch, but struggle to obtain high
accuracy forecasts for larger rain events. This is particularly relevant for quickly assessing
and quantifying the impact of precipitation events on hydrologic systems, such as reservoirs.

We propose an optimal transport based machine learning model that can provide addi-
tional accuracy to existing models. The proposed method uses ensemble forecast data paired
with observational data to improve predictive capabilities that can be applied to hydrologic
systems. In particular, the model uses aggregation approaches that combine ensemble fore-
casts according to a set of learned weights that are determined by minimizing the misfit
between the model forecast and observational data in an appropriate norm. Unlike most
aggregate models that use a L2 norm to measure misfit, we propose using the Wasserstein
distance since it integrates both magnitude and spatial shifts in the misfit function and has
show success in wind forecasting [15] and seismic imaging [21].

The structure of the article is as follows. We begin with a brief discussion of optimal
transport theory and its relevance to data driven modeling. In particular, we focus on the
necessary transformations of the source and target data into probability distributions with
equal measure. Then we shift gears to discuss a bulk of the work that has been done for the
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†Sandia National Laboratories, kdpiet@sandia.gov
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model, which entails collecting and processing the model and observational data so that it
can be used by optimal transport algorithms. We finish with a brief discussion on the model
construction and preliminary results of the model. Detailed construction and analysis of the
model is left to future work. We finish with a discussion of the robust data analysis done in
this project and the potential of extending the data analysis to additional model forecasts,
such as the European Centre of Medium-Range Weather Forecasts (ECMWF).

2. Optimal Transport. The theory of optimal transport was originally posed by Gas-
pard Monge as a way to find the optimal way to transport a pile of sand from one location to
another [13]. Mathematically, this is formulated as finding the transportation map between
two probability measures µ,ν in the spaces X,Y , given by the following definition.

Definition 2.1. Transport map: For densities µ, ν in X,Y , respectively, the
transport map T : X → Y is given as ν(T (A)) = µ(A) for all µ measurable sets in
A = {x ∈ X : T (x) ∈ B}.

A schematic of one dimensional transport is given in Figure 2.1

Fig. 2.1: Example of a transport map between two one-dimensional densities µ, ν in X and
Y .

After defining the transport map, the optimal transport problem can be defined as
follows.

Definition 2.2. Optimal transport problem: For µ ∈ X and ν ∈ Y ,

min
T (x)

∫
X

c(x, T (x))dµ(x)

over all µ measurable maps T : X → Y such that ν(T (A)) = µ(A).

The cost function c(x) can be a variety of functions depending on the application,
with the original formulation considering Euclidean cost c(x, y) = |x − y|. There is a
significant amount of theory surrounding solving the optimal transport with quadratic cost
c(x, y) = |x−y|2 [3,4,7,19]. Due to more robust theory and more straight forward numerical
approximation, this work focuses on utilizing optimal transport with quadratic costs to
improve discrete precipitation aggregation models.

2.1. Discrete optimal transport. Discrete optimal transport is extensively covered
in [18] and this section gives a brief summary to better contextualize its use for meteorolog-
ical applications. The discrete optimal transport problem is defined as,

Definition 2.3. Discrete optimal transport: For discrete distributions µ =
1
n

∑n
i=1 δxi and ν = 1

n

∑n
j=1 δyj , the optimal transport matrix is the solution to the mini-
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mization problem

γ? =
∑

arg mini,j

γi,jMi,j (2.1)

such that γ1 = µ; γT 1 = ν, γ ≥ 0, (2.2)

where Mi,j is the associated cost matrix of moving mass from xi to yj.
The numerical solution to the optimal transport problem is quite complex and is a large

area of computational research [17]. The pseudo-code provided in Figure 2.2, gives the
basics for computing the 1D discrete Wasserstein distance, which is straightforward but has
poor scaling as data sets get larger. Since we aim to use optimal transport in to the large
scale setting of improving precipitation models over the state of Texas, we opt for solving
for the Wasserstein distance through a regularization which equates to finding the Sinkhorn
distance. The Sinkhorn distance is less computationally expensive than directly computing
the solution to the optimal transport problem, which is critical for dealing with the large
amounts of precipitation data. For the sake of brevity, we refer to the paper [6] and the
references therein for more of the details of computing the solution to optimal transport,
specifically through the Sinkhorn algorithm.

Fig. 2.2: Algorithm 1 calculates Wasserstein metric between source distribution and obser-
vation. The minimization problem on line 6 can be computed using ot.wasserstein 1d
from the Python Optimal Transport package [8]

In summary, optimal transport provides a spatially informed measure for data sets. It
changes the question from how similar are the two data sets in their magnitude to how similar
are the data sets in both magnitude and location. Oftentimes, precipitation predictions may
be off in either of these two metrics, magnitude or location, which motivates using optimal
transport based metrics in an attempt to boost the predictive power of existing models.

3. Precipitation Data for Texas. Before the model can be built, we have to extract
and process the model and validation data. Extracting and processing the model data
is straightforward, since they are stored in simple NetCDF files in a grid format. The
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validation data is more complicated, with multiple types of potential sources. The first
set of validation data (ASOS) is point-wise data measurements taken from sites unequally
scattered around Texas (usually at airports). This discrete set of points was not robust
enough to build a model, since they are unequally distributed across the area of interest.
These ASOS data points may be later used as additional validation data for the model.
The second, more robust set of validation data (QPF) uses subject matter expertise to
build qualitative forecast models on a grid similar to the model data. While this gives us a
gridded set of equally distributed point wise measurements to pull from, it comes at the cost
of a more complex data set that requires more processing before being used in any models.
This section details the processing of these data sets using Python.

3.1. Automated Surface Observation Stations. Automated Surface Observation
Stations (ASOS) are automated systems that record hourly weather conditions, including
precipitation accumulation. These stations provide a validation dataset to compare the
current forecast models and our aggregation model. For example, Figure 3.1 shows stations
within a ten kilometer radius of ASOS T02 near Houston, Texas.

Fig. 3.1: ASOS Stations and TWC/NAM gridpoints surrounding Station T02 in Houston

Using ASOS data as the only observational data for the model poses several issues,
particularly when comparing it to the relatively data rich model predictions. For example,
if one wants to verify model prediction around Houston as seen in Figure 3.1, there are only
5 ASOS sites within a ten kilometer radius of the site. Since ASOS stations are generally
associated with airport sites, this lack of validation data becomes even more prominent in
more rural parts of Texas.

Recall that in order to use an optimal transport based metric 2, the data must be
represented by discrete probability distributions. It is quite straightforward to transform
the NAM and TWC model data into discrete measures using histograms of the data, since
it includes several data points for a given area. The ASOS observations are much more
sparse and creating an associated discrete distribution is significantly more complicated.
In practice, one can build a normal distribution with mean as the amount of precipitation
observed at the ASOS station and standard deviation of the error of the tool that collected
the data. Figure 3.2, shows the associated one dimensional probability distributions of the
section from Figure 3.1 for a selected model run. This distribution is regenerated for every
model run based on the current precipitation observation and fixed tool error.
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Fig. 3.2: Example of one dimensional TWC model and ASOS distributions for a single
model run at Houston. Note that since the TWC model is centered around zero, the model
predicted no rain and the ASOS station observed a little over one millimeter of rain.

It is clear from Figure 3.2 that by decomposing the data into one dimensional distri-
butions based on the precipitation values of the model (NAM and TWC) data, we lose
dependence on the location of the precipitation. This motivates using a different data set
for the observation data set known as the quantitative precipitation estimate (QPE). In-
stead of posing the optimal transport problem between a set of model grid points (NAM and
TWC) to a discrete set of observation points (ASOS), QPE data allows us to reformulate
the optimal transport problem as a map between two dimensional images, thus preserving
the spatial dependence of the model.

3.2. Quantitative Precipitation Estimate Data. As an alternate validation set,
we use the quantitative precipitation estimate (QPE) grid data [11]. This data is gener-
ated through combination of several data sources and subject matter expert knowledge.
The QPE data is public and available for download from the National Center for Atmo-
spheric Research/University Corporation for Atmospheric Research (NCAR/UCAR) Earth
Observing Laboratory (EOL) website.

The data for QPE is developed from both surface measurements and reflectivity mea-
sured by nearly 100 WSR-88D radars [2, 11]. Reflectivity is ”[the] measure of the efficiency
of a target in intercepting and returning radio energy. With hydrometeors, it is a function
of the drop size distribution, number of particles per unit volume, physical state (ice or
water), shape, and aspect” according to the Federal Meteorlogical Handbook Number 11,
Part A [5]. The observations and reflectivity are then included in the National Precipitation
Analysis (NPA) which merges them into the Stage IV data mosaic.

The README file that accompanies the QPE data download details that RFCs can man-
ually inject quality control to the precipitation data before its inclusion in the QPE mosaic
[11]. For example, frozen precipitation is inaccurately measured as less than what has fallen
during snow events, since RFCs do not have the equipment to melt frozen precipitation.
This data is not intentionally altered, and the lowered readings are sent to the QPE data
as-is. Because our current data is restricted to Texas during the summer months, these
inaccuracies will not affect its validity. For stations or RFCs that continuously give bad
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readings, they are excluded from the analysis as a further quality control measure [2].

3.3. Data Processing. The forecast data for NAM and TWC are downloaded as
NetCDF files. These are then handled with pandas DataFrames [12] as shown in Figure
3.3. Each column is labeled with a coordinate in degrees and each row is labeled with
a Model Run (ModRun) which consists of the date in ‘yyyymmddhh’ format. For each
Model Run and coordinate pair, the precipitation accumulation is recording in millimeters.
DataFrames allow us to process large pieces of data in an organized format.

ModRun (27.572964, -98.60017) (27.572964, -98.56719) . . .

2019010108 0.137620 0.064159 . . .
2019010109 0.141013 0.201357 . . .
2019010110 0.189398 0.360000 . . .
2019010111 0.341271 0.315510 . . .
. . . . . . . . .

(a) NAM

ModRun (27.572964, -98.60017) (27.572964, -98.56719) . . .

2019010207 1.3 1.3 . . .
2019010208 2.4 2.4 . . .
2019010209 2.1 2.1 . . .
2019010210 1.5 1.5 . . .
. . . . . . . . .

(b) TWC

Fig. 3.3: Subsections of pandas DataFrames for NAM and TWC NetCDF data

The QPE data is downloaded as a GRIB (General Regularly-distributed Information
in Binary form) file for each hour in the requested time period. Using the xarray Python
package [9], we are able to access the data for each gridpoint as illustrated in Figure 3.4 for
each file. The original files contain 987, 601 grid cells (881× 1121) each.

GRIB standard requires latitude (variable name latitude) to range from -90 degrees
south to 90 degrees north which matches our other data. For longitudinal coordinates
(variable name longitude), GRIB standard requires values to be limited to 0 to 360
degrees east. The grid is entirely in the western hemisphere, so the longitudinal data is
between 180 and 360 degrees. More information on GRIB regulations and formatting can
be found in the documentation [20].

Precipitation data (variable tp) is described in units kg ·m−2. This is equivalent to the
forecast models’ precipitation accumulation units of mm as one kilogram of water spread
over a square meter is one millimeter deep. The precipitation grid uses the standard polar
stereographic projection over the Continental United States (CONUS).

Figure 3.5 shows code for converting the gridded QPE data into the same format as
the the forecast models. By performing the conversion and associated preprocessing, the
number of files was compressed from 322 15 MB files to one 16 MB file.
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Fig. 3.4: Visualization of n×m QPE data in GRIB format

1 def gridded_to_df(filename):
2 dataset=nc.Dataset(’’’ Path to folder containing files ’’’)
3 modelrun=filename.split(’.’)[0]
4

5 # Enumerate to preserve index
6 lat = enumerate(list(dataset.variables[’latitude’]).flatten())
7 lon = enumerate(list(dataset.variables[’longitude’]).flatten())
8 tp = enumerate(list(np.ma.getdata(dataset.variables[’tp’])).flatten())
9

10 # Filter data for values we want, preserving index
11 tp_f = [x for x in list(tp_en) if not math.isnan(x[1]) and x[1] != 9999]
12 lat_f = [x for x in list(lat_en) if 27.67 < x[1] < 30.43]
13 lon_f = [(x[0], x[1] - 360) for x in list(lon_en) if 261.4 < x[1] < 265.16]
14

15 # intersection of indicies
16 lat_i = set([x[0] for x in lat_f])
17 lon_i = set([x[0] for x in lon_f])
18 tp_i = set([x[0] for x in tp_f])
19 intersection = lat_i & lon_i & tp_i
20

21 # filter list by intersection ([x in set] is faster than [x in list])
22 lat_fil = [x[1] for x in lat_fil if x[0] in intersection]
23 lon_fil = [x[1] for x in lon_fil if x[0] in intersection]
24 tp_fil = [x[1] for x in tp_fil if x[0] in intersection]
25

26 df = pd.DataFrame([tp_fil], columns = list(zip(lat_fil,lon_fil)))
27 df.insert(0, "ModRun", modelrun, True)
28 return df
29

Fig. 3.5: Python code that converts grid data (in the form of a GRIB file) of the QPE data
into the same format as the models (NAM and TWC).

4. Transport Regions. Beyond breaking up massive datasets, precipitation accumu-
lation over large swaths of land in climates with occasional precipitation events will tend
to skew towards zero. Figure 4.1 shows a major rain event along with the histogram of the
precipitation values for the entire data set. One observes that even with a major storm,
the histogram still has a large zero skew, which will greatly impact the related distributions
needed for calculating the optimal transport distance. Figure 4.2 shows how the histograms
are substantially more meaningful after dividing the larger domain into an arbitrary smaller
domain.
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Fig. 4.1: Precipitation for the NAM and QPE sets with their corresponding histograms for
a model run on June 17, 2019 taken at 13:00.

Fig. 4.2: Precipitation for the NAM and QPE sets with their corresponding histograms for
a model run on June 17, 2019 taken at 13:00 after the domain has been partitioned into 16
arbitrary patches.

Thus, it is important to split larger regions into smaller, more manageable, subsections.
These subsections will not be as granular as the forecast grid, as that would defeat the
purpose of aggregation. Subsectioning land could be performed uniformly using a grid,
but this does not take into account hydrologic or topological features, nor does it rely on
expected precipitation distribution. Using meaningful subsections is important to maintain
the model’s usefulness for hydrologists and infrastructure planners.

The first type of division uses historical precipitation accumulation. Figure 4.3(a) shows
the 24-hour isopluvials (or equivalent rainfall regions) for the state of Texas over the past 100
years. These isopluvials illustrate a radiating pattern of precipitation from the subtropical
coastal region in the east to the arid plains region of west Texas. Figure 4.3(b) shows the
same isopluvials centered on our current region of interest. By centering our model on
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regions of similar historical precipitation, we can hope to avoid an unwanted skew.

(a) state of Texas (b) select region of Texas

Fig. 4.3: Isopluvials of 100-year 24-hour precipitation in inches for Texas. Adapted from
map generated by the Precipitation Frequency Data Server (PFDS) using data from NOAA
Atlas 14 Volume 11 Version 2, Precipitation-Frequency Atlas of the United States, Texas
[16]

The second group of regions are basins which center on rivers in Texas. Figure 4.4(a)
shows the twenty-three United States Geological Survey (USGS) defined river basins while
Figure 4.4(b) shows the NOAA Forecast Groups over Texas. Both region groups were
recommended by WGRFC as potential subsections. River basins provide a valuable form of
subsectioning as they are already used by hydrologists. The Forecast Groups follow similar
boundaries. While our target region within Texas does not contain as many basins as would
be preferred, using a combination of basins or Forecast Groups in addition to historical
precipitation may provide well-informed region bounds for building the model.

(a) 23 USGS-defined Texas River
Basins

(b) Texas Forecast Groups

Fig. 4.4: (a) Generated from Shapefile provided by the Texas Water Development Board;
(b) Generated from Shapefile provided by WGRFC
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5. Model Outline. Once the data has been converted into a NETCDF, grid format,
we can begin to build the precipitation aggregation model based on differences using either
the L2 or Wasserstein W2/Earth Mover’s distance metric. Since the data is formatted as
a grid for both the models and the QPE validation data, the model can be formulated
similarly to comparing pixels between images. The main goal of the model is to create an
aggregate model that is more accurate when compared to the validation data than a single
model on its own. The precipitation aggregation model is still a work in progress, but we
offer a high level outline to illustrate the future directions of this work.

5.1. Aggregate Model. To improve precipitation models for large rainfall events,we
create an aggregate model based on the ridge regression formulation for ocean wave forecast-
ing [10, 14]. In a ridge regression type model, the misfit of each model is measured against
the validation data in an appropriate norm, then the various models are weighted such that
they minimize the misfit to the validation data. This can be formulated using a time series
approach and then used for future predictions.

Typically, a standard L2 norm is used as the misfit function between the model and
observation/validation data. In the context of the precipitation data, this entails finding
the nearest validation point vi to the model grid point mi and calculating the L2 norm
between their precipitation values. This way of weighting the data will ignore any spatial
variability in the data, giving a poor score for the model prediction even if it was off by only
one grid point. For our model, we will use the L2 norm as the benchmark to measure the
performance of an optimal transport based model.

Since the data is still going through prepossessing steps, the optimal transport based
model is a work in progress. Ideally, since optimal transport takes a more global approach
to data than the nearest neighbor or L2 approach, we expect it to have slightly better
performance, particularly for major rain events. As a first pass, we have successfully found
the optimal transport distance using using a Sinkhorn approximation from the Python
optimal transport library [8]. This method essentially dampens any locations where there is
precipitation in the source but not the target, but cannot create additional mass in the target
if there was none in the source (see Figure 5.1). This is consistent with optimal transport
theory and we are working on creating a more specific metric based on optimal transport
that can allow for unbalanced distributions between the source and target measures.
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Fig. 5.1: Precipitation for NAM and QPE for a specific model run (top). The computed
regularized discrete optimal transport from NAM to QPE (bottom left) and from QPE to
NAM (bottom right).

6. Discussion. In this article we have summarized the necessary prepossessing steps
needed to build a precipitation aggregation model utilizing optimal transport theory. We
have included a high level outline of the desired model and its construction and detailed anal-
ysis is left to future work. Beyond model implementation, there are several improvements
that could be made to the data collection process and could be beneficial to subsequent
research, especially as the forecast area grows.

The more forecast models that are included in the aggregation models, the more in-
formed it will be. Currently, the model consists of only NAM and TWC data. In the
future it would be beneficial to also include the Global Forecast System (GFS), the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF), and the High-resolution
Rapid Response (HRRR) model. These are all members of the National Blend of Models
and could provide a larger wealth of information. With such additions, the current calcula-
tions we are performing will have to be optimized within the model and integrated into the
optimal transport model.

When computing the L2 error norm for the forecast models’ data against the QPE
validation data, processing is performed with an extremely large number of operations (over
350 million) per model. For a validation dataset that is m× n and a model dataset that is
p× q, the time complexity is O(mp+mn), because each of m coordinates must be checked
against all p model coordinates to find the nearest neighbor. Once the nearest neighbor is
found, all the gridpoints gmn must be compared against the respective precipitation value
in the model data.

To process 10 days of worth of data, it takes over two hours using parallel computing
on eight cores. The time needed would increase for any calculations more complicated than
Euclidean distance. Possible methods to try and improve this complexity is to compute the
nearest neighbor coordinates once. Because the coordinates in our range do not change, this
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would allow us to more quickly (O(mn)) compare data. Some optimization will need to be
performed in order to allow for the addition of new models without exponentially increasing
the time it takes to compute even basic functions and make the model computationally
tractable for near real time use in the WGRFC.
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TOWARDS INVERSION OF THE BASAL SLIDING COEFFICIENT FOR
THE HUMBOLDT GLACIER IN AN UNCERTAIN ICE SHEET MODEL

TUCKER A. HARTLAND∗, MAURO PEREGO† , AND NOÉMI PETRA‡

Abstract. In order to predict future sea level rise, it is critical that ice sheet model parameters are
chosen so that model predictions are consistent with available data. We consider the problem of inferring
a spatially distributed basal friction parameter, which determines how free the ice sheet is to slide across
the bed supporting it, and determining the associated uncertainty from measured surface velocity data. A
common simplifying assumption when performing the inference is to neglect other sources of uncertainty
in the model e.g., from secondary parameters. This could lead to significant errors in the estimated pa-
rameter. The Bayesian Approximation Error (BAE) theory allows for the accounting of model errors by
approximately pre-marginalizing over secondary parameters to obtain a posterior distribution in the pri-
mary parameter of interest. We investigate the applicability of the BAE framework to large-scale ice sheet
problems. In particular, we consider the Humboldt glacier in Greenland and the ice sheet model MALI. We
demonstrate that a large but affordable number of model discrepancy samples are required to accurately
estimate the Gaussian model discrepancy. While the model discrepancy sample covariance can be efficiently
approximated using a small number of singular values and singular vectors, we find that the rank of the
noise-preconditioned model covariance operator, needed to accurately evaluate the BAE posterior, is large,
which is a computational obstacle for posterior inference and uncertainty quantification.

1. Introduction. The inference of ice sheet model parameters is essential to provide
accurate model predictions, such as sea-level rise, and associated uncertainties. The simplest
and most common approach to initialize ice sheet models is to perform a partial differential
equation (PDE) constrained optimization to invert for the basal friction field by matching
surface velocity observations. However, this neglects other sources of uncertainty, for exam-
ple arising from observational errors in the bed topography or from structural uncertainties
in the model. Several efforts have been made to simultaneously invert for multiple param-
eter fields (see, e.g. [12, 14, 16]), however such approaches are computationally challenging
and care needs to be taken to avoid the mixing of independent parameters (see [16]).

In this work, we explore the use of the Bayesian Approximation Error (BAE) approach,
discussed in [11], to account for model discrepancy due to secondary parameters. The BAE
approach consists of approximately pre-marginalizing the secondary parameters to compute
a normal approximation of the model discrepancy distribution. This allows to account for
the model discrepancy error by adding the discrepancy error to the noise on the observations
when performing the PDE-constrained optimization.

Following [3], we consider potential model errors in the ice rheology that can be “cor-
rected” with an uncertain parameter field, referred to as stiffening factor, that multiplies
the ice viscosity. While in [3] the authors consider a synthetic problem, in this work we
target the Humboldt glacier in Greenland with data coming from observations. We study
the feasibility of the approach for this large-scale problem and identify computational chal-
lenges that arise in particular from the high dimensionality of the data. We use the ice sheet
model MALI (MPAS Albany Land Ice), see [9], and in particular the first-order Stokes flow
model implemented in Albany, see [17, 19]. The BAE approach is implemented in Python
and interfaced with Albany using PyAlbany, a Python wrapper to Albany. We present
strategies for the efficient implementation of the BAE method, including the use of low-rank
approximation of the model discrepancy covariance, and we identify potential barriers for
using this method to improve estimates of the primary parameter.

In Section 2, we review the Bayesian statistical framework for parameter inference with
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governing PDE models, wherein many sources of model uncertainty are neglected. As
demonstrated in [3], failing to account for secondary model uncertainty can lead to an
overconfident statistical parameter inference. We review the BAE framework in which one
constructs an approximate posterior distribution which is sensitive to model uncertainty
and then state the first-order Stokes model that is used here to simulate ice sheet flows.

Section 3 presents computationally efficient strategies for the implementation of the
BAE approach for large-scale problems, specifically compact representation of the model
discrepancy covariance, methods for estimating the variation of sample statistics, low-rank
approximation of the model discrepancy covariance and finally how low-rank approximations
impact the BAE posterior.

Computational results are presented in Section 4. After checking the strong scaling of
the nonlinear ice sheet model evaluations, we show random samples and mean values of the
primary and secondary parameter fields, together with the associated velocity field solutions.
We also compute the sample mean and covariance of the model discrepancy distribution
and investigate their variation as a function of the sample size. Finally, we compute the
spectra of the model discrepancy covariance and the noise-preconditioned model discrepancy
covariance and discuss their impact on the applicability of the BAE approach to improve
the estimate on the primary parameter.

2. Background.

2.1. Bayesian Inversion Framework. Consider the discretization β of a spatially
distributed parameter β, a parameter to model prediction map F̃ and predictions u = F̃ (β).
The tilde symbol in F̃ is used to indicate that this map is approximate. Knowledge of
the parameter is imperfect and the degree of prior parameter uncertainty is encoded in a
probability density function πpr (β). We can update this prior estimate of uncertainty by
using acquired data d ∈ Rd, which we assume is corrupted by additive Gaussian noise η,
with distribution πnoise (η) such that d = F̃ (β)+η. With this assumption the likelihood of

observing the data given a point estimate of the parameter is π (d |β) = πnoise

(
d− F̃ (β)

)
.

Using Bayes’ rule, the unnormalized posterior distribution of the unknown parameter β given
the data d is then

πpost (β) ∝ π (d |β)πpr (β) . (2.1)

With Gaussian prior and noise distributions one has the following formal expression for the
posterior distribution

πpost (β) ∝ exp

[
−1

2
||d− F̃ (β)− η ||2

Γ−1
η
− 1

2
||β − β ||2

Γ−1
pr

]
, (2.2)

where η,Γη are the mean and covariance of the noise, β,Γpr are the prior mean and covari-
ance of β and ||·||M is theM -weighted `2 inner product. The distribution is computationally
challenging to work with as, e.g., the point at which it is maximized, the so-called maximum
a posteriori (MAP) point is the solution of the deterministic inverse problem

βMAP = arg min
β

{
1

2
||d− F̃ (β)− η ||2

Γ−1
η

+
1

2
||β − β ||2

Γ−1
pr

}
. (2.3)

Challenges of exploring the posterior distribution include
1. β is the discretization of a spatially varying field and so its dimension can be made

arbitrarily large with respect to mesh refinement. Consequently, naively computing
statistics of the posterior by quadrature suffers from the curse of dimensionality ;



T.A. Hartland, M. Perego and N. Petra 349

that is, the required number of posterior function evaluations depends exponentially
on the parameter dimension.

2. The posterior distribution is expressed in terms of the model to prediction map F̃ ,
and here, its evaluation requires the numerical solution of a nonlinear PDE.

For these reasons, when working with realistic ice sheet problems, we typically only compute
the MAP point βMAP and an approximate Gaussian covariance of the posterior centered at
the MAP point [10].

2.2. Bayesian Approximation Error Framework. Models are always imperfect,
which can be due to neglecting important physics or having imperfect knowledge of all model
parameters. To move beyond estimating parameter uncertainty due to uncertainty in the
data and prior knowledge, as presented in the previous section, we use the BAE framework
to account for the impact of an imperfectly known secondary parameter φ. Given an exact
parameter to model prediction map F we again assume

d = F (β,φ) + η. (2.4)

In Section 2.1, the parameter to model prediction map F̃ would have been realized by
fixing φ to the nominal value φ̃, that is F̃ (β) = F(β, φ̃), with this one defines the model
discrepancy

d = F̃ (β) +
(
F (β,φ)− F̃ (β)

)
+ η, (2.5)

d = F̃ (β) + ε+ η. (2.6)

Where ε := F (β,φ)− F̃ (β) is assumed to be Gaussian and formally independent of β and
φ. After approximately pre-marginalizing over the noise and secondary parameter [11], one
obtains the so called BAE posterior

πBAE
post (β) ∝ exp

[
−1

2
||d− F̃ (β)− ν ||2

Γ−1
ν
− 1

2
||β − β ||2

Γ−1
pr

]
, (2.7)

where ν = ε+η, Γν = Γε + Γη. If the inequality

trace (Γη) < || ε ||22 + trace (Γε) , (2.8)

holds, then [3, 13] neglecting model discrepancy entirely could significantly impact the ac-
curacy of the posterior inference.

2.3. Ice Sheet Flow Model. Here we briefly recall the nonlinear first-order Stokes
model for the horizontal ice velocity u = (u, v), and refer readers to [19] for more details.

−∇ · (2µ ε̇1) + ρ g
∂s

∂x
= 0, (2.9)

−∇ · (2µ ε̇2) + ρ g
∂s

∂y
= 0, (2.10)

where g is the gravity acceleration, ρ is the ice mass density and s the ice surface elevation

Γs := {(x, y, z) ∈ R3|z = s(x, y)}.
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The strain-rate tensor ε̇ = (ε̇1, ε̇2) ∈ R3×2 is given by

ε̇>1 = (2 ε̇x,x + ε̇y,y, ε̇x,y, ε̇x,z) , (2.11)

ε̇>2 = (ε̇x,y, ε̇x,x + 2 ε̇y,y, ε̇x,z) , (2.12)

ε̇x,x =
∂u

∂x
, ε̇y,y =

∂v

∂y
, ε̇x,y =

1

2

(
∂u

∂y
+
∂v

∂x

)
, (2.13)

ε̇x,z =
1

2

∂u

∂z
, ε̇y,z =

1

2

∂v

∂z
, (2.14)

where the effective viscosity is given by µ = 1
2A
− 1
n ε̇

1
n−1
e exp (φ (x, y)), A is the

temperature-dependent flow rate factor, n is the Glen’s power law exponent, φ is the log
stiffening factor which accounts for rheological modeling errors and

ε̇e =
(
ε̇2x,x + ε̇2y,y + ε̇x,x ε̇y,y + ε̇2x,y + ε̇2x,z + ε̇2y,z

) 1
2 , (2.15)

is the effective strain rate tensor. Stress-free boundary conditions are enforced at surface
elevation, a Dirichlet condition for the velocity is enforced on the lateral boundary, a natural
boundary condition (so-called back-pressure condition) is prescribed at the ice margin, and
the sliding boundary condition

2µε̇1 · n+ exp (β)u = 0, (2.16)

2µε̇2 · n+ exp (β) v = 0, (2.17)

is enforced at the base of the ice sheet. β is the log basal friction coefficient field, which
controls how free the ice is to slide at its base over the bedrock which supports it.

3. Computational Approaches for the Model Discrepancy Sample Covari-
ance. As in [3, 13], we aim to estimate the mean and covariance of the model discrepancy
with Ns random samples, S = {ε(j)}Nsj=1 to have all components necessary to define the
BAE posterior described in (2.7). In order to complete this task in a scalable manner, one
needs to choose a computationally efficient means of performing any necessary subtasks,
which is the focus of this section. We discuss an efficient representation of the model dis-
crepancy sample covariance when the number of samples is significantly less than the size
of an individual sample and a way to measure the variance of the distribution of sample
means and sample covariances. We also discuss a low-rank methodology to reduce the data
needed to define the sample covariance while incurring negligible approximation error with
respect to the variation of the distribution of sample covariances. Finally, an expression for
the error of the action of Γ−1

ν that is incurred by using a low-rank approximation of the
noise-preconditioned model discrepancy covariance object, is given in terms of the spectra
of the noise-preconditioned model discrepancy covariance.

3.1. Sample covariance. Given ns < Ns samples of the model discrepancy, we define
the model covariance as

Γε :=
1

ns − 1
e>e, (3.1)

where e ∈ Rns×d, ei,j :=
(
ε(i) − ε

)
j
, and ε =

∑ns
i=1 ε

(i). For large data dimension d, it is

not feasible to store the dense matrix Γε. In particular, when the number of samples ns
is smaller than the data dimension d, we can efficiently compute the action of the sample
covariance on a vector x in a matrix-free way:

Γε x =
1

ns − 1
e> (ex) . (3.2)
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In Table ?? we summarize the computational complexities of explicitly assembling and
storing the matrix Γε and of adopting a matrix-free approach which require only the storage
of the matrix e. The latter strategy is clearly preferable when ns � d.

dense matrix matrix-free

cost to form (flops) O
(
ns d

2
)

0

matrix-vector product cost (flops) O
(
d2
)

O (ns d)

storage O
(
d2
)

O (ns d)

Table 3.1: Computational costs associated with explicitly assembling the dense sample
covariance matrix, compared to using a matrix-free approach.

We use a matrix-free approach to compute the quantities we need for our study. In
particular, we approximately compute the `2 matrix norm of Γε using the power iteration
method. We compute an approximated truncated singular value decomposition of Γε using
the randomized singular value decomposition method [7], and we approximately compute
its trace using the formula in [2]

trace (Γε) ≈
1

ntr

ntr∑
i=1

ξ>i Γεξi, (3.3)

with ntr standard normal independent identically distributed (i.i.d.) vectors ξi.

3.2. Estimating variation of sample statistics. Finite sampling introduces an er-
ror in the estimates of the model discrepancy covariance that must be quantified. Towards
this end, the variance of the mean and covariance sample statistics is assessed by randomly

selecting, without replacement, disjoint subsets S
(1)
` , S

(2)
` , of S, each with ns elements. Here,

` = 1, . . . , nerr is used to denote the `th realization of this procedure. Sample averages and

covariances are then computed, ε
(1)
` , ε

(2)
` ,

(
Γ(1)
ε

)
`
,
(
Γ(2)
ε

)
`
, which allows us to get a sense

of how much the sample mean and covariance vary by computing

(εmean)` = ||ε(1)
` − ε

(2)
` ||2, (εcov)` = ||

(
Γ(1)
ε

)
`
−
(
Γ(2)
ε

)
`
||2. (3.4)

While S is a given realization of Ns samples of the model discrepancy, S
(1)
` and S

(2)
` are

random subsets of S, so (εmean)` and (εcov)` are also random. To reduce effects from
statistical fluctuations, we determine averages of nerr realizations of the error terms

εmean =
1

nerr

nerr∑
`=1

(εmean)` , εcov =
1

nerr

nerr∑
`=1

(εcov)` . (3.5)

A similar process is used to assess the norm of the first and second order moments of the

model discrepancy. By then computing such quantities for various ns, the size of S
(1)
` and

S
(2)
` , we then verify that in Figures 4.4 and 4.5 that εmean, εcov are O

(
1√
ns

)
as expected

[4].

3.3. Low-rank approximation. As demonstrated in Figures 4.4, 4.5 and 4.6, a sig-
nificant number of model discrepancy samples are needed to ensure that a sample covariance
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is reasonably close to the true model discrepancy covariance. However, its singular values
decay rapidly so that with negligible approximation error one can obtain a small rank k
symmetric approximant Γε ≈ V 1 Λ1 V

>
1 , where V 1 ∈ Rd×k has orthonormal columns and

Λ ∈ Rk×k is diagonal. For inference of β with the BAE posterior (2.7), one needs an effi-
cient means to evaluate the action of Γ−1

ν . Here, we study the impact of utilizing low-rank

approximations of the noise-preconditioned model discrepancy covariance Γ−1/2
η ΓεΓ

−>/2
η ,

on the accuracy of the action of Γ−1
ν as in [15]

Γ−1
ν = (Γη + Γε)

−1
, (3.6)

=
(
Γ1/2
η Γ>/2η + Γε

)−1

, (3.7)

= Γ−>/2η

(
Id + Γ−1/2

η ΓεΓ
−>/2
η

)−1

Γ−1/2
η . (3.8)

Consider the eigenvalue decomposition

Γ−1/2
η ΓεΓ

−>/2
η = V ΛV >, (3.9)

= V 1Λ1V
>
1 + V 2Λ2V

>
2 , (3.10)

where V ∈ Rd×d has orthonormal columns, V 1 ∈ Rd×k contains the first k columns of V ,
and V 2 ∈ Rd×(d−k) has the remaining columns. With this one has(

Id + V ΛV >
)−1

= V (Id + Λ)
−1
V >, (3.11)(

Id + V 1Λ1V
>
1

)−1

= V 2V
>
2 + V 1 (Ik + Λ1)

−1
V >1 , (3.12)

so that the difference incurred by using a rank k truncation of the noise-preconditioned
model discrepancy covariance is(

Id + V ΛV >
)−1

−
(
Id + V 1Λ1V

>
1

)−1

= −V 2D2V
>
2 , (3.13)

(D2)i,j = δi,j
λk+i

1 + λk+i
, (3.14)

and the error is

‖
(
Id + V ΛV >

)−1

−
(
Id + V 1Λ1V

>
1

)−1

‖2 =
λk+1

1 + λk+1
. (3.15)

Furthermore, by relying on the positive semi-definiteness of Γε,Γη, one can show that

‖Γ−1
ν − Γ̃−1

ν ‖2
‖Γ−1
ν ‖2

≤ λk+1

1 + λk+1
, (3.16)

where the approximate inverse of Γν is

Γ̃−1
ν := Γ−>/2η

(
Id + V 1Λ1V

>
1

)−1

Γ−1/2
η . (3.17)

Furthermore, by making use of the Woodbury matrix identity one has

Γ̃−1
ν = Γ−>/2η

(
Id − V 1D1V

>
1

)
Γ−1/2
η , (3.18)

(D1)i,j = δi,j
λi

1 + λi
. (3.19)
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4. Computational Results. In this section we present computational results for the
Humboldt Galcier, see [8] for details about the data sets and observations. We first demon-
strate the strong scaling of the nonlinear first-order Stokes problem, samples of the model
discrepancy and associated fields, reduction of the variation of the sample statistics of the

model discrepancy as O
(

1√
ns

)
, and, finally, spectra of the model discrepancy covariance

and the noise-preconditioned model discrepancy covariance. The computational results are
generated using Albany [17], which is a parallel finite-element multiphysics code that uti-
lizes many of the Trilinos libraries [20]. In particular, we use the recently developed
Python wrapper to Albany, PyAlbany.

4.1. Strong scaling of the ice sheet model MALI. This section presents a strong
scaling study of the nonlinear forward solve on the Humboldt glacier using a fixed problems
size with 185 728 degrees of freedom for the unknown velocity field. The average run times for
5 different number of processes are computing using 2 000 forward simulations and reported
in Figure ??. The assembly and nonlinear solve time both scale strongly.

Fig. 4.1: Average time to solve the nonlinear first-order Stokes equation for the Humboldt
glacier for various numbers of processors.

For more detailed scaling studies of Albany, we refer the reader to [5] and references therein.

4.2. Mean values. In Figure ?? we show the observed surface velocity uobs in [m/yr],
β (exp(β) is in [kPa yr/m]) and surface velocity in [m/yr] generated by the model F

(
β,φ

)
.
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(a) Observed surface velocity
uobs

(b) Modeled surface velocity

F
(
β,φ

) (c) Log basal friction coeffi-
cient β

Fig. 4.2: Observed (a) and modeled (b) surface velocities and the mean log basal friction
coefficient (c).

φ is not shown as it is identically zero, it is also taken as the nominal log stiffening factor
φ̃ which defines the model to prediction map F̃ (β) = F(β, φ̃). β is chosen as the solution
of the PDE-constrained optimization problem with zero log stiffening as described in (4.4).

4.3. Samples of the model discrepancy. To ensure the well-posedness of the
Bayesian problem in infinite dimensions [18], we make use of a bi-Laplacian prior, which
describes a Gaussian process with covariance operator C = A−2, and for which m = A−1s,
provided that the following holds weakly

−γ∆m+ δ m = s, in Ω (4.1)

µm+ ∇m · n = 0, on ∂Ω. (4.2)

Which, when discretized, reads Am = M s, from which one obtains the discrete prior
covariance, Γpr = A−1MA−1. To generate prior samples of e.g., the basal friction field β,
we need the action of L to obtain samples by

β = Lξ + β, (4.3)

where β is the mean, the components of ξ are standard normal i.i.d. and Γpr = LL>. For
this purpose, and for computational efficiency, we estimate L = A−1M sqrt, where M sqrt is
the square root of the lumped mass matrix. Alternatively, one could employ a rectangular
square root decomposition as in [21] to obtain the square root of the mass matrix at increased
cost but with more precision. We make the following choices for the prior distributions, in
order that the correlation length and variance of the samples are in line with our ‘expert
judgment’.

γ 2.0× 101

δ 3.0× 10−2

µ 1.0× 100

Table 4.1: Values of the hyper-parameters that define the bi-Laplacian prior distributions
for β and φ.

With these choices, we have that the correlation length of the prior is about 70 kilometers
and the following random sample realizations
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(a) Log basal friction coeffi-
cient (Sample 1)

(b) Log stiffening factor
(Sample 1)

(c) Model discrepancy (Sam-
ple 1)

(d) Log basal friction coeffi-
cient (Sample 2)

(e) Log stiffening factor
(Sample 2)

(f) Model discrepancy (Sam-
ple 2)

Fig. 4.3: Random samples of the log basal friction coefficient, log stiffening factor and model
discrepancy.

We note that the mean of the bi-Laplacian was chosen as the minimizer of the following
cost functional

J (β) := Jmisfit (β) +R (β) , (4.4)

Jmisfit (β) =
1

2

∫
Γs

(u− uobs)
2

+ (v − vobs)
2

σ2
dS, (4.5)

where R is the regularizing component of J , (u, v) are the x and y components of the
modeled ice sheet velocity field, (uobs, vobs) is interpolated ice sheet velocity measurements
and σ describes the pointwise uncertainty of the measurement data, which make up the
data-misfit cost functional Jmisfit. Upon discretizing by continuous piece-wise linear finite-
elements, we have that the discretized data-misfit cost functional is

1

2

(
F̃ (β)− d

)>
Γ−1
η

(
F̃ (β)− d

)
, (4.6)(

Γ−1
η

)
i,j

=

∫
Ω

ψi ψj
σ2

dV, (4.7)

where {ψi}i is a basis for the finite-element representation of the data d. For computational
efficiency, we again utilize the lumped mass-matrix M lumped to define the diagonal noise
covariance

(
Γ−1
η

)
i,j

= δi,j
(M lumped)i,j

σ2
i

, (4.8)

where δi,j is the Kronecker-delta and σ is a finite-element representation of σ.
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4.4. Model discrepancy sample statistic convergence. In the following, we
present error measures of the first and second order moments of the model discrepancy
and the associated norm measures, as discussed in Section 3.2. Figure 4.4 shows the sample
mean norm and sample mean error, together with the curve y = c/

√
ns, where c is chosen

to fit the sample mean error. Similarly, Figure 4.5 shows the sample covariance norm and
sample covariance error, together with the curve y = c/

√
ns, fitted to the sample covari-

ance error. The norms of the covariance matrices are estimated by power iteration using
the compact representation of the sample covariance operators until two successive norm
estimates have a relative difference of no more than 10−8.

Fig. 4.4: Convergence of the variation of the model discrepancy sample mean with respect
to the number of samples.

Fig. 4.5: Convergence of the variation of the model discrepancy sample covariance with
respect to the number of samples.

In Figure 4.6 we plot the singular values of a sample covariance operator, computed by
the randomized singular value decomposition algorithm [7].
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Fig. 4.6: First 103 singular values of the model discrepancy sample covariance, constructed
with 104 samples.

Table 4.2 shows that the inequality (2.8) holds by a large amount, which indicates that
neglecting the rehological uncertainty in the model could significantly impact the posterior
inference

trace (Γη) 1.329× 105

|| ε ||22 3.231× 105

trace (Γε) 4.316× 106

Table 4.2: Nominal values needed to assess equation (2.8).

4.5. Impact of model discrepancy rank truncation on BAE posterior. Here,
we show the singular values of the noise-preconditioned model discrepancy covariance
Γ−1/2
η ΓεΓ

−>/2
η . As detailed in Section 3.3, a rank k truncated singular value decompo-

sition will not significantly impact the action of Γ−1
ν , provided that the (k + 1)st singular

value is much less than 1. Unfortunately, for this problem, more than a thousand of sin-
gular values (see Figure 4.7) are larger than 1 and so a low-rank approximation of the
noise-preconditioned model discrepancy covariance does not provide a means for accurate
estimation of the action of Γ−1

ν .
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Fig. 4.7: First 3 000 singular values of the noise-preconditioned model discrepancy sample
covariance, constructed with 104 samples.

5. Conclusions and Future Work. In this work we explored the use of low-rank
approximations for large-scale inference with uncertain PDE models within the BAE frame-
work. We demonstrated that a significant number of model samples are needed to accurately
approximate the mean and covariance of the discrepancy error. The singular values of the
sample covariance of the discrepancy error decay rapidly. However, for the problem studied
here, a low-rank approximation of such covariance would lead to large errors in the action
Γ−1
ν and consequently in the inference of the BAE posterior.

The goal of this project was to outline a methodology for scalable BAE posterior in-
ference. While global low-rank methods did not provide an efficient means of posterior
inference, rank-structured methods might be a promising alternative. Rank-structured ma-
trix approximations have been used for covariance matrices in [6] and in inverse problems
governed by PDEs as in [1].

According to BAE theory and, in particular, to the fact that the inequality (2.8) is
satisfied by a large amount in our case, neglecting the secondary parameter φ could lead to
significant errors in the estimation of the primary parameter β. This was shown to be the
case for the synthetic test problems considered in [3]. As part of future work, we plan to
invert simultaneously for β and φ and compare the estimated log basal friction with the one
(β) considered in this work and obtained by neglecting the uncertainty on φ.
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THE SCHWARZ ALTERNATING METHOD FOR MULTISCALE
CONTACT MECHANICS

JONATHAN HOY∗, IRINA TEZAUR† , AND ALEJANDRO MOTA‡

Abstract. Contact is an important research topic in the study of mechanical systems. State-of-the-art
computational methods for simulating mechanical contact are prone to numerical difficulties, leading to
poor performance (in terms of simulation time and accuracy) and a lack of robustness. Here, we describe
and evaluate a novel approach for simulating contact based on the Schwarz alternating method. With
this method, contact constraints are replaced with boundary conditions that are applied iteratively on the
contact boundaries. Results from a canonical impact problem with an exact analytical solution suggest that
the new Schwarz methodology has the potential to offer a significant improvement to established approaches.

1. Introduction. An important aspect of simulating mechanical systems, whe- ther
engineered or natural, is understanding a given system’s behavior when subjected to contact
under normal or abnormal environments (e.g., touching surfaces, sliding, tightened bolts,
impact, etc.). Whereas the methods and tools for simulating the bulk behavior of mechanical
systems are well-developed and mature, the same cannot be said for contact mechanics. This
situation is due to the complexity of the contact phenomenon itself and associated numerical
difficulties. Traditionally, for computational simulation, the contact problem is divided into
two steps: a proximity search, and the enforcement of contact constraints (introduced to
prevent interpenetration of objects coming into contact). The proximity search is primarily
a computer science problem, and has received much attention due to its paramount impor-
tance in other fields such as video game development. In relative terms, less attention has
been devoted to the enforcement step, a multiscale physics phenomenon due primarily to the
microscopic and macroscopic features of contact surfaces. Existing computational methods
available for enforcement suffer from poor performance, both in terms of simulation timeand
solution accuracy, and can lead both to long wait times and to physically incorrect predic-
tions. Although traditionally, most of the computational expense in contact simulations is
associated with the proximity search, there is also room for improvement when it comes to
the efficiency of enforcement algorithms.

This paper introduces and evaluates numerically a fundamentally new approach to sim-
ulating mechanical contact based on the domain decomposition-based Schwarz alternating
method [18]. The new approach leverages our previous work in Schwarz multiscale coupling
[15, 16] and addresses two well-known problems in computational simulation of contact:
(1) the accuracy of the contact constraint enforcement, and (2) the multiple scales involved.
Rather than introducing contact constraints into the variational form of the problem, as done
in conventional contact techniques, e.g., the penalty method [6,11], the Lagrange multiplier
method [1, 3] and the augmented Lagrangian method [1, 20, 26], the Schwarz alternating
method decomposes the problem domain into two or more subdomains and prevents inter-
penetration by applying transmission (boundary) conditions in an iterative and alternating
fashion on the subdomain boundaries. As shown in our earlier work [15, 16], the Schwarz
alternating method has a number of desirable qualities, including its ability to use different
element topologies and time integrators in different subdomains. We demonstrate herein
that these advantageous properties carry over to the contact variant of the method.

Toward this effect, the remainder of this paper is organized as follows. Section 2 de-
scribes the variational formulation of the generic solid mechanics problem considered herein,
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†Sandia National Laboratories, ikalash@sandia.gov
‡Sandia National Laboratories, amota@sandia.gov
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and details its spatio-temporal discretization. Section 3 presents our new Schwarz alter-
nating contact formulation, which relies on non-overlapping subdomains and alternating
Dirichlet-Neumann boundary conditions. Numerical results on a one-dimensional (1D) im-
pact problem with an exact analytical solution are given in Section 4. The use of the 1D
problem allows the investigation of the Schwarz algorithm as a viable contact method, cir-
cumventing other issues that are common to most contact algorithms, such as projection of
fields from one contact surface to another. In addition to the Schwarz alternating method,
we evaluate the performance of three conventional contact algorithms: the implicit and
explicit penalty methods [6, 11], and the explicit Lagrange multiplier method (also known
as the forward increment Lagrange multiplier method) [3]. Although the augmented La-
grangian method [1, 20, 26] is a popular approach for simulating mechanical contact, we do
not consider this method in the present work. Our results demonstrate that the Schwarz
alternating method predicts various quantities of interest (e.g., the contact point displace-
ment, the impact and release time, the system energies) and conserves total energy better
than the conventional contact methods, but introduces some oscillations in the contact point
velocity and contact point forces. Ideas for minimizing these oscillations and general avenues
for future work are discussed in Section 5.

2. Solid mechanics problem formulation. Consider the Euler-Lagrange
equations for a generic dynamic solid mechanics problem in its strong form:

Div P + ρ0 B = ρ0 ϕ̈ in Ω× I. (2.1)

In (2.1), Ω ∈ Rd for d ∈ {1, 2, 3} is an open bounded domain, I := {t ∈ [t0, t1]} is a closed
time interval with t0 < t1, and x = ϕ( X, t) : Ω × I → Rd is a mapping, with X ∈ Ω
and t ∈ I, P denotes the first Piola-Kirchhoff stress, and ρ0 B : Ω→ R3 is the body force,
with ρ0 denoting the mass density in the reference configuration. The over-dot notation

denotes differentiation in time, so that ϕ̇ := ∂ ϕ
∂t and ϕ̈ := ∂2 ϕ

∂t2 . Embedded within P
is a constitutive model, which can range from a simple linear elastic model to a complex
micro-structure model, e.g., that of crystal plasticity.

Suppose that we have the following initial and boundary conditions for the partial
differential equations (PDEs) (2.1):

ϕ( X, t0) = X0, ϕ̇( X, t0) = v0 in Ω,
ϕ( X, t) = χ on ∂Ω ϕ × I, P N = T on ∂Ω T × I. (2.2)

In (2.2), it is assumed the outer boundary ∂Ω is decomposed into a Dirichlet and traction
portion, ∂Ω ϕ and ∂Ω T , respectively, with ∂Ω = ∂Ω ϕ ∪ ∂Ω T and ∂Ω ϕ ∩ ∂Ω T = ∅. The
prescribed boundary positions or Dirichlet boundary conditions are χ : ∂Ω ϕ × I → R3.
The symbol N denotes the unit normal on ∂Ω T .

It is straightforward to show that the weak variational form of (2.1) with initial and
boundary conditions (2.2) is∫

I

[∫
Ω

(Div P + ρ0 B − ρ0 ϕ̈) · ξ dV +

∫
∂ TΩ

T · ξ dS

]
dt = 0, (2.3)

where ξ is a test function in V :=
{
ξ ∈W 1

2 (Ω× I) : ξ = 0 on ∂ ϕΩ× I ∪ Ω× t0∪ Ω× t1}.
Discretizing the variational form (2.3) in space using the classical Galerkin finite element

method (FEM) [10] yields the following semi-discrete matrix problem:

M ü+ f int = f ext. (2.4)
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In (2.4), M denotes the mass matrix, u := ϕ( X, t) − X is the displacement, ü is the
acceleration, f ext is a vector of applied external forces, and f int is the vector of internal
forces due to mechanical and other effects inside the material. In the case of a problem with
mechanical contact that is formulated with traditional contact methods, f ext includes a
contact contribution derived from a contact constraint, which must be enforced effectively.

A fully discrete problem is obtained by applying to (2.4) a time-integration scheme.
A popular choice of time-integration scheme for solid mechanics problems such as those
considered herein is the Newmark-beta method [17]. This scheme can be either first or
second order accurate, depending on the values of its parameters β and γ. Additionally, it
can be either implicit (and therefore unconditionally stable) or explicit, again depending on
the values of β and γ.

3. The Schwarz alternating method. The purpose of the present work is to intro-
duce and evaluate a new approach for simulating mechanical contact. This new approach
is based on the Schwarz alternating method, an iterative domain decomposition-based ap-
proach that was first proposed in 1870 by Schwarz [18]. As mentioned earlier, in [15]
and [16], the authors developed the Schwarz alternating method as a means for enabling
continuum-to-continuum coupling in quasistatic and dynamic solid mechanics, respectively.
In these works, the physical domain Ω is decomposed into two or more overlapping sub-
domains (Figure 3.1(a)), and the governing PDEs are solved within each subdomain in an
iterative fashion, with information propagating through Dirichlet boundary conditions on
the so-called Schwarz boundaries (Γ1 and Γ2 in Figure 3.1(a)). The method was shown to
have a number of advantages over classical monolithic discretizations, enabling the seamless
coupling in a plug-and-play manner of different mesh resolutions, different element types,
and even different time integration schemes without introducing spurious errors or artifacts.
Additionally, the method was shown to have a provable convergence guarantee [15,16].

(a) Overlapping (b) Non-overlapping

Fig. 3.1: Illustration showing overlapping and non-overlapping domain decomposition.

3.1. Formulation. Motivated by the earlier work [15, 16] and the observation that a
contact problem can be viewed as a coupled problem while two or more bodies are in con-
tact, we propose herein to transform the Schwarz alternating method into a fundamentally
new approach for simulating mechanical contact. A typical contact configuration is shown
in Figure 3.1(b). The reader can observe that the configuration of interest involves two
non-overlapping domains, connected by the contact boundary, denoted by Γ in this figure.
Extending the Schwarz alternating method to contact problems hence requires extending
the method’s formulation to the case of non-overlapping subdomains. As first demonstrated
in the late 1980s by Lions [13] and Zanolli et al. [25], obtaining a provably-converging
Schwarz method for the case of non-overlapping domains requires specialized transmission
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conditions. Specifically, whereas Dirichlet-Dirichlet transmission conditions ensure conver-
gence in the case of overlapping domains, a convergent formulation in the non-overlapping
domain case can be obtained by prescribing either Robin-Robin [5,8,9,13,14] or alternating
Dirichlet-Neumann [4, 7, 12, 25] boundary conditions on Γ (Figure 3.1(b)). In the present
formulation, we consider the latter approach, which translates to alternating displacement-
traction boundary conditions for the mechanical problem (2.3).

Consider, without loss of generality, a problem involving two subdomains, denoted by
Ω1 and Ω2, that have come into contact, as depicted in Figure 3.1(b). Once contact has been
detected using a global search algorithm based on specified contact conditions (described
in Section 3.2), we begin the Schwarz iteration process. Following the Schwarz alternat-
ing method for transient solid dynamics [16], the present Schwarz alternating formulation
includes the notion of a so-called “controller time stepper”, which defines a set of global
time-steps, denoted by 4T , at which the subdomains are synchronized (for more details,
see Section 2.2 of [16]). For the specific case of (2.3), two subdomains and a controller time
interval IN , the Schwarz iteration takes the form:

M1 ü
n+1
1 + f int;n+1

1 = f ext;n+1
1

ϕn+1
1 = χ, on ∂ ϕΩ1\Γ,

ϕn+1
1 = ϕn2 , on Γ,


M2 ü

n+1
2 + f int;n+1

2 = f ext;n+1
2

ϕn+1
2 = χ, on ∂ ϕΩ2\Γ,

Tn+1
2 = Tn+1

1 , on Γ.
(3.1)

In (3.1), n = 0, 1, 2, ... denotes the Schwarz iteration number and N denotes the controller
time-step number. We select to develop the alternating Dirichlet-Neumann formulation
of the non-overlapping Schwarz method over the Robin-Robin formulation, as Dirichlet
and Neumann (traction) boundary conditions are readily available in most solid mechanics
codes, e.g., Sandia’s Sierra/Solid Mechanics (Sierra/SM) code [19]. Alternate formulations,
such as the formulation with Robin-Robin transmission conditions and various formulations
involving numerical relaxation (see [22] and the references therein), may be considered in
future work. The iteration (3.1) continues until convergence is reached. It is emphasized
that the formulation (3.1) does not require that a conformal discretization be used within
the various subdomains; as for the multiscale Schwarz alternating method [15,16], different
discretizations, element types and even time-integration schemes can be used in different
subdomains.

3.2. Contact criteria. An important part of any contact algorithm is defining a set
of criteria to determine when contact has occurred. Herein, we consider the following set of
contact criteria.

1. Overlap condition: triggered when two or more objects/domains have begun to
overlap/penetrate each other.

2. Push condition: triggered when both of the following properties hold
(a) Compression: the tractions at the interface are compressive.
(b) Sustainability : there was contact in the previous time step.

Specifically, two or more bodies are determined to be in contact if either the overlap condition
or the push condition hold.

The contact conditions enumerated above are roughly equivalent to the well-known
Karush-Kuhn-Tucker (KKT) conditions [24,26] appearing in traditional mechanical contact
formulations. It is noted that, unlike traditional contact formulations (penalty [6, 11], La-
grange multiplier [1,3], augmented Lagrangian methods [1,20]), our Schwarz-based does not
require the definition of contact constraints into the problem formulation.

4. Numerical results. The main contribution of this paper is the numerical evalu-
ation of the Schwarz alternating method described in Section 3, as compared to several



364 The Schwarz Alternating Method for Multiscale Contact Mechanics

state-of-the-art contact approaches. Section 4.1 succinctly summarizes the methods evalu-
ated herein. Following this discussion, we describe the benchmark problem on which these
methods are studied (Section 4.2) and present numerical results for several variants of this
problem (Sections 4.3–4.4).

4.1. Summary of contact methods evaluated. We restrict our attention herein to
three classes of methods: (1) the penalty method [6,11], (2) the Lagrange multiplier method
[1, 3], and (3) the Schwarz alternating method (Section 3).

The penalty method [6, 11] is one of the simplest approaches for mechanical contact,
and applies a contact force that is linearly proportional to the amount of interpenetration
by means of a penalty parameter τ . The penalty method is popular since it is very easy to
implement into existing mechanics frameworks, but has the downside of having its accuracy
and stability properties affected greatly by the choice of the penalty parameter, for which
there is no exact science. If the penalty parameter τ is too low, the amount of interpenetra-
tion allowed can be too high, yielding inaccurate results; in contrast, selecting a τ that is
too high can affect adversely the overall numerical stability of the method and can lead to
inaccuracies/oscillations in the contact forces. The penalty method can be run with either
an implicit or an explicit time-stepping scheme, both of which are considered in the present
study.

In the Lagrange multiplier method [1, 3], contact constraints are imposed weakly us-
ing Lagrange multipliers; hence, unlike in the penalty method, the contact conditions are
satisfied more precisely and there is no empirical parameter to tune. Lagrange multiplier
methods present their own challenges, however. Care must be taken to design the Lagrange
multiplier finite element space such that the inf-sup condition [2] is upheld, and imple-
menting this mixed method in existing high-performance computing (HPC) codes such as
Sierra/SM [19] can be cumbersome. Additionally, the Lagrange multiplier formulation gives
rise to an indefinite discrete saddle point problem, which can be difficult to solve numerically
and may require specialized preconditioning schemes. In [3], Carpenter et al. developed a
specific variant of the Lagrange multiplier method with explicit time-stepping known as the
“forward increment Lagrange multiplier method”, which has been shown to deliver superior
results over implicit Lagrange multiplier formulations for impact problems. For this reason,
we restrict attention herein to the explicit (forward increment) Lagrange multiplier method,
and do not consider the implicit variant of this method.

An important aspect of conventional contact methods such as the penalty and Lagrange
multiplier methods is that they require the specification of contact constraints imposed
within their respective formulations. Herein, we impose the so-called zero gap constraint,
which ensures that the gap between a given pair of objects is never negative and hence the
objects do not interpenetrate. We note here that it is not uncommon to impose in place of
or in conjunction with the zero gap constraint a second constraint, namely that of a zero
gap rate [21, 23]. The zero gap rate constraint was not considered in the numerical study
performed herein, but would be an interesting future endeavor.

The Schwarz alternating method for simulating mechanical contact was described in
Section 3. We evaluate herein three variants of the Schwarz alternating method: one in
which an implicit Newmark-beta time-integration scheme is used in all subdomains, one in
which an explicit Newmark-beta time-integration scheme is used in all subdomains, and one
in which explicit and implicit Newmark-beta coupling is performed between the domains.

Table 4.1 summarizes the six methods evaluated in this paper.

4.2. One-dimensional impact problem. The Schwarz alternating method described
in Section 3 and the three existing state-of-the-art contact methods described in Section 4.1
are evaluated on a simple 1D problem involving the impact of two identical linear elastic
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Table 4.1: Summary of contact methods evaluated.

Method Time-stepping scheme

Penalty
Implicit Newmark-beta
Explicit Newmark-beta

Forward increment Lagrange multiplier [3] Explicit Newmark-beta

Schwarz
Implicit-Implicit Newmark-beta
Explicit-Implicit Newmark-beta
Explicit-Explicit Newmark-beta

L L

Ω1 Ω2

g g

v0 v0u1 u2

Fig. 4.1: Illustration of 1D impact problem

prismatic rods having density ρ, elastic modulus E and cross-sectional area A moving with
equal speed in opposite directions. This test case is a variant of the problem considered
in Section 5 of [3], and has an exact analytical solution. The configuration is depicted in
Figure 4.1. The rods are initially undeformed and the configuration is symmetric about the
plane at which the two rod faces impact. Let v0 denote the initial speed of each rod. Let L
denote the length of each rod, and assume the rods are initially separated by a distance 2g.
Per the derivation in [3], it is straightforward to shows that the position and velocity of the
right end of the left rod are given by

x(t) =


−g + v0(t− t0), t < timp,

0, timp ≤ t ≤ trel,

−v0(t− trel), t > trel,

v(t) =


v0, t < timp,

0, timp ≤ t ≤ trel,

−v0, t > trel,

(4.1)

respectively, where timp and trel are the impact and release times, respectively. The analyt-
ical values for these times are

timp = t0 +
g

v0
, trel = timp + 2L

√
ρ

E
, (4.2)

where t0 is the starting time of the simulation. Additionally, it can be shown that the
contact force during impact is given by

fcontact = v0

√
EρA, (4.3)

and that the mass-averaged velocity, the kinetic energy (KE) and the potential energy (PE)
take the form

v̄(t) =


v0, t < timp,

v0 − v0
√
E

L
√
ρ (t− timp), timp ≤ t ≤ trel,

−v0, t > trel,

(4.4)
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KE =


1
2ρALv

2
0 t < timp,

1
2ρALv

2
0 − 1

2

√
ρEAv2

0(t− timp) timp ≤ t ≤ t1,
1
2

√
ρEAv2

0(t− t1) t1 ≤ t ≤ trel,
1
2ρALv

2
0 t > trel,

(4.5)

PE =


0 t < timp

1
2

√
ρEAv2

0(t− timp) timp ≤ t ≤ t1,
1
2ρALv

2
0 − 1

2

√
ρEAv2

0(t− t1) t1 ≤ t ≤ trel,

0 t > trel,

(4.6)

where

t1 = timp + L

√
ρ

E
, (4.7)

is the time at which maximum PE and minimum KE are reached.
For the purpose of evaluating and comparing the various contact methods described

herein, we have written a MATLAB code that discretizes the 1D impact problem using the
FEM in space and the Newmark-beta time-integration scheme in time. This code is stored
in an internal Sandia git repository. In the remainder of this document, Nx will denote
the number of elements in the spatial discretization of each rod, and 4t will denote the
time-step used in the Newmark-beta time-stepper.

First, in Section 4.3, we verify the implementation of the conventional contact ap-
proaches considered herein (the penalty method and the forward increment explicit La-
grange multiplier method) on a low speed variant of the 1D impact problem, given by the
parameters provided in the third column of Table 4.2. With this choice of parameters, the
problem is identical to the test case considered in Section 5 of [3] and direct comparisons
can be made for the purpose of verification.

Next, in Section 4.4, we evaluate the six contact methods considered herein, including
our three Schwarz variants, on a high speed variant of the 1D impact problem, with parame-
ters given in the fourth column of Table 4.2. This second high-speed variant of the 1D impact
problem is qualitatively similar to the first low-speed variant, but more representative of
typical Sandia applications.

4.3. Low speed impact variant: method verification. As mentioned earlier, our
first task is to verify our implementation of the explicit penalty and explicit (forward in-
crement) Lagrange multiplier (LM) methods on the low speed variant of the 1D impact
problem. Toward this effect, we select parameters that match those used in the numerical
study of Carpenter et al. [3], but converted to SI units (third column of Table 4.2). To
match the setup of [3] we employed a spatial discretization having Nx = 20 elements, and a
time-step of 2.226× 10−6 seconds. For the explicit penalty method, we used the same value
of the penalty parameter τ as the one used in [3], namely the SI equivalent of 7.5 × 106

lb/in. We did not consider the implicit penalty method, as it was not one of the methods
considered in [3].

Figure 4.2 summarizes our main results for the low speed variant of the 1D impact
problem (left column of the figure) compared to the results of Carpenter et al [3] (right
column of the figure). The reader can observe that the solutions computed in our MATLAB
code are qualitatively similar to those of Carpenter et al., which provides verification of our
implementation of these methods.
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Table 4.2: 1D impact problem parameters for the two variants considered (low speed and
high speed impact).

Parameter Units Low speed variant High speed variant

ρ kg/m3 7844 1000
E Pa 206.8× 109 1.0× 109

A m2 6.45× 10−4 1.0× 10−6

L m 0.254 0.25
g m 0.254× 10−3 0.02
v0 m/s 5.136 100
ts s 0.0 −0.2× 10−3

tf s 20.0× 10−5 0.8× 10−3

4.4. High speed impact variant: method comparison. We now evaluate the
contact methods summarized in Table 4.1 on the high speed impact problem described in
Section 4.2. Our main results are summarized in Figures 4.3–4.8 and Tables 4.3–4.4. In the
case of the Schwarz alternating method, each rod represents its own subdomain (Ω1 and
Ω2), as shown in Figure 4.1. Unless otherwise noted, the bars are discretized using Nx = 200
linear elements. Also unless otherwise noted, a time-step of 4t = 1.0× 10−7 is employed in
all methods with the exception of Implicit-Explicit Schwarz. For this Schwarz variant, we
utilize a time step of 4ti in subdomain Ωi with 4t1 = 1.0 × 10−7 and 4t2 = 1.0 × 10−8,
so as to illustrate the Schwarz alternating method’s ability to couple not only different
time-integrators but also different time-steps in different subdomains. It was verified that
the time-steps employed were small enough to ensure satisfaction of the Courant-Friedrichs-
Levy (CFL) condition for the explicit methods. For all the Schwarz methods considered,
a controller time-step of 4T = 1.0 × 10−7 is employed. We select very tight relative and
absolute Schwarz tolerances of 1.0 × 10−15 and 1.0 × 10−12, respectively. These tolerances
are applied to the Schwarz convergence criterion, which dictates that the change of position
for all the subdomains at a given Schwarz iteration be less than these relative or absolute
tolerances. For the two penalty methods evaluated, we chose a penalty parameter of τ =
7.5× 104, as this value yielded the most accurate results.

4.4.1. Comparison of the Schwarz alternating method to conventional con-
tact approaches. Figure 4.3 plots the contact point location of the right-most node of
the left bar (Ω1) as a function of time. The reader can observe that both penalty methods
evaluated overpredict the contact point location between the impact and release times, sim-
ilar to what was seen for the low speed impact variant of this problem (Figure 4.2). This
behavior is not manifested by any of the Schwarz solutions. Although small oscillations can
be observed in the Schwarz solutions while the bars are in contact, these are a tiny fraction
of the exact contact point location. Additionally, while all three conventional approaches
underpredict the release time, the Schwarz methods capture this quantity of interest to an
accuracy of ≈ 0.01%. Similar conclusions can be drawn from Figure 4.4, which plots the
mass-averaged velocity for the left bar as a function of time for the various methods: all
three Schwarz variants calculate the mass-averaged velocity to a sufficiently greater accuracy
than any of the conventional methods, especially near the time of release.

Figures 4.5–4.7 examine the kinetic, potential and total energies for the left bar as a
function of time. It can be seen from Figure 4.5 that all three conventional methods exhibit
noticeable errors in the kinetic energy after contact occurs. Halfway through the simula-
tion, oscillations are observed in the solutions calculated using these methods. The explicit
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Fig. 4.2: Contact point position, contact point velocity and contact point force solutions
computed using the explicit Lagrange multiplier and explicit penalty methods in our MAT-
LAB code (left column) compared to the published solution in [3] (right column) for the
low speed impact problem.

Lagrange multiplier and implicit penalty methods exhibit the largest errors in the kinetic en-
ergy following release, whereas the three Schwarz variants and the explicit penalty method
exhibits the smallest error in this quantity. Remarkably, unlike any of the conventional
methods, the Schwarz method is able to track the kinetic energy with great accuracy while
the bars are in contact. The Implicit-Implicit Schwarz variant delivers the most accurate
and least oscillatory kinetic energy solution. Similar conclusions can be drawn by inspecting
Figure 4.6, which plots the potential energy of the left bar as a function of time. What is
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Fig. 4.3: Contact point position for the left bar (Ω1) as a function of time (high speed
impact)

Fig. 4.4: Mass-averaged velocity for the left bar (Ω1) as a function of time (high speed
impact)

striking about this figure is the fact that all three conventional methods underpredict the
peak potential energy by approximately 10%. This behavior is not seen in the Schwarz
solutions, which capture the peak potential energy with a relative error of less than 0.1%.

Next, we discuss the ability of the Schwarz alternating method to conserve the total
energy, defined as the sum of the kinetic and potential energies. It is straightforward to
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show that the total energy should be conserved for this problem [3]. Figure 4.7 plots the
total energy relative error in the left bar as a function of time for the methods evaluated.
It is clear from this figure that the total energy error is negative for all six methods. This
indicates that none of the methods are gaining energy, which could lead to numerical insta-
bilities. As expected from the potential energy results (Figure 4.6), the three conventional
methods exhibit a total energy loss of up to 9% following the instantiation of contact. The
explicit penalty method loses the most energy, followed by the implicit penalty method
and the explicit Lagrange multiplier method. Unlike the conventional contact approaches,
the Schwarz method achieves an error of at most 0.25% in the total energy. It can be
observed that the Explicit-Explicit Schwarz variant is the most accurate, followed by the
Implicit-Implicit Schwarz and the Implicit-Explicit Schwarz. Interestingly, the more accu-
rate Schwarz methods exhibit larger amplitude oscillations in the total energy after contact
occurs.

Fig. 4.5: Kinetic energy for the left bar (Ω1) as a function of time (high speed impact)

In the results presented thus far, the Schwarz alternating method is better than the
three conventional methods. The situation changes slightly when it comes to two other
quantities of interest: the contact point force and the contact point velocity, plotted in
Figures 4.8 and 4.9, respectively. While the three conventional methods exhibit several un-
desirable artifacts in the contact point force (e.g., an overshoot in the contact point force
at the impact time for the explicit Lagrange multiplier method, oscillations in the contact
point force around the time of release for the implicit penalty method, an under-prediction
of the release time; see Figure 4.8(a)), these methods deliver in general a smooth contact
force solution while the bars are in contact and after the bars separate. The same cannot be
said of the Schwarz solutions, which exhibit in some cases significant oscillations following
the instantiation of contact (Figure 4.8(b)). Similar results are seen in the contact point
velocity (Figure 4.9), and suggest that the Schwarz methods may be suffering from a well-
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Fig. 4.6: Potential energy for the left bar (Ω1) as a function of time (high speed impact

Fig. 4.7: Relative error in the total energy for the left bar (Ω1) as a function of time (high
speed impact)

known problem in the simulation of mechanical contact known as chatter, in which contact
is lost and reestablished, sometimes numerous times (as seen here). Numerical experiments
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reveal that the oscillations do not appear to be sensitive to the Schwarz convergence toler-
ances. It is interesting to observe that the chatter problem is significantly ameliorated by
performing Implicit-Explicit Schwarz coupling. This observation suggests that the amount
of chatter may be related to the predictor employed within the Schwarz coupling time inte-
gration scheme. Future work will focus on understanding the role of this predictor when it
comes to the chatter problem, and potentially designing alternate predictors to reduce the
amount of chatter present in the Schwarz solutions. Equally intriguing is the connection
between the amount of chatter and the total energy loss (Figure 4.7). Comparing Figure 4.7
with Figures 4.8 and 4.9, it can be seen that the method with the largest total energy loss
exhibits the least amount of chatter. This result is consistent with published results demon-
strating that energy dissipation is necessary for the establishment of persistent contact [21],
and suggests that it may be possible to reduce the amount of chatter in the Schwarz solu-
tions by introducing numerical dissipation either through the Newmark-beta time-integrator
(by selecting different parameters within this time-integration scheme) or directly into the
Schwarz formulation.

(a) Conventional methods (b) Schwarz

Fig. 4.8: Contact point force for the left bar (Ω1) as a function of time (high speed impact)

4.4.2. Convergence studies of the Schwarz alternating method. Having com-
pared the Schwarz alternating method to our three conventional methods, we now turn our
attention to evaluating the former method’s convergence. We consider a single quantity of
interest (QOI) in this study, namely the kinetic energy in the left bar. Figures 4.10, 4.11 and
4.12 depict the convergence of the Implicit-Implicit, Implicit-Explicit and Explicit-Explicit
Schwarz methods as the mesh is refined fromNx = 50 toNx = 400 elements. For the purpose
of studying convergence in space, the time-step in this study was fixed to 4t = 1.0×10−8 in
both subdomains in these calculations. The reader can observe convergence of the computed
solution to the exact analytical solution with mesh refinement for all three couplings. It
is curious to remark that oscillations can be seen in the Schwarz solution calculated using
the finest mesh resolution (Nx = 400) when performing Implicit-Explicit Schwarz coupling
(Figure 4.11). These oscillations begin shortly after the onset of contact and appear to grow
in time, until the bars separate. The nature of these oscillations is currently unknown and
will be studied in future work. Figure 4.13(a) depicts the mesh convergence of the three
Schwarz variants considered with respect to the kinetic energy QOI. All three approaches
converge at a rate of ≈ 0.82. This convergence rate is comparable to the convergence rate
observed for a low-speed variant of this problem simulated using Sandia’s ALEGRA code
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Fig. 4.9: Contact point velocity for the left bar (Ω1) as a function of time (high speed
impact)

base, which implements the forward increment explicit Lagrange multiplier contact method
[23]. The Explicit-Explicit Schwarz method is seen to be the most accurate, but only by a
very small margin.

We lastly provide some data on the number of Schwarz iterations required for conver-
gence, a measure of computational efficiency. Figure 4.13(b) plots the number of Schwarz
iterations required for convergence for the three Schwarz variants when a spatial resolution
of Nx = 200 and a time-step of 4t = 1.0× 10−7 is employed. The reader can observe that
the method converges in between two and five Schwarz iterations, depending on the type of
coupling despite our selection of very tight Schwarz convergence tolerances (a relative tol-
erance of 1.0× 10−15 and an absolute tolerance of 1.0× 10−12). Curiously, Explicit-Explicit
Schwarz requires the fewest number of iterations to achieve convergence at this resolution
(between two and three). As expected, no Schwarz iterations are required before the bars
come into contact and after the bars separate. Tables 4.3 and 4.4 summarize the maximum
and the average number of Schwarz iterations as a function of Nx (with a fixed time-step
of 4t = 1.0 × 10−8) and as a function of 4t (with a fixed spatial resolution of Nx = 200),
respectively. The reader can observe that the number of Schwarz iterations increases in
general as the mesh is refined. Additionally, Implicit-Implicit coupling requires the most
Schwarz iterations in general. The number of Schwarz iterations required for convergence
does not change significantly as the time-step is reduced, with the exception of the case in
which the time-step is reduced from 1.0× 10−7 to 1.0× 10−8 and Explicit-Explicit Schwarz
coupling is employed (Table 4.4).
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Fig. 4.10: Mesh convergence of the kinetic energy for the left bar (Ω1) as a function of time
computing using Implicit-Implicit Schwarz coupling with a time-step of 4t = 1.0× 10−8 in
both subdomains (high speed impact).

Table 4.3: Maximum/average number of Schwarz iterations as a function of Nx with the
time-step fixed to 4t = 1.0× 10−8 for various Schwarz couplings (high speed impact).

Nx Implicit-Implicit Implicit-Explicit Explicit-Explicit

50 4/1.7354 4/1.7483 4/1.7562
100 5/1.9105 4/1.7506 4/1.7569
200 5/2.2184 5/2.0225 5/2.1953
400 6/2.5882 5/2.3142 5/2.2505

Table 4.4: Maximum/average number of Schwarz iterations as a function of 4t with the
spatial resolution fixed to Nx = 200 for various Schwarz couplings (high speed impact).

4t Implicit-Implicit Implicit-Explicit Explicit-Explicit

1.0× 10−7 5/2.447 5/1.8768 3/1.2532
1.0× 10−8 5/2.2184 5/2.0225 5/2.1953
1.0× 10−9 5/2.2195 5/2.0607 5/2.1964
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Fig. 4.11: Mesh convergence of the kinetic energy for the left bar (Ω1) as a function of time
computing using Implicit-Explicit Schwarz coupling with a time-step of 4t = 1.0× 10−8 in
both subdomains (high speed impact).
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Fig. 4.12: Mesh convergence of the kinetic energy for the left bar (Ω1) as a function of time
computing using Explicit-Explicit Schwarz coupling with a time-step of 4t = 1.0× 10−8 in
both subdomains (high speed impact).

(a) Mesh convergence of the kinetic energy for the
left bar (Ω1) when 4t = 1.0× 10−8

(b) Number of Schwarz iterations required for
convergence (Nx = 200, 4t = 1.0× 10−7)

Fig. 4.13: Convergence metrics for various Schwarz couplings (high speed impact).
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5. Summary. This paper presents a new computational framework for simulating
mechanical contact based on the Schwarz alternating method. In this approach, contact
constraints are replaced with alternating Dirichlet-Neumann boundary conditions that are
applied iteratively on the contact boundaries following a non-overlapping domain decompo-
sition of the problem geometry. After describing the Schwarz methodology, we evaluate the
method on a 1D impact problem with an exact analytical solution and compare the method’s
accuracy with that of conventional contact algorithms, namely the penalty method and the
Lagrange multiplier method. We consider three variants of the Schwarz method in which dif-
ferent Newmark-beta time-integrators are used in different subdomains, so as to demonstrate
the method’s flexibility in coupling different time integrators with possibly disparate time-
steps. Our results demonstrate the the Schwarz alternating method delivers a solution with
substantially better accuracy than the conventional approaches for QOIs such as the contact
point displacement, the mass-averaged velocity, the impact time, the release time, and the
kinetic and potential energies. Additionally, the new method conserves energy significantly
better than the conventional approaches. An unfortunate consequence of the method’s abil-
ity to conserve energy so well appears to be the introduction of oscillations in the contact
point velocity and contact point force. Future work will focus on better understanding the
cause of these oscillations and devising approaches to mitigate them. Preliminary results
suggest that the introduction of some slight dissipation [21] and/or numerical relaxation [22]
can ameliorate the problem.

Future work will also include the following additional studies and extensions: (1) the
introduction of additional or alternate contact constraints to those discussed in Section
3.2 to the Schwarz formulation, (2) a comparison of the Schwarz alternating method to
conventional contact formulations in which a zero gap rate constraint is used in place of or
in conjunction with a zero gap constraint, (3) an investigation of why the use of Implicit-
Explicit Schwarz coupling introduces oscillations in QOIs such as the kinetic energy when
sufficiently fine meshes are employed, and (4) an implementation and evaluation of the
Schwarz alternating method in multiple spatial dimensions. The third of these tasks will
require the development of operators for consistent transfer of contact traction boundary
conditions using the concept of prolongation and restriction, common in multigrid methods.
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LEARNING TRANSFERABLE NEURAL NETWORK SURROGATES FOR
KOHN-SHAM DENSITY FUNCTIONAL THEORY

KYLE R. LENNON∗ AND SIVASANKARAN RAJAMANICKAM†

Abstract. Density functional theory (DFT) is widely used to compute properties of many-body systems
from first principles, and often serves as an intermediate step to computing forces on atomic nuclei in
molecular dynamics (MD) simulations. However, DFT calculations are computationally intensive, and their
cost becomes prohibitive for large systems or long MD simulations. Recently, efforts to circumvent expensive
DFT calculations by learning system-specific neural network surrogates have been met with some success.
Still, these surrogates require the generation of ab initio training data and long training times for every
individual system and thermodynamic state. Here, we investigate whether this approach can be made more
widely applicable by leveraging modern machine learning techniques, such as transfer learning and Bayesian
approaches, to produce surrogate models that transfer between systems and states, or adapt quickly without
the need for extensive training.

1. Introduction. In problems of materials engineering, where a principal focus is
to find a specific material whose properties are most desirable for a certain engineering
application, the design space – namely, the space of all candidate materials – is oftentimes
extraordinarily vast. Due to the numerous candidate materials in such problems, launching
experimental campaigns to directly characterize the properties of interest in each material
is typically infeasible due to the cost and time associated with physical experiments. Thus,
experimental studies are usually much more limited in scope, and many candidate materials
are left unexplored.

Recently, however, the inability to investigate the numerous materials applicable to
certain science and engineering problems has diminished, as computational methods take
the place of experimental studies. This effort is highlighted in the Integrated Computational
Materials Engineering initiatives, which support simulations across a diverse range of length
scales for materials design and discovery [8, 14]. In computational materials science, and
in particular for problems where the microstructural and electronic properties of materials
are of interest, density functional theory (DFT) is a computational method that has been
revolutionary [17,20]. DFT drastically reduces the computational effort needed to solve the
many-body Schrödinger equation, making solutions to problems with tens or hundreds of
atoms feasible, when they previously would have been prohibitively expensive [6]. These
solutions may then be directly used to estimate properties of a material, or as an intermediate
step in molecular dynamics (MD) simulations, which evolve the atomic configuration in a
material according to Newton’s laws [2,22]. In fact, from MD simulations that use DFT to
compute the forces on atomic nuclei (often referred to as ab initio MD), one may compute
any material property of interest, provided that the simulation converges in a feasible amount
of time [4, 19].

Although DFT unlocks the potential to simulate a number of atoms far larger than by
direct solution of the Schrödinger equation, its computational cost does grow quickly with
the size of the simulation domain, and again becomes prohibitively large for systems bigger
than a few hundred atoms [27, 28]. This is particularly true in ab initio MD simulations,
where DFT calculations are performed at every time step. Therefore, MD simulations of
larger materials, which are often needed to observe material properties that are relevant
at macroscopic length scales, typically replace DFT with empirical interatomic potentials
(IAPs) [10]. Although these IAPs are much less expensive to evaluate, they are inexact,
and their degree of applicability for unstudied materials is often not known. Thus, it is of
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particular interest to substantially speed up DFT calculations, to retain the accuracy of ab
initio MD while maintaining the scalability of empirical methods.

Recent efforts to accelerate DFT calculations have focused in particular on developing
surrogates to the governing equations and their solutions using machine learning [7,9]. This
machine learning DFT (ML-DFT) framework trains an artificial neural network to map from
local descriptors of the atomic environment to the output of a DFT calculation. Networks
are trained on the output of DFT calculations from snapshots of ab initio MD simulations
for a particular material at a set temperature. The forward passes through the trained ML-
DFT neural network are much faster than full DFT calculations, and scale linearly in the
number of simulation grid points. This speed and scalability allows ML-DFT approaches to
tackle simulations of larger scale and duration than those involving direct DFT calculations,
and may help to extend ab initio calculations to scales on which bulk properties of materials
emerge.

However, state-of-the-art ML-DFT models require the generation of new data and con-
ducting long training runs for every material and temperature of interest. Temperature, for
instance, is an important state parameter in molecular simulations, and may substantially
affect the configurational state-space explored by a collection of atoms due to enhanced
thermal fluctuations. Thus, a model trained at one temperature may not be applicable to
another, due to the difference in the underlying domain of explored configurations in the
training data set. The high computational cost of the simulations needed to generate train-
ing data and of the training campaigns partially offsets the performance gains realized by
the surrogate models. Models that transfer to different conditions, or more quickly adapt
in light of limited training data, could dramatically reduce this overhead cost, and lead to
more widespread and rapid adaptation of ML-DFT in practice.

In this work, we explore the development of these general, or adaptable, models by
frontier methods in machine learning, in particular using Bayesian methods for transfer
learning. After developing the foundations of DFT in Section 2, we introduce these machine-
learning methods in 3. Section 4 presents preliminary results from applying these machine
learning methods to the ML-DFT framework. Finally, Section 5 presents a discussion of the
preliminary results, and provides guidance for the direction of future explorations to refine
and expand these new ML-DFT models.

2. Density Functional Theory.

2.1. The Many-Body Schrödinger Equation. The foundation of quantum me-
chanics, and the starting point for any ab initio calculation or simulation of a material, is
the many-body Schrödinger equation. One well-founded and widely applied approximation
in nonrelativistic quantum mechanics is to assume that, in a system composed of Ni (ionic)
nuclei and Ne electrons, the light electrons equilibrate on a time scale much faster than
movements of the much heavier nuclei, therefore the nuclei may be considered fixed when
solving for the electronic structure, which is called the Born-Oppenheimer approximation
[1]. In this approximation, for a system with electronic positions r = {r1, . . . rNe} and
nuclear positions R = {R1, . . .RNi}, the many-body Schrödinger equation governing the
many-electron wavefunction Ψ(r) is: Ne∑

i=1

(
−1

2
∇2

)
+

Ne∑
i=1

V (ri;R) +

Ne∑
i=1

Ne∑
j=1

1

2
U(ri, rj)

Ψ(r) = E(R)Ψ(r), (2.1)

where V (ri;R) represents the collective Coulombic potential felt by electron i due to the
nuclei, U(ri, rj) represents the Coulombic potential between electrons i and j, and E(R)
represents the total energy. Atomic units have been used here such that ~ = me = e2 = 1.



K.R. Lennon and S. Rajamanickam 381

2.2. Kohn-Sham Density Functional Theory. The solution of the many-body
Schrödinger equation is complicated by the pairwise interaction term U(ri, rj), which ne-
cessitates working with the very high dimensional wavefunction Ψ(r). For the purpose of ab
initio MD simulations, the total energy is desired to compute forces on the atomic nuclei,
where the force on the nucleus α is: Fα = −∂E(R)/∂Rα. However, the first Hohenberg-
Kohn theorem [13] states that the total energy is a unique functional E[n] of the electronic
density n(r;R). The electronic density is a much lower dimensional function, as it varies
only with spatial position r and not with the position of all electrons r (note the distinc-
tion in notation here). By making use of this theorem, the Schrödinger equation may be
reformulated as: [

−1

2
∇2 + Vs(r;R)

]
φi(r;R) = εiφi(r;R). (2.2)

This is called the Kohn-Sham equation, which is the basis for Kohn-Sham DFT (often simply
called DFT, as herein). The Kohn-Sham equation resembles the single-electron Schrödinger
equation governing the Kohn-Sham orbitals φi (with corresponding energy eigenvalue εi) in
an effective potential:

Vs(r;R) =
∂U [n]

∂n
+
∂EXC [n]

∂n
+ V (r;R). (2.3)

All derivatives in this equation represent functional derivatives, with the functional U [n] rep-
resenting the known electron interaction functional, and EXC [n] representing the exchange-
correlation functional. The latter functional is now known precisely, but is approximated in
practice [5,12,15,23]. The Kohn-Sham DFT formalism is finalized by defining the electronic
density in terms of the Kohn-Sham orbitals and energies:

n(r;R) =
∑
j

fβ(εj)|ψi(r;R)|2, (2.4)

with fβ(ε) representing the Fermi-Dirac distribution at temperature β = (kBT )−1.
Now, the Kohn-Sham equation may be solved independently for each orbital φi, repre-

senting a much more tractable problem for a many-body system. However, the eigenvalue
problem still scales with the cube of the system size Ne. Further, we notice that the effective
potential Vs(r;R) actually depends on the electronic density n via functional derivatives.
Therefore, the Kohn-Sham equations must be solved by an iterative, variational approach
to converge to a self-consistent solution. Thus, while DFT makes many-body problems com-
putationally feasible for moderate system sizes, its cost still becomes prohibitive for larger
systems.

Once the electronic density is known, it may be used to compute the total energy
and subsequently the forces on nuclei for an MD time step. Here, we instead use a related
quantity that may be computed from the electronic density, called the local density of states
(LDOS):

D(ε, r;R) =
∑
i

|φi(r;R)|2δ(ε− εi), (2.5)

where δ(.) represents the Dirac delta function. Using the LDOS, the total energy functional
E[D](R) takes a compact form:

E[D] = Eb[D]− Ss[D]/β − U [D] + EXC [D]− VXC [D] + V ii(R). (2.6)
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Fig. 2.1: Summary of the ML-DFT pipeline. (a) Snapshots of ab initio MD simulations are
taken to obtain feasible atomic configurations. (b) Local atomic descriptors of the snapshot
at points on a Cartesian grid are computed. (c) and (d) These fingerprints are fed through
an artificial neural network to compute the LDOS on the Cartesian grid. (e) The LDOS
may be used to compute a number of material properties, including the total energy of the
material. Taken with permission from [9].

The exchange-correlation potential VXC [D] requires a suitable approximation consistent
with EXC [D]. The remaining functionals, including the band energy Eb[D] and Kohn-
Sham entropy Ss[D], have known forms (which are not repeated here for brevity), and
V ii(R) represents the pairwise Coulombic potential between the nuclei.

2.3. Machine Learning Density Functional Theory. Having developed the frame-
work for traditional Kohn-Sham DFT in the previous section, we now turn to the develop-
ment of ML-DFT, where an artificial neural network replaces the solution of the Kohn-Sham
equations. Using the LDOS as the output quantity from which the total energy and other
properties are computed, the solution to the Kohn-Sham equation represents a map from
the space of atomic configurations, which are defined by the atomic number Zi and position
Ri of the ith atomic nuclei, to the LDOS: {Zi,Ri} → D(ε, r;R). In principle, an artificial
neural network may be trained to approximate this map directly, with the LDOS as its out-
put and the set of {Zi,Ri} as its input. However, in this context the space of inputs is very
broad and high-dimensional, and it would be nearly impossible to populate it with enough
training data to properly condition the neural network. Moreover, the input dimensionality
would change with the system size. Similarly, the output represents the distribution of the
LDOS over all space, which suffers from the same high-dimensionality and variability as the
input domain.

Instead, previously developed ML-DFT approaches separate this map into two distinct
components [9]. First, the local environment at a coordinate r, defined by {Zi,Ri}, is
converted to a local atomic descriptor, or fingerprint, denoted B(r;R). In this work and
in others, the atomic descriptor is selected to be the SNAP bispectrum components [24].
The artificial neural network is then tasked from mapping the local descriptors at r to the
LDOS at r. Therefore, the conversion of the atomic configuration to the LDOS proceeds
as follows: {Zi,Ri} → B(r;R)→ D(ε, r;R). This ML-DFT pipeline is depicted in Figure
2.1. Because the neural network takes as input a compact descriptor of fixed length located
at the single spatial coordinate r and outputs a suitable discretization in ε-space of the
LDOS at the same coordinate r, it needs only be trained on a set of (B, D) data, each of
which may be taken at different spatial coordinates. The dimensionality of the input and
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output spaces are therefore reduced to 91 bispectrum components and 250 energy levels of
the LDOS, respectively, at each of the grid points taken from a snapshot of a molecular
simulation. The distribution of LDOS throughout space may be obtained by applying the
same trained neural network at every grid point in a simulation domain. For all snapshots
in this study, the simulation box is discretized into a 200×200×200 grid, with eight million
total grid points.

3. Machine Learning Methods.

3.1. Fully-Connected Feedforward Neural Networks. In some previous work in-
vestigating ML-DFT, the machine learning surrogate has been composed of a single, fully-
connected feedforward neural network. This simple architecture may be defined by a se-
quence of linear transformations and nonlinear activations, the pair of which comprises a
layer. A single layer is described by the following equation:

vl+1 = a(W lvl + bl), (3.1)

where vl is a (nl × 1) vector representation of the data at layer l, W l is an (nl+1 × nl)
matrix representing the weights of the neural network at layer l, and bl is an (nl+1 × 1)
vector representing the biases of the neural network at layer l. The function a(.) is the
activation, which (typically) acts element-wise on its vector argument. For the ML-DFT
pipeline, at layer 0, v0 = B(r;R), and at layer L, vL = D̂(ε, r;R) (the latter representing a
vector of predicted LDOS values at particular energy levels ε at the coordinate r). In other
works, a bi-directional recurrent neural network is appended to the feedforward network
to smooth the predicted LDOS; however, in this work we investigate feedforward networks
only.

This feedforward neural network, like all networks in this work, is trained iteratively
using a stochastic optimizer. The goal of such an optimizer is to minimize the mean squared
loss between the true and predicted LDOS values:

L(D̂,D;W , b) =

Ntrain∑
i=1

Nlevels∑
j=1

[D̂i(εj)−Di(εj)]
2, (3.2)

where Di represents the LDOS sampled from a particular coordinate of with a particular
global atomic configuration, of which there are Ntrain examples. Note that the LDOS
here has been discretized to Nlevels energy levels. Optimization proceeds by computing the
gradient of this loss function with respect to the network weights and biases, W and b, with
the goal of finding the weights and biases that minimize the loss:

Ŵ , b̂ = argmin
W ,b

L(D̂,D;W , b). (3.3)

However, Ntrain is typically quite large, and therefore the gradient computations may be
expensive. Therefore, the gradient is approximate by Monte Carlo sampling, with random
batches of Nbatch data points taken at a time to compute the gradient. In this work, we
employ the ADAM optimizer with Nbatch = 1000 to train these neural networks.

3.2. Transfer Learning with Variational Information Bottlenecks. One lim-
itation of the previous ML-DFT investigations is that each model has been trained and
applied on systems of a single atomic species at a single temperature. In practice, however,
there may be many atomic species and temperatures of interest. Retraining new networks
for each species or temperature requires a substantial amount of work, including the time
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needed to generate large amounts of training data, train neural networks, and run indepen-
dent hyperparameter optimization studies (to determine, for example, the network size best
suited for different systems). One method to reduce or eliminate this limitation is called
transfer learning, which aims to train models that perform well in circumstances where the
model application is slightly different than the training application [21]. In the case of ML-
DFT, this difference may come in the form of slightly different input domains at different
temperatures, or more vastly different domains in the case of new atomic species.

Transfer learning does not always require special model architectures. In fact, previous
ML-DFT models trained on data at a single temperature may be applied to new temper-
ature data, although with limited success. However, recent approaches have found that
statistically motivated network architectures and training routines may enhance transfer
performance of models. One approach that we will apply here is called the Deep Variational
Information Bottleneck (Deep VIB), which seeks to learn a model that makes predictions
based off of features of the input data that are transferable across different domains, while
ignoring features of the input data that are specific to certain domains, so that the model
may more robustly generalize to new data domains [3].

The Deep VIB is achieved by passing the input data X through a “bottleneck”, or a
latent representation Z, where the domain-specific details of X are discarded [26]. Then,
the outputs Y are predicted directly from Z. The dimensionality of Z is typically chosen to
be smaller than that of X to accomplish a certain minimum compression; here, we choose
Z to be a 32-dimensional vector. The objective of the Deep VIB is to maximize the shared
information I(Z, Y ;θ) between the representation Z and the output Y , while minimizing
the information I(Z,X;θ) between the representation Z and the input X, given model
parameters θ:

RIB(θ) = I(Z, Y ;θ)− βI(Z,X;θ) (3.4)

which may be achieved if predictions are made by using only the minimum amount of
necessary information (that which transfers between domains). Using Bayesian statistics,
we may write the optimization in terms of likelihoods and prior beliefs. In particular,
I(Z, Y,θ) may be related to the negative log-likelihood of observing true output given the
prediction, which in the case of regression is proportional to the mean-squared error under
the assumption of uniform variance in the outputs. The penalty term I(Z,X;θ) is related
to the Kullback-Leibler between the observed distribution of latents given a data point xn,
p(Z|xn), and a prior expectation of this distribution r(Z). Thus, the Deep VIB objective
for ML-DFT is to minimize:

J(D̂,D;W , b) = L(D̂,D;W , b) +

Ntrain∑
i=1

βKL[p(Z|Bi), r(Z)]. (3.5)

Because the Deep VIB is statistical in nature, it must be treated with a slightly different
architecture than the standard fully-connected feedforward network. In particular, we apply
the “reparameterization trick” to train the Deep VIB [16]. In this architecture, an “encoder”
portion of the network predicts the mean vector µ(Z|xi) and variance vector σ2(Z|xi) of a
multi-dimensional normal distribution defining p(Z|xi) ∼ N(µ, σ2). Then, a vector is drawn
at random from this distribution, which is fed to a standard feedforward neural network to
predict the output yi. Through this random number generation, we perform Monte Carlo
estimation to obtain an estimate of the gradient, and may train the network in the same
way as for other feedforward networks.

3.3. Training Data Generation. The training and testing data used in this work
was generated for solid aluminum (Al) at temperatures of 298 K and 933 K, with ambient
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density (2.699 g/cm3). The simulation box consists of 256 atoms of Al. To obtain viable
atomic configurations, ab initio MD simulations were performed using the Vienna Ab initio
Simulation Package (VASP) [18]. After the atoms equilibrate, their positions at later sim-
ulation time steps are recorded as snapshots for training data generation. The simulation
box for a single snapshot is divided into 200×200×200 grid points (8,000,000 total points).
Local SNAP descriptors at each grid point are computed using the LAMMPS software [22],
and the LDOS at each grid point is computed using Quantum Espresso with an 8 × 8 × 8
grid spacing in k-space [11]. For SNAP descriptors, the bispectrum components were cut
off such that there were 91 scalar components per descriptor (i.e. at each grid point). For
the LDOS, the energy line was discretized with a spacing of 0.1 eV between -10 eV and 15
eV, for a total of 250 scalar value per grid point. For a single fingerprint, the 8,000,000 data
points were divided into a training set of 5,000,000 data points, a validation set of 1,000,000
data points, and a test set of 2,000,000 data points. Each of the 91 SNAP components in the
training data was standardized by the mean and variance of the component in the training
data set, and the entire LDOS training data set was normalized by the maximum observed
value over all energy levels. Data used in this report is taken with permissions from [9].

3.4. Architectures. For the baseline feedforward, fully-connected neural network
(FCNN), we use a total of L = 5 layers, with [4000, 4000, 4000, 250, 250] channels. The
first four of these layers represent hidden layers, and the last represents the output layer,
or the predicted LDOS. LeakyReLU activations were applied after each layer, with a linear
activation on the final layer.

For the Deep VIB network, we divide the architecture into three blocks: an encoder, a
decoder, and a dense block. The encoder is responsible for converting the input fingerprints
to their latent representation z, by virtue of predicting the mean µ and variance σ2 of
p(Z, xi). This block consists of four fully-connected layers, with [128, 64, 64, 32] channels
(the last representing the dimensionality of z). The decoder simply decompressed this
representation, with three layers of size [64, 128, 4000]. Finally the dense block acts similarly
to the FCNN, to predict the LDOS from the decompressed representation, with four layers
of size [4000, 4000, 250, 250]. To train the network variationally, in a training forward pass,
a random vector z is drawn from N(µ, σ2) (with µ and σ2 output from the encoder), and
z is fed to the decoder and dense blocks to predict the LDOS. LeakyReLU activations are
applied after each layer, with the exception of the network output and the encoder output,
which are purely linear.

4. Results.

4.1. Fully-Connected Neural Network. We first test the baseline performance of
the FCNN trained separately on the 5,000,000 training grid points from a single snapshot
at either 298 K or 933 K. This provides some indication of how well previous ML-DFT ap-
proaches would transfer to unseen conditions. For both temperatures, the FCNN adequately
fits the training data with low relative error, as depicted in the parity plots in Figure 4.1
and presented in Table 4.1. The low error is mirrored in the 2,000,000 test grid points from
the same snapshot as the training data. This realization may already represent an advance
over current ML-DFT approaches, which use distinct network architectures (i.e. different
number of hidden channels) to fit data at these two temperatures. Having a single network
architecture capable of sufficiently fitting data at different temperatures may substantially
reduce the time needed to train an ML-DFT model, as it eliminates the need for expen-
sive calculations such as architecture searches and hyperparameter optimization over the
network size.

To assess the baseline generalization and transfer performance of the FCNN model
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Fig. 4.1: Parity plots of the test performance of the FCNN model in predicting the LDOS.
From top to bottom: the model trained only on data from snapshot 1 at 298 K, the model
trained only on data from snapshot 1 at 933 K, and the model trained on snapshot 1 at
298 K and snapshot 1 at 933 K. From left to right: model performance on the test set from
snapshot 1 at 298 K, performance on the test set from snapshot 2 at 298 K, performance
on the test set from snapshot 1 at 933 K, and performance on the test set from snapshot 2
at 933 K. The LDOS has been normalized to the maximum value in the training set in each
case.

Architecture Standard FCNN Deep VIB
Training Data 298 K 933 K Both 298 K 933 K Both

298 K Snapshot 1 1.47 11.7 1.29 5.65 10.5 1.12
298 K Snapshot 2 6.34 11.8 4.39 5.53 10.4 5.10
933 K Snapshot 1 33.8 1.17 1.52 30.2 8.77 1.32
933 K Snapshot 2 42.5 18.7 19.2 37.7 19.2 20.0

Table 4.1: The mean squared error test performance of different ML-DFT models, over test
data sets from different snapshots and different temperatures. All values are the true mean
squared error of the max-normalized LDOS multiplied by a factor of 105.

trained separately at each temperature, we perform two tests. In the first, we deploy the
model on a test set of grid points taken from a different snapshot, but one still at the same
temperature as the training data. Different snapshots at the same temperature represent a
slight change in the input domain, but one much smaller than the change in moving to a
different temperature. The second test, therefore, is to deploy the model on a test set of
points from a snapshot taken at a different temperature (at 298 K in the case of the model
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trained on 933 K data, and vice versa). This represents a more difficult transfer task, as
the domains for different temperatures may be quite different.

The model trained on 298 K data appears to transfer with only slight additional error
to the different snapshot at 298 K. The transfer performance of the model trained on 933
K to the different 933 K snapshot is slightly worse, as shown in Figure 4.1 and Table 4.1.
This observation is consistent with those in previous ML-DFT works, which demonstrated
the need for additional 933 K training data to obtain a model that produces high-fidelity
predictions for new snapshots, compared to the ability to obtain such a model at 298 K
from a more limited data set. The difference in transfer performance here is most likely due
to the increased number of states accessed at higher temperature due to increased thermal
fluctuations, which results in a more varied domain of local configurations and LDOS.

When testing the transfer performance of the models on snapshots from the other tem-
perature, however, the opposite trend is observed. Specifically, the 298 K trained model
performs worse on the 933 K data than on the 298 K data from unseen snapshots, while
the 933 K trained model performs similarly on the 298 K data and the 933 K data from
unseen snapshots. This suggests that the states explored by the 298 K simulation are a
subset of the states explored by the 933 K simulation. In this case, the 933 K training data
would span the domain of the 298 K training data, and therefore predictions at 298 K would
require interpolation in the training data space, leading to predictions similar to those for
unseen 933 K data. Conversely, for the model trained at 298 K, predictions at 933 K require
extrapolation from the training domain, producing lower quality predictions.

Next, we explore whether the model performance is substantially affected by training on
298 K and 933 K data, simultaneously. We observe that this model maintains the best-case
performance compared to either of the models trained separately on the two temperatures,
as evident in Figure 4.1 and Table 4.1. In particular, the model accurately predicts the
LDOS for the test set held out from the training snapshots at both temperatures. The
model transfers well to a new snapshot at 298 K, and transfers with some added error to a
new snapshot at 933 K. However, in both cases, the model performs no worse than either
model trained specifically on a single temperature. This suggests firstly that the information
capacity of the network architecture is enough to accommodate two slightly different data
domains without sacrificing performance, and secondly that it is possible to form a single
map from local descriptors to LDOS that holds across different temperatures. Neither
observation was obvious a priori, and this realization represents an advance in ML-DFT
studies, at it is the first observation of a model that is, at least partially, portable between
temperatures.

4.2. Deep Variational Information Bottleneck. We test the transferability of the
Deep VIB architecture in the same way as the FCNN: first by training the network separately
on each temperature, and next by training it simultaneously on both. Here, we demonstrate
results for β = 10−6, a value selected based on previous studies with Deep VIBs, which is
found to balance the prediction error with the information penalty in the latent domain.
In all cases, the performance and trends, both on tests sets from training snapshots, and
transferred to other snapshots of the same or different temperatures, are very similar to
those observed for the FCNN, as evident in Figure 4.2 and Table 4.1.

The similarity between the performance of the Deep VIB and the FCNN suggests a few
different conclusions. Firstly, it is notable that the Deep VIB does not exhibit enhanced
transfer performance to a new snapshot at 933 K. The principle of the Deep VIB is that it
should reduce learning a predictor that is specific to a single domain by finding the features
of the input data which generalize well. However, it is still possible that the training data
set does not span this domain, meaning that the network may still have to extrapolate from
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Fig. 4.2: Parity plots of the test performance of the Deep VIB model in predicting the
LDOS. From top to bottom: the model trained only on data from snapshot 1 at 298 K, the
model trained only on data from snapshot 1 at 933 K, and the model trained on snapshot 1
at 298 K and snapshot 1 at 933 K. From left to right: model performance on the test set from
snapshot 1 at 298 K, performance on the test set from snapshot 2 at 298 K, performance
on the test set from snapshot 1 at 933 K, and performance on the test set from snapshot 2
at 933 K. The LDOS has been normalized to the maximum value in the training set in each
case.

its training domain to make predictions for new domains, such as another high-temperature
snapshot, despite the fact that it is using feature representations that may generalize well.
Therefore, it seems that there is indeed still a need for more data at higher temperatures
to train a model whose applicable domain spans that which may be observed at these
temperatures.

The second conclusion suggested by these results is that there are features of the input
SNAP fingerprints that are not useful for computing the LDOS. The Deep VIB is able to
compress the 91-dimension input fingerprint to a 32-dimension latent vector by architec-
tural design, nearly a third of the size. Moreover, we observe that the Kullback-Leibler
divergence for this latent space is, on average, ten times lower with β = 10−6 than with
β = 0, suggesting further compression of information has been achieved. Therefore, there
is a representation of the input domain with substantially less information than the SNAP
fingerprints that is still sufficient to compute LDOS predictions without substantially more
error. Similar results may be observed by analyzing the variance in the LDOS explained
by the principal components of the bispectrum fingerprints. Indeed, the substantial com-
pression observed in the Deep VIB suggests that a small number of principal components
may be sufficient to form a predictive map from fingerprints to LDOS. This observation also
suggests that, when presented with more training data, the Deep VIB may indeed transfer
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to new conditions better than the FCNN, as the latent space will be more densely popu-
lated with training data than the space of SNAP fingerprints. Moreover, it suggests that
the information capacity of the FCNN architecture is not fully utilized, and indeed the net-
work may be able to accommodate much more training data without observing diminished
performance due to information overload.

5. Discussion. This report has detailed the first steps towards developing ML-DFT
models that transfer between different data domains, in particular, between temperatures,
with no or limited additional training. The results presented in the previous section indi-
cate that it is possible to train the same network architectures previously used on single-
temperature data to fit data at two different temperatures, without substantial loss of
performance at either temperature. Moreover, the Deep VIB approach suggests that it is
possible to compress the input domain into a more compact, lower-dimensional domain,
such that it may be densely populated by less training data than the full SNAP fingerprint
domain. Together, these results suggest a pathway towards training transferable neural
network surrogates for DFT calculations.

However, substantially more work is needed to assess the viability of these approaches
on more interesting cases, such as interpolation in temperature, where the test snapshot is
taken at a temperature between those present in the training data. Moreover, additional
training data is required to achieve transferable performance between snapshots at the
training temperatures. These studies are primarily limited by the availability of training
data. We plan to generate such data and explore these features of the models in upcoming
work.

The focus of this report has been on transfer learning approaches for ML-DFT, which
aim to apply a trained model to a slightly different problem domain. However, other ap-
proaches exist which may be able to achieve better performance at the cost of some slight
additional training, but not nearly to the extent of retraining a model for each domain of
interest. This is the domain of meta-learning, where the goal is to develop a model that
is able to rapidly adapt to new problems, or tasks. In future work, we plan to explore a
two-stage meta-learning approach, in which a low-fidelity but general Deep VIB model is
trained on snapshots from a range of temperatures, and the learned embeddings are used
to train a second, smaller model that predicts the LDOS, which is temperature specific.
Similar approaches have demonstrated success in few-shot, fine-grained image classification,
dramatically reducing the amount of training data and the training time to achieve a perfor-
mant model on difficult classification tasks [25]. This highlights the main trade-off inherent
in these transfer and meta-learning ML-DFT approaches: an increased flexibility in predict-
ing data from different states with limited additional training, at the cost of a more complex
model with larger upfront training cost.

6. Conclusions. We have discussed the recently-developed paradigm of ML-DFT, in-
cluding its limitations on rapidly adapting to unseen input domains, such as data from
different temperatures or chemical species. A transfer-learning approach to creating such
a general model was examined, with preliminary results indicating that current ML-DFT
model architectures are capable of describing more than one temperature. This analysis also
revealed that transference from models trained at high temperature to lower-temperature
test data is more accurate than that in the opposite direction, indicating the need specifi-
cally for a sufficient amount of high-temperature training data. An exploration of modern
variational approaches to assist in transfer learning, specifically the Deep VIB, revealed that
substantially less information than that stored in the full 91-dimensional SNAP fingerprint
is required to achieve accurate predictions of the LDOS. However, more data is required to
examine whether this approach outperforms the standard FCNN in transfer performance.
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Finally, we briefly introduced the concept of meta-learning, which opens future studies into
rapidly adaptable, but highly accurate, ML-DFT models. The development of such mod-
els will be critical in the rapid adaptation of scalable electronic structure calculations for
a variety of applications, as the reduced need for training data and the low time to train
substantially mitigates two of the largest barriers in the wide-spread accessibility of the
ML-DFT approach.
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IMPROVED VERTICAL REMAPPING ACCURACY IN THE NH-HOMME
ATMOSPHERE DYNAMICAL CORE

JASON L. TORCHINSKY∗ AND MARK A. TAYLOR†

Abstract. A vertical Lagrangian coordinate has been used in global atmosphere models for nearly
two decades and has several advantages over other discretizations, including reducing the dimensionality
of the physical problem. As the Lagrangian surfaces deform over time, it is necessary to accurately and
conservatively remap them back to fixed Eulerian surfaces. A popular choice of remapping algorithm is the
piecewise-parabolic method, a modified version of which is used in the dynamical core of the atmosphere
component of the Energy Exascale Earth System Model. However, this version of the remapping algorithm
creates unwanted noise at the model top and planetary surface for several standard test cases. We explore
four alternative modifications to the algorithm, specifically to the treatment of the domain boundaries, and
show that the most accurate of these eliminates this noise.

1. Introduction. The use of a vertical Lagrangian coordinate in global circulation
models (GCMs) was first introduced almost eighty years ago by V. P. Starr in [9], and
was re-introduced in its modern form less than twenty years ago by S.-J. Lin in [5]. Since
then, a vertical Lagrangian coordinate has been a popular choice for the dynamical cores
of present-day non-hydrostatic GCMs, including a version of ENDGame used in the Met
Office atmospheric Unified Model and the Non-Hydrostatic High Order Method Modeling
Environment (NH-HOMME) used in the Energy Exascale Earth System Model (E3SM)
[3,10].

The essence of the vertical Lagrangian coordinate is as follows: we start the time in-
tegration process with a terrain-following coordinate surface, and allow each Lagrangian
surface to float, compress, or expand as the simulation progresses. After some number of
time-steps, we remap each state variable from the deformed Lagrangian surfaces back to the
terrain-following vertical Eulerian surfaces to avoid the Lagrangian surfaces from becoming
too close or crossing. The key advantage of the vertical Lagrangian coordinate is that there
is no flow through the Lagrangian surfaces, and so we may eliminate vertical advection
terms from the equations of motion [10]. However, many remapping algorithms introduce
excessive vertical dissipation and undesirable errors [2, 6–8,10].

One common choice of remapping algorithm, and the one we will discuss throughout this
work, is the piecewise-parabolic method (PPM) introduced by P. Colella and P. Woodward
in [2]. Many have introduced modifications and improvements to the PPM, for example
[1, 6–8, 13]. Originally, the PPM was introduced as a numerical method to solve advection
problems in a periodic domain and did not propose an alternative algorithm for the case
of non-periodic domains. One modification to the PPM to handle non-periodic domains
is to instead use one-sided stencils at the domain boundary [6, 13]. Another is to instead
extrapolate the known data beyond the domain, and apply the original PPM algorithm
utilizing the ghost-cell data at the domain boundaries, such as in [6].

The dynamical core used in the E3SM utilizes this latter strategy of extrapolating ghost-
cell data to remap a vertical Lagrangian pressure coordinate back to a terrain-following
Eulerian pressure coordinate. Specifically, the original data is extrapolated linearly beyond
the domain, the extrapolated data is then adjusted to be bounded by the global bounds of
the original data, and finally the original PPM algorithm is applied. This has been shown
to create unwanted noise at the domain boundary for several standard test cases introduced
by the Dynamical Core Model Intercomparison Project (DCMIP).

∗University of Wisconsin-Madison Department of Mathematics, jason.torchinsky@wisc.edu
†Sandia National Laboratories, mataylor@sandia.gov
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In this work, we review the discrete remapping problem (Section 2), examine four al-
ternative strategies for treating the extrapolated data (Section 3), analyze their accuracy
in a suite of sandbox tests (Section 4), and compare the most accurate of these strategies
against the remapping algorithm currently used in NH-HOMME (Section 5).

2. The Discrete Remapping Problem. In the most general sense, the discrete
remapping problem may be stated as follows:

Given information about a function in a discretization of a domain, how
may we “nicely” calculate the same information about this function in a
different discretization of the same domain?

We consider the discrete remapping problem in one spatial dimension. In particular, let
the source grid be made up of n cells with centers xi (i = 1, . . . , n) each with boundary
points xi± 1

2
, and the target grid made up of m cells with centers ξj (j = 1, . . . , m) each

with boundary points ξj± 1
2
. The source grid and the target grid are discretizations of the

same domain, with x 1
2

= ξ 1
2

and xn+ 1
2

= ξm+ 1
2
.

We are given the average value 〈a〉i of some function a (x) in each cell of the source grid

〈a〉i =
1

∆xi

∫ x
i+1

2

x
i− 1

2

a (x) dx, i = 1, . . . , n, (2.1)

where ∆xi = xi+ 1
2
− xi− 1

2
is the width of the ith cell on the source grid. We wish to remap

the cell averages 〈a〉i of the source grid to the cell averages aj of the target grid

aj =
1

∆ξj

∫ ξ
j+1

2

ξ
j− 1

2

a (ξ) dξ, j = 1, . . . , m, (2.2)

where ∆ξj = ξj+ 1
2
− ξj− 1

2
is the width of the jth cell on the target grid. We require that

this remapped solution has three properties:

(i) the integral of a (x) over the domain does not change because of the remapping

∫ x
n+1

2

x 1
2

a (x) dx =

n∑
i=1

∆xi 〈a〉i =

m∑
j=1

∆ξj aj =

∫ ξ
m+1

2

ξ 1
2

a (ξ) dξ, (2.3)

i.e., the remapping conserves “mass”,
(ii) preserves local bounds on the interior of the domain, i.e., for all cells on the target

grid away from the domain boundary, the cell average aj lies within the cell averages
〈a〉i used to obtain aj , and

(iii) preserves global bounds on the boundary, i.e., for all cells on the target grid near the
domain boundary, the cell average aj lies within the cell averages 〈a〉i (i = 1, . . . , n).

The current algorithm used to accomplish this in NH-HOMME is a modified version of
the piecewise-parabolic method (PPM) introduced in [2], which we describe in the following
section.

3. A Modified Piecewise-Parabolic Method. The first step of the modified PPM
used in NH-HOMME is to generate ghost-cell data on the original grid, in particular the
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values 〈a〉−1, 〈a〉0, 〈a〉n+1, and 〈a〉n+2 using a simple linear extrapolation

〈a〉−1 =

(
1− ∆x−1 + 2 ∆x0 + 2 ∆x1 + ∆x2

∆x1 + ∆x2

)
〈a〉2

+
∆x−1 + 2 ∆x0 + 2 ∆x1 + ∆x2

∆x1 + ∆x2
〈a〉1 , (3.1a)

〈a〉0 =

(
1− ∆x0 + 2 ∆x1 + ∆x2

∆x1 + ∆x2

)
〈a〉2 +

∆x0 + 2 ∆x1 + ∆x2

∆x1 + ∆x2
〈a〉1 , (3.1b)

〈a〉n+1 =

(
1− ∆xn−1 + 2 ∆xn + ∆xn+1

∆xn−1 + ∆xn

)
〈a〉n−1 +

∆xn−1 + 2 ∆xn + ∆xn+1

∆xn−1 + ∆xn
〈a〉n ,

(3.1c)

〈a〉n+2 =

(
1− ∆xn−1 + 2 ∆xn + 2 ∆xn+1 + ∆xn+2

∆xn−1 + ∆xn

)
〈a〉n−1

+
∆xn−1 + 2 ∆xn + 2 ∆xn+1 + ∆xn+2

∆xn−1 + ∆xn
〈a〉n , (3.1d)

where the cell-widths ∆x−1, ∆x0, ∆xn+1, and ∆xn+2 are chosen to mirror those in the
domain, e.g., ∆x−1 = ∆x2, ∆x0 = ∆x1, etc. Making these substitutions, Eqs. 3.1 may be
expressed in simpler terms

〈a〉−1 =

(
1− 4 ∆x1 + 2 ∆x2

∆x1 + ∆x2

)
〈a〉2 +

4 ∆x1 + 2 ∆x2

∆x1 + ∆x2
〈a〉1 , (3.2a)

〈a〉0 =

(
1− 3 ∆x1 + ∆x2

∆x1 + ∆x2

)
〈a〉2 +

3 ∆x1 + ∆x2

∆x1 + ∆x2
〈a〉1 , (3.2b)

〈a〉n+1 =

(
1− ∆xn−1 + 3 ∆xn

∆xn−1 + ∆xn

)
〈a〉n−1 +

∆xn−1 + 3 ∆xn
∆xn−1 + ∆xn

〈a〉n , (3.2c)

〈a〉n+2 =

(
1− 2 ∆xn−1 + 4 ∆xn

∆xn−1 + ∆xn

)
〈a〉n−1 +

2 ∆xn−1 + 4 ∆xn
∆xn−1 + ∆xn

〈a〉n . (3.2d)

Currently, we then limit these ghost-cell cell averages to obey global bounds of the
original data, e.g., if 〈a〉n+1 is greater than the greatest 〈a〉i then we reduce 〈a〉n+1 to the
greatest 〈a〉i.

With the ghost-cell cell averages, we may apply the original PPM of [2] to obtain a
piecewise-parabolic reconstruction of a (x) on the source grid that we then integrate to
obtain the cell averages aj (j = 1, . . . , m) on the target grid. The original PPM algorithm
guarantees that our remapped solution conserves “mass” and preserves local bounds on the
interior of the domain. By limiting the ghost-cell cell averages to obey global bounds, we
also guarantee that our remapped solution obeys global bounds on the boundary of the
domain. We henceforth refer to this strategy as strategy (0).

As we will discuss in Section 5, the limiting of the ghost-cell cell averages introduces
undesirable noise at the model top and surface to several DCMIP tests, which are stated in
detail in [11,12]. We investigated several alternative strategies to eliminate this noise:

(1) Instead of limiting extrapolated ghost-cell cell averages for all variables, only limit
ghost-cell cell averages for some state variables. This relaxes the condition of global
bounds preservation on the domain boundary for these variables, leading to less
dissipation than strategy (0).

(2) In addition to the changes for strategy (1), we utilize “mass-borrowing” on the
remapped solution to guarantee that global bounds are preserved on the domain
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boundary. Specifically, we add/subtract “mass” from the remapped cell averages
aj on the so that global bounds on the boundary are preserved, and subtract/add
this “mass” to neighboring cells on the interior of the domain. This relaxes the
condition of local bounds preservation on the interior for these variables.

(3) Use a linear combination of the remapped solution obtained from the original strat-
egy and strategy (1) to guarantee that global bounds are preserved on the domain
boundary. This guarantees that the remapped solution satisfies conditions (i)–(iii).

(4) In addition to the changes for strategy (1), we change the parabolic piece of the
reconstructions to be piecewise-constant on the outermost cells of the source grid.
This guarantees that the remapped solution satisfies conditions (i)–(iii).

4. Sandbox Test Results. To directly compare the five strategies, we remapped
various test functions from a non-uniform source grid to a uniform target grid, each with
the same number of cells. In particular, these source grids discretized the interval [0, 1] and
may be obtained from a uniform discretization u0, . . . , un via the following mappings

g1 (u) = u2, (4.1a)

g2 (u) = u3, (4.1b)

g3 (u) =
1

2
(1− cos (π u)) , (4.1c)

g4 (u) =
(

1 + e−30 (x−0.5)
)−1

, (4.1d)

g5 (u) = u+
1

32
R, (4.1e)

g6 (u) = u+
1

4
R, (4.1f)

where R is a uniform random number from the interval [−∆xu, ∆xu] (∆xu being the
uniform grid spacing) and we guarantee that g4 (0) = g5 (0) = g6 (0) = 0 and g4 (1) =
g5 (1) = g6 (1) = 1. We chose each of these source grids with the following intent:

• the resolution of the grid discretized via g1 is biased towards one side of the domain,
• the resolution of the grid discretized via g2 is even more biased towards one side of

the domain than that discretized via g1,
• the resolution of the grid discretized via g3 is symmetrically biased toward the

domain boundaries,
• the resolution of the grid discretized via g4 is even more symmetrically biased toward

the domain boundaries than that discretized via g3,
• the grid discretized via g5 is a small perturbation of a uniform grid which we expect

in our use cases, and
• the grid discretized via g6 is a larger perturbation of a uniform grid than that

discretized via g5.
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The test functions we investigated were

a1 (x) = 4

(
x− 1

2

)2

, (4.2a)

a2 (x) = e−
1
2 (20 (x− 1

2 ))
2

, (4.2b)

a3 (x) = ex−1, (4.2c)

a4 (x) = e−x, (4.2d)

a5 (x) =
16

9

(
x− 1

4

)2

, (4.2e)

a6 (x) =
1

2
(1 + sin (8π x)) , (4.2f)

which were intended to examine the following situations:
• the test function a1 has symmetric steep global maxima at the domain boundaries

and a global minimum at the domain center,
• the test function a2 has a global maximum at the domain center and gradual sym-

metric global minima at the domain boundaries,
• the test function a3 has a steep global maximum on the right side of the domain

and a gradual global minimum on the left side of the domain,
• the test function a4 has a steep global maximum on the left side of the domain and

a gradual global minimum on the right side of the domain,
• the test function a5 has asymmetric steep local maxima at the domain boundaries

with one (on the right) being the global maximum,
• the test function a6 is highly oscillatory and has steep local extrema on the domain

boundaries and achieves global extrema on the interior of the domain.
Each source grid and test function is shown in Figure 4.1.
The cell averages are initialized on the source grid by evaluating the true function at the

mid-point of each source cell. The 2–norm and max–norm errors are calculated as described
in Appendix A.5 of [4], taking the difference between the remapped solution and the true
function evaluated at the mid-point of each target cell for domains decomposed into 16, 32,
64, 128, 256, 512, and 1024 cells. Figure 4.2 shows the order of accuracy for each remapping
strategy for each combination of grid function and test function.

As may be observed from Figure 4.2, strategy (0) is significantly less accurate than
strategy (1) in most test cases, is notably less accurate then strategies (2) and (3) in test
cases involving source grid g5 which we expect in our use cases, and is more accurate than
strategy (4) in several test cases.
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Fig. 4.1: The source grid cell interfaces (Subfigure 4.1(a)) and test functions (Subfig-
ure 4.1(b)), used in the sandbox test cases.
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(a) 2-Norm Accuracy

(b) Max-Norm Accuracy

Fig. 4.2: The order of accuracy of each remapping strategy for every combination of grid
function and test function, in 2–norm (Subfigure 4.2(a)) and max–norm (Subfigure 4.2(b)),
obtained by calculating the error for domains decomposed into 16, 32, 64, 128, 256, 512,
and 1024 cells and remapping from the source grid to the target grid a single time.
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5. DCMIP Test Results. The Dynamical Core Model Intercomparison Project
(DCMIP) introduced a suite of test cases in 2012 and 2016 with the goal to understand
the treatment of the equations of motion within several atmospheric general circulation
models [11,12]. These test cases cover a range of complexities, from pure advection tests to
non-orographic gravity waves on a small planet, and beyond.

Here, we compare the result of using strategy (0), which is used in the current version
of NH-HOMME, and strategy (1), where we use unbounded ghost cell data for only the
thermodynamic variable. We present results for the following DCMIP test cases in the
subsequent subsections:

• 2012-2.0.0 - steady-state atmosphere at rest in the presence of orography with
moderately-steep slopes,

• 2012-2.1 - non-hydrostatic mountain waves over a Schär-type mountain without
vertical wind shear,

• 2012-2.2 - non-hydrostatic mountain waves over a Schär-type mountain with vertical
wind shear,

• 2012-3.1 - non-hydrostatic gravity waves with an overlaid potential temperature
perturbation at the equator,

• 2016-1.1 - moist baroclinic wave with terminator chemistry, and
• 2016-1.2 - idealized tropical cyclone.

Although strategies (2) and (3) are more accurate than strategy (0) for several sandbox
test cases, they were found to perform nearly identically to strategy (0) for these DCMIP
test cases.

5.1. DCMIP Test 2012-2.0.0 Results. The DCMIP test 2012-2.0.0 is designed to
give insight to the pressure gradient calculation in the presence of orography. In particular,
the model is initialized with a hydrostatically-balanced atmosphere at rest on a non-rotating
Earth-size planet. The surface topography, illustrated in Figure 5.1 by the black shape on
the model surface, consists of a highly oscillatory mountain range and flat terrain away from
the mountain range. Further details for DCMIP test 2012-2.0.0 are given in Subsection 2.0
of [11].

From a physical standpoint, in this test there is no driving force to cause the atmosphere
to flow. The flow we observe in the simulation is entirely driven by numerical errors in the
calculation of the pressure gradient in the discretized model, which gives insight into the
discrete pressure gradient terms. Figure 5.1 shows a snapshot of the simulated flow on the
sixth day of simulation at the equator.

There are two main points of comparison between strategy (0) and strategy (1) for DMIP
test 2012-2.0.0: wind velocity extrema and noise. As mentioned at the end of Section 3,
strategy (0) is more dissipative than strategy (1), as strategy (1) allows for the augmentation
of extrema at the model surface and top. Thus, strategy (1) leads to a larger wind velocity
than strategy (0) for this test case. Although larger wind velocity extrema is undesirable for
this test case, the errors in the discrete pressure gradient terms may be eliminated entirely
by choosing special forms of the equations of motion [11]. As we may “solve” the issue
of the numerical errors of the discrete pressure gradient terms independently of our choice
of remapping strategy, we are more concerned with using the remapping strategy which
minimizes the noise in the simulation.

Strategy (1) does indeed reduce the noise when compared to strategy (0). Most notably,
the noise present at the model surface toward the edges of the mountain range (approxi-
mately 15E and 160E) is almost entirely eliminated by using strategy (1).

5.2. DCMIP Tests 2012-2.1 and 2012-2.2 Results. Similarly to DCMIP test
2012-2.0.0, DCMIP tests 2012-2.1 and 2012-2.2 are designed to illustrate the impact of
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Fig. 5.1: A comparison of strategy (0) (left) and strategy (1) in which only the thermo-
dynamic variable is remapped using unbounded ghost cell data (right) for DCMIP test
2012-2.0.0 on the sixth day of the simulation at the equator. The surface topography is
show by the black shape on the model surface. Although strategy (1) results in a larger
zonal wind velocity perturbation, there is less noise toward the model surface, e.g., above
the mountains at approximately 160E.

mountain profiles on simulated atmospheric flow. These two tests have almost identical
setups; both are initialized with an atmosphere in purely zonal flow on a non-rotating
reduced-size Earth with a reduction factor of 500, including mountainous topography sim-
ilar to that of DCMIP test 2012-2.0.0. The reduced-radius of the planet ensures that the
simulated response to the mountains contain hydrostatic and non-hydrostatic features. The
difference between DCMIP test 2012-2.1 and 2012-2.2 is that the initial wind profile of the
latter has zonal velocity increasing vertically, whereas the initial wind profile is the former
remains contrast with respect to altitude. Further details of these tests are given in Sec-
tions 2.X, 2.1, and 2.2 or [11]. This test utilizes a vertically-constant zonal wind velocity
on a reduced-size planet with a reduction factor of 500, which is intended to trigger a non-
hydrostatic response [11]. A snapshot after 7200 s of simulation time for both tests is shown
in Figure 5.2.

When using strategy (0) for both of these tests, the temperature anomaly from a con-
stant background state at the model surface and top is highly oscillatory. In particular, at
the model surface there is a steep decrease in temperature at approximately 1 km altitude
followed by a sharp increase below that altitude. At the model top, there is a slightly shal-
lower increase in temperature at approximately 29 km followed by a decrease above that
altitude. These noisy artifacts are entirely eliminated when using strategy (1).

5.3. DCMIP Test 2012-3.1 Results. The DCMIP test 2012-3.1 illustrates the re-
sponse of models to short time-scale wave-motion triggered by a localized perturbation.
The initial state of this test is in both hydrostatic balanced and gradient-wind balance, and
the overlay of a potential temperature perturbation at the equator triggers the evolution
of gravity waves. Similarly to DCMIP tests 2012-2.1 and 2012-2.2, this test takes place
on a non-rotating reduced-radius Earth, instead with a reduction factor of 125, ensuring
that both hydrostatic and non-hydrostatic responses can be observed. Unlike DCMIP tests
2012-2.x, the topography of this planet is entirely flat. Further details of this test are given
in Section 3 of [11]. A snapshot after 3600 s of simulation time is shown in Figure 5.3.

Similarly to DCMIP tests 2012-2.1 and 2012-2.2, when using strategy (0) there are
unnatural potential temperature anomalies which oscillate vertically near the model top
and surface, especially toward the center of the gravity wave. These oscillations are entirely
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(a) DCMIP Test 2012-2.1

(b) DCMIP Test 2012-2.2

Fig. 5.2: A comparison of strategy (0) (left) and strategy (1) in which only the thermody-
namic variable is remapped using unbounded ghost cell data (right) for DCMIP test 2012-2.1
(Subfigure 5.2(a)) and test 2012-2.2 (Subfigure 5.2(b)) at 7200 s simulation time. The tem-
perature anomaly reported is a perturbation from a constant 300 K. The noise present in
the model surface and top using strategy (0) in both tests is eliminated by using strategy
(1).

absent when using strategy (1).

5.4. DCMIP Test 2016-1.1 Results. The DCMIP test 2016-1.1 examines the emer-
gence and evolution of wave modes associated with baroclinic instability. In particular, the
initial condition is a small perturbation from a geostrophic, hydrostatic reference state that
satisfies the condition for baroclinic instability. Similarly to DCMIP test 2012-2.0.0, a per-
fect model would maintain this reference state indefinitely, but errors introduced by discrete
operators trigger the wave modes to form. The small perturbation added to this reference
state is notably larger than this numerical error, which allows for greater control in the
evolution of the baroclinic wave. In addition, the model surface topography is flat and the
velocity field goes to zero at the model surface. Further details are given in Section 1 of
[12]. Figure 5.4 shows the temperature at 850 hPa after 15 days of simulation time.

Unlike the DCMIP 2012 tests reported in the previous subsection, there is no obvious
noise present in the simulation for strategy (0) and no noise is introduced by strategy (1).

5.5. DCMIP Test 2016-1.2 Results. The DCMIP test 2016-1.2 examines the prop-
agation of an analytic vortex on an Earth-size planet initialized in a background environment
which is tractable to the augmentation of tropical cyclones [12]. Figure 5.5 shows a snapshot
of the surface pressure on the 10th.
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Fig. 5.3: A comparison of strategy (0) (left) and strategy (1) in which only the thermody-
namic variable is remapped using unbounded ghost cell data (right) for DCMIP test 2012-3.1
at 3600 s simulation time. The potential temperature anomaly reported is a perturbation
from the mean potential temperature. The noise present in the model surface and top using
strategy (0) is eliminated by using strategy (1).

Fig. 5.4: A comparison of strategy (0) (left) and strategy (1) in which only the thermody-
namic variable is remapped using unbounded ghost cell data (right) for DCMIP test 2016-1.1
on the 15th day of simulation. The temperature reported is at the 850 hPa pressure level.
Unlike the DCMIP 2012 tests reported in previous subsections, there is no meaningful dif-
ference between the results obtained from strategy (0) and strategy (1).

Unlike all previously discussed DCMIP test cases, the noise present toward the center
of the cyclone (Subfigure 5.5(b)) is present both when we use strategy (0) and when we
use strategy (1) in which we remap the thermodynamic variable with unbounded ghost cell
data. When we additional remap the water vapor mixing ratio with unbounded ghost cell
data, this noise is eliminated.

Furthermore, using strategy (1) on both the thermodynamic variable and water vapor
mixing ratio causes the idealized tropical cyclone to evolve differently, as may be noticed in,
e.g., the ‘branch’ of lower surface pressure about the equator between 90W and 0 longitude
in Subfigure 5.5(a). We attribute this difference in evolution to the sensitivity of the tropical
cyclone to surrounding atmosphere conditions, i.e., the differences between strategy (0) and
strategy (1) accumulate and build up over time.
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(a) Full-view of cyclone

(b) Zoom-view of center of cyclone

Fig. 5.5: A comparison of strategy (0) (left) and strategy (1) in which the thermodynamic
variable and water vapor mixing ratio are remapped using unbounded ghost cell data (right)
for DCMIP test 2016-1.2 on the 10th day of simulation. The noise at the center of the
cyclone using strategy (0), as well as the propagation of noise from throughout the domain,
is eliminated only when we use strategy (1) for the water vapor mixing ratio in addition to
the thermodynamic variable.

6. Conclusions. In this work, we examined different treatments of ghost-cell data in
a modified version of the PPM on a variety of sandbox test cases (Section 4), and compared
the best of these strategies against the treatment of ghost-cell data currently used in NH-
HOMME in several DCMIP tests (Section 5).

In the sandbox test cases, we found the the most accurate strategy for treating ghost-
cell data of those compared was unbounded linear extrapolation (strategy (1)), which was
at least as accurate as bounded ghost-cell data (strategy (0)) in every sandbox test case.
With this result in mind, we chose to utilize strategy (1) for the thermodynamic variable for
the DCMIP test case comparisons, as the relaxation of the requirement to preserve global
bounds at the domain boundary is an acceptable trade-off for some state variables.

In all but one of the DCMIP test cases we examined, applying strategy (1) to the
thermodynamic variable alone was sufficient to reduce or eliminate the noise found in several
state variables at the domain boundary. However, in DCMIP test 2016-1.2 (idealized tropical
cyclone), we found that it was necessary to use strategy (1) for the water vapor mixing ratio
as well to eliminate this noise.

In future work, it would be interesting to investigate the following

• compare the use of strategy (0) to strategy (1) on a subset of the state variables for
all DCMIP 2012 and 2016 test cases,
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• compare the use of PPM and the piecewise-quartic method, which has been shown
to be of higher order on a periodic domain [13], or other remapping algorithms, and

• compare the strategies here for the treatment of the ghost-cell data with more
strategies, including using higher-order extrapolants and smaller ghost-cells,

among other possible future directions.
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MACHINE-LEARNING FOR SINGLE PARTICLE MOTION IN PLASMAS

SONATA M. VALAITIS∗ AND KATHRYN A. MAUPIN†

Abstract. The application of machine learning to particle advancement in kinematic plasma simulations
is the motivation behind this work. Fully kinetic particle-in-cell simulations are necessary for resolution
of high-frequency effects in magnetic confinement fusion plasmas near the wall, but the application of
this simulation methodology to larger domains of the plasma is limited by computational cost and speed
limitations. Both gyrokinetic and fully kinetic particle-in-cell methods often employ the Boris-Bunemann
particle advancement algorithm due to its excellent long-simulation-time accuracy and efficiency. This
work discusses the implementation of machine learning in plasma physics for the purpose of regression
and classification tasks relating to experimental and computational data. The implementation of a neural
network to the task of particle advancement is addressed, where training data is provided by the Boris-
Bunemann algorithm with and without frequency correction. The algorithm is trained and tested for
various cases including uniform E and B fields, and nonuniform fields where the E × B drift, grad-B drift
and curvature drift are present. The aim of this work is to implement a neural network to accurately predict
single charged particle motion in an electromagnetic field, capturing relevant physical effects and potentially
providing a computationally efficient alternative to the Boris-Bunemann particle advancement algorithm for
use in kinematic plasma simulations.

1. Introduction and Motivation. Simulation of a magnetically confined plasma is
a multi-scale physics problem which is essential to the development of a viable commercial
fusion reactor. Particle-in-cell (PIC) codes are a simulation methodology used to deter-
mine the positions and velocities of individual plasma particles over time and to calculate
the macroscopic properties of a plasma [29]. While highly accurate, PIC simulations are
computationally intensive, making analyses such as uncertainty quantification or optimal
experimental design intractable.

Machine-learning (ML) algorithms have the potential to reduce the computational cost
of high-fidelity simulation [6,11]. In the physical sciences, ML has been used in a wide range
of applications, including data analysis, prediction and inference, and comparison between
experimental and computational data. Applications include fitting scattered data, vectors,
images, and time-series [3]; analyzing signals [16]; constructing smooth functions [15]; and
approximating partial differential equations [26]. ML has also been successfully applied to
both experimental data and numerical simulations in plasma physics.

The goal of this work is to look at one method of increasing the computational efficiency
of fully kinetic PIC codes using a machine learning approach. The paper is outlined as
follows: An overview of nuclear fusion is given in Section 2, with simulation details given in
Section 3. Section 4 discusses relevant machine learning techniques, the training and testing
of which is described in Section 5. Concluding remarks are then given in Section 6.

2. Overview of Nuclear Fusion. In nuclear fusion, multiple atomic nuclei combine
to form a different chemical element. Isotopes of hydrogen such as deuterium and tritium are
commonly used as fuel for nuclear fusion reactions, which produce helium. Large amounts of
energy are released during this process via the emission of subatomic particles and various
forms of radiation. Nuclear fusion releases nearly four million times as much energy as
chemical reactions such as burning coal or gas and four times as much energy as nuclear
fission reactions at equal mass [1]. Fusion occurs within “plasma”: an ionized, electrically
conductive state of matter that is created when gases are heated and subjected to strong
electromagnetic fields.

Fusion is the process that powers active stars such as our sun, and it is being investigated
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as a potential source of sustainable, carbon-free power production here on Earth. There are
several factors that make nuclear fusion an attractive power source. Unlike nuclear fission,
fusion does not produce long-lived radioactive waste that must be monitored and stored.
Because it does not require fissile materials such as uranium and plutonium, it also poses a
low risk of nuclear weapons proliferation. Fusion is argued to be environmentally safer than
nuclear fission because it does not create the chain reactions that could lead to meltdown
of a fission plant reactor core. Fuel availability is also a beneficial factor. Deuterium is
abundantly available and tritium can be produced via reactions with a lithium blanket
within the reactor. Lastly, fusion power produces no greenhouse gases and therefore does
not contribute to climate change [1].

Magnetic confinement fusion is the predominant approach to fusion energy research
and consists of using electromagnetic fields to heat and confine the plasma. Tokamaks
and stellarators are two of the leading magnetic confinement device configurations used
to confine plasma into a toroidal shape using a magnetic field. Tokamaks use a toroidal
plasma current to achieve a necessary rotational transform of the magnetic field, whereas
stellarators employ external non-axisymmetric magnetic coils to achieve the same purpose
[31]. Both experimental designs have been extensively simulated using the particle-in-cell
method.

3. PIC Simulations. Though many PIC algorithms and approaches exist, they all
have the same general time-step loop. The general procedure consists of integrating the
equations of motion for each particle, tracking each particle within the field mesh grid,
applying any boundary conditions or collision terms, interpolating the current and charge
source terms to the mesh grid, integrating the field equations on the mesh grid, and inter-
polating the field values from the grid to particle locations. A schematic of this time-step
loop is shown in Figure 3.1.

Efforts to produce PIC simulations of the entire domain of a tokamak while accu-
rately including plasma-surface interactions and plasma sheath effects traditionally take
three possible approaches: fully kinetic PIC, gyrokinetic PIC, and a coupling of the two.
Fully kinetic PIC codes employ six-dimensional representations of plasma particles that fully
describe their positions and velocities in three-dimensional space. This approach is widely
used in plasma physics modeling because it reduces the number of assumptions made in
the physical model to a minimum. Fully kinetic PIC codes enable complex, highly accu-
rate simulations, which include plasma-surface interactions, at the cost of high computation
time [29]. For this reason, they have been widely applied to small-domain simulations of
the plasma sheath region near the wall of magnetic confinement fusion devices, such as
tokamaks and stellarators. It is necessary to integrate full cyclotron orbits when studying
charged particle dynamics in plasmas with waves at frequencies above cyclotron frequency.
If the computational efficiency of fully kinetic simulations could be increased, it would allow
long time scale simulations of tokamaks which resolve not only the lower frequency dynamics
in the bulk plasma but also the higher frequency effects in the plasma sheath near the wall.

Gyrokinetic PIC codes employ an alternative simulation methodology in which fast scale
gyromotion is removed from plasma dynamics. This is a five-dimensional approach that de-
scribes the three-dimensional location of the “guiding center” of the particle along with its
parallel and perpendicular velocity components relative to the magnetic field line. Gyroki-
netic PICs significantly reduce the computation time required to simulate strongly magne-
tized plasmas and expand the achievable domain size of a given simulation. However, these
codes are only applicable for describing plasma oscillations in slowly varying electromagnetic
fields [29]. They are therefore limited in applicability to the bulk plasma and scrape-off layer
regions of a magnetic confinement fusion device. Gyrokinetic PICs must therefore make a
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choice of boundary condition approximations to represent the plasma sheath region and
plasma-surface interactions near the wall. This technique has been extensively implemented
on high-performance computing resources over the past several decades [14]. Gyrokinetic
reduction procedures are widely employed by many modern particle-in-cell codes and have
played a fundamental role in advancing our ability to simulate strongly magnetized plasmas
over long time periods [19, 27]. However, the importance of plasma-surface interactions on
bulk plasma dynamics is just beginning to be understood. As a result, there is increasing
interest in optimizing the computational efficiency of fully kinetic PIC methods in order to
examine the impact of surface interactions and dust-particle transport on the bulk plasma
[10,20].

3.1. Boris-Bunemann Algorithm. The Boris-Bunemann algorithm is a widely used
particle advancement algorithm in PIC codes [21, 23]. It is based on a discretization of the
Newton-Lorentz equation of motion (or “Lorentz force law”), as shown in Equations 3.1-3.2
for α species with Nα particles each (i = 1, . . . , Nα)

dxαi
dt

= vαi (3.1)

dvαi
dt

=
eZα
mα

[E(x, t) + vαi ×B(x, t)] |x=xα,i (3.2)

where x is position, v is velocity, Zα is the atomic number and mα is the mass of species
α, and E and B are the electric and magnetic fields, respectively.

The Boris-Bunemann algorithm is shown in Equations 3.3 - 3.10. It is a type of leapfrog
method in that it requires a half-time-step offset between the velocity and position updates
[23].

Fig. 3.1: Time-step loop of particle-in-cell method [7]
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First, a half-acceleration due to the electric field is applied

−→v − = −→v n−1/2 +
q

m

∆t

2

−→
En (3.3)

The rotation due to the magnetic field is then applied

−→v ′ = −→v − +−→v − ×−→t (3.4)

−→v + = −→v − +−→v ′ ×−→s (3.5)

There are “frequency-corrected” and “non-frequency-corrected” versions of the Boris-
Bunemann algorithm, where the former places bounds on absolute error but also requires
a computationally costly tangent function calculation. The “frequency-corrected” Boris-
Bunemann algorithm employs

−→
t ≡ −−→b tan

θ

2
(3.6)

whereas the more computationally efficient “non-frequency-corrected”
Boris-Bunemann uses the approximation

−→
t ≈ q

−→
B

m

∆t

2
≈
−→
Ω ∆t

2
(3.7)

where

−→s =
2
−→
t

1 + |−→t |2
(3.8)

Lastly, a second half-rotation from the electric field is then utilized

−→v n+1/2 = −→v + +
q

m

∆t

2

−→
En (3.9)

The position of the particle at the new time step n+ 1 is updated

−→x n+1 = −→x n +−→v n+1/2∆t (3.10)

The Boris-Bunemann algorithm is considered the “de facto standard” for advancing
charged particles in PIC simulations. Although it is not symplectic, it possesses excellent
long-term accuracy and the same global bound on energy error typically observed in sym-
plectic algorithms. This is has been shown to be a result of the fact that it preserves phase
space volume [21].

4. Machine-Learning for the Physical Sciences. Machine-learning models typ-
ically represent a functional relationship between some set of independent inputs and a
dependent output. Supervised learning techniques ranging from regression schemes to deep
learning are often used to model these functions, while unsupervised learning techniques
are often applied to reduce input space dimensionality [26]. ML models have advantages
relating to both uncertainty quantification and computational efficiency.
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4.1. Introduction to Machine Learning. ML models are frequently applied to sta-
tistical, data-based tasks such as classification, clustering, dimensional reduction, and re-
gression. Regression involves using ML algorithms to approximate real-valued functions,
while classification returns discrete or categorical values. In their most basic form, machine-
learning models consist of algorithms that predict numerical outputs based on numerical
inputs and that learn or improve their performance with experience, i.e. as data is added.
If an ML algorithm was modeling a real-valued function such as y = f(x), the “experience”
would consist of the input and output values (X = {xi}, Y ∗ = {y∗i }) for i = 1, . . . , N data
points produced by either observation or simulation. “Learning” is the improvement of the
algorithm’s performance with increasing experience. A simple and frequently-used way of
measuring performance is to calculate the squared error by comparing the predicted values
y to the correct output values y∗ : SE =

∑
(y∗i − yi)2 [26]. Another common choice is to

use the mean squared error MSE =
∑n
i=1(y∗i − yi)2/n, which can be consistently applied

to data sets with varying numbers of data points n.
There are two major categories of ML algorithms used for regression: parametric

and non-parametric methods. The simplest parametric method is the linear least squares
method, and it is often used with explicitly parametrized model functions that have a lin-
ear dependence on their parameters. It can also be applied to nonlinear model functions,
provided that a nonlinear solution technique is employed. Parametric methods typically
require labeled or “supervised” data.

Non-parametric methods do not require explicit parametrization of the model function
in advance. These include decision trees, support vector machine, k-nearest neighbor al-
gorithms, and some neural networks. Without the constraint of parametrization based on
prior knowledge of the data, non-parametric methods tend to require more data and time for
training. They also offer increased flexibility because they function by setting a very large
number of parameters and combining a large number of simple functions to approximate
the model function [26].

4.2. Applications in Plasma Physics. In the area of inertial confinement fusion,
deep neural networks and random forests have been applied to learn the response of a radi-
ation hydrodynamics code over high-dimensional parameter spaces and to identify optimal
simulation parameters [8, 17]. In hydrodynamic models, neural networks have been applied
to model the source terms in discretized partial differential equations and to provide less
computationally costly alternatives to traditional algorithm implementations [28]. Random
forests, neural networks, and support vector machines have been applied to the classifica-
tion task of predicting disruptions in the tokamaks such as DIII-D and JET with a high
degree of accuracy [22,26,30]. Deep learning techniques such as multilayer perceptrons and
convolutional neural networks have been used to calculate the electric field from the elec-
tron phase space in particle-in-cell simulations. While this method was able to produce the
correct growth rate in a two-stream instability test, the deep-learning based method did not
conserve total energy and momentum [2].

4.3. Neural Networks. A neural network is a set of nested, nonlinear functions that
can be altered to fit input and output data as shown in equation 4.1. They are also often
represented as directed acyclic graphs

y = f (J)
(
...f (3)

(
f (2)

(
f (1)(x)

)))
(4.1)

Input values in neural networks undergo a nonlinear operation known as the “activation
function” within each layer of the network. Multi-layer networks are referred to as “deep”
neural networks and often exhibit better performance than neural networks with fewer layers.
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Each neuron takes the output values, x, from the previous layer as its inputs and produces a
combination f(Wx+b) of them as the output, where f is the activation function mentioned
earlier. For a linear combination f(x) = x, the output would be z = Wx+ b. The weights
W and biases b are among many free parameters used to fit the machine-learning model to
the data [26]. The number of layers in a neural network is referred to as its “depth” and
the number of nodes per layer is its “width.”

While neural networks are generally regarded as parametric methods, fully-connected
networks at the limit of infinite width are equivalent to non-parametric Gaussian Processes
(GPs). In other words, an i.i.d. prior over the weights and biases of a fully-connected,
infinitely wide neural network is equivalent to a corresponding Gaussian Process prior over
functions, and the function produced by the neural network is a function drawn from the GP
[12]. This equivalence allows exact Bayesian inference to be employed for regression using
infinitely wide neural networks by evaluating the corresponding GPs. It has been shown
that GP predictions usually outperform those made by finite-width neural networks, that
the network prediction error decreases with increasing width, and that GP uncertainty is
correlated with network prediction error [12]. For the case of a single-layer infinitely wide
network, the form of the GP kernel is well understood. Recent work has been done to
develop kernel-based methods of understanding infinite-width deep neural networks as well
[4].

4.4. Uncertainty Quantification. Computational simulation has become the third
pillar of science [18], complementing the two traditional pillars, theory and experimentation.
These three pillars come together in predictive science, where high-fidelity models, such as
PIC codes, are derived from first principles, calibrated to experimental data, and imple-
mented computationally. Correspondingly, uncertainties in model predictions can come
from any of these three sources of information.

Generally, computational simulation allows scientists to make predictions about physical
systems that have not yet been observed or to make inferences about physical systems
that are difficult or impossible to observe directly. Quantifying the extent to which these
predictions can be trusted is a central tenet of the field of uncertainty quantification (UQ). In
addition to understanding uncertainties in model predictions, UQ processes provide insights
into sources of this uncertainty, such as calibration data, missing or unknown physics, or
numerical errors [25].

UQ analyses require many (i.e. hundreds, thousands, or more) model runs. High-fidelity
simulations, such as those provided by PIC codes, are typically expensive to run, making
quality uncertainty analysis infeasible. By replacing high-fidelity codes with ML models at
a reduced computational cost, UQ processes become tractable. Thus, the development of
a ML model for PIC not only reduces the cost of making predictions, it provides a better
understanding of how reliable these predictions are.

4.5. Computational Efficiency. Machine-learning algorithms are often implemented
with the goal of increasing the computational efficiency of physics-based simulations. For ex-
ample, deep learning applied to computational fluid dynamics for modeling two-dimensional
turbulent flows has accomplished 40- to 80-fold gains in the computational speed of simula-
tions while remaining stable during long-time simulations and generalizing to input param-
eters outside of the range of the training data [11].

One drawback is that the computational cost of training a neural network can sometimes
be significant. There are many methods that have been developed to address this problem,
including changing the activation function from a threshold to either sigmoidal or a rectified
linear unit (ReLU) function, each of which offer advantages related to the ability to use
gradient-based methods [13]. Over-specification, or training a network which is significantly
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larger than needed, can also be an effective method of reducing the necessary training time
and increasing accuracy [13]. Lastly, regularizing the weights of a neural network has the
effect of accelerating convergence [13].

4.6. Application to Particle-in-Cell Simulations. Since the goal of the machine-
learning algorithm is to serve as a computationally efficient alternative to the Boris-
Bunemann particle pusher, the basic goal of the algorithm is to correctly predict the position
and velocity of a single charged super-particle one time step ahead of the input values. The

inputs are therefore {q,m,−→En,
−→
Bn,∆t, vn−1/2, xn} and the outputs are {xn+1, vn+1/2} where

n refers to the time step index. It requires the ability to make a sequence of correct position
and velocity predictions that produce a correct particle orbit for a long-time simulation of
charged particle motion in an electromagnetic field.

Since this problem formulation resembles a time-series with an oscillating, nonlinear, and
periodic quality, the neural network architecture should be able to accurately predict this
behavior. The “Long Short-Term Memory” network is a type of recurrent neural network
architecture that is able to classify and predict time series events given time lags of unknown
duration, and has demonstrated success in predicting sine functions [9, 24].

There are several considerations regarding use cases for an ML model within the PIC
simulation time loop, potential gains in computational efficiency, and accuracy and gener-
alizability. It may be beneficial to include the gradients and time derivatives of the electro-
magnetic fields as inputs in order to improve the accuracy of the ML model in capturing
more complex drifts. In addition, while the current model assumes infinite domain, an ML
model could also be extended to make predictions on finite systems, including boundary
conditions and particle collisions. Compared with solely modeling the particle advancement
step, potentially increased gains in computational efficiency could be achieved by including
splitting and merging steps in the ML model functionality, or by including a method of
updating the fields and making longer-term predictions that over-step traditional time-scale
restrictions on the numerical integrator.

5. Training and Testing Procedure for Single Particle Motion Simulations.
In order to verify that the machine-learning algorithm can capture each of the drifts that
typically occur in plasmas, the training procedure includes data from Boris-Bunemann sim-
ulations designed to produce each of the major effects outlined below. Note that a more
detailed description can be found in Chapter 2 of [5].

5.1. Uniform E and B Fields.

5.1.1. E = 0. For the case of E = 0 and a uniform B field (B = Bẑ), the charged
particle motion is well-described as a simple harmonic oscillator at the cyclotron frequency
ωc,

ωc =
|q|BG
mc

(5.1)

where BG indicates B in units of Gauss [5]. The Larmor radius of the particle’s cyclotron
gyration is

rL ≡
v⊥
ωc

=
mv⊥c
|q|BG

(5.2)

For this case, the charged particle motion is a circular orbit around the fixed guiding center
(x0, y0),

x = x0 + rL sinωct (5.3)
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y = y0 ± rL cosωct (5.4)

where ± reflects the sign of the particle charge q.
A training orbit produced by the Boris-Bunemann algorithm (with and without fre-

quency correction, as explained in Equations 3.6-3.7) for this case is shown in Figures
5.1-5.2. The non-frequency-corrected Boris algorithm has an absolute error that increases
with time, but it is often employed in PIC simulations because it is significantly more com-
putationally efficient than the frequency-corrected version of the algorithm, which requires
a trigonometric operation. For orbits where an analytical solution exists, that solution can
be sampled as another method of providing training data to the neural network. Perfor-
mance can then be compared between the neural networks trained using Boris-Bunemann
and those trained using analytical solutions, where available.

5.1.2. E 6= 0. The charged particle trajectory for this case is described by

vx = v⊥ exp(iωct) (5.5)

vy = ±iv⊥ exp(iωct)−
Ex
B

(5.6)

where v⊥ reflects the speed of the particle in the plane perpendicular to B. This trajectory
can be visualized as a slanted helix with changing pitch [5]. The electric field drift of the
guiding center is

vE =
E×B

B2
= 108E(V/cm)

B(gauss)
· cm
sec

(5.7)

5.2. Nonuniform B Field.

5.2.1. ∇B ⊥ B : Grad-B Drift. For this case there is a gradient in |B| that causes
the Larmor radius to vary in size depending on the position of the particle in its gyrating
orbit. Because ions and electrons gyrate in opposite directions, the effect of ∇B causes
electrons and ions to drift in opposite directions that are perpendicular to both B and ∇B.
The guiding center grad-B drift velocity is given by

v∇B = ±1

2
v⊥rL

B×∇B
|B|2 (5.8)

where ± reflects the sign of the charge [5].

5.2.2. Curved B : Curvature Drift. If |B| is assumed constant and the lines of force
possess a constant radius of curvature Rc, the centrifugal force exerted on the particles as
they travel along the field lines will create the guiding center “curvature drift” as given by

vR =
1

q

Fcf ×B

B2
=
mv2
||

qB2

Rc ×B

R2
c

(5.9)

When the decrease of |B| with increasing radius is accounted for, the total guiding
center drift in a curved vacuum field is the sum of the curvature drift and the grad-B drift
resulting in

v∇B + vR =
m

q

Rc ×B

R2
cB

2

(
v2
|| +

1

2
v2
⊥

)
(5.10)
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(a) Particle orbit for E = 0

(b) Particle orbit error for E = 0

Fig. 5.1: Boris-Bunemann algorithm without frequency correction

5.3. Nonuniform E Field. If the magnetic field is uniform and the electric field is
nonuniform in space, the ordinary E×B drift is influenced by the inhomogeneity to produce
the finite-Larmor-radius effect as shown in

vE =

(
1 +

1

4
r2
L∇2

)
E×B

B2
(5.11)

Unlike in uniform E fields, vE is now dependent on particle species since rL is larger for
ions than for electrons [5]. The grad-B drift is another type of finite-Larmor-radius effect,
but it does not become significant until the scale length of the field inhomogeneity is much
larger compared with that of the nonuniform-E effect. If it is assumed that E ≡ E0(cosky)x̂,
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(a) Particle orbit for E = 0

(b) Particle orbit error for E = 0

Fig. 5.2: Boris-Bunemann algorithm with frequency correction

then the drift can be represented as

vE =

(
1− 1

4
k2r2

L

)
E×B

B2
(5.12)

5.4. Time-Varying E Field. If E and B are uniform in space, but E varies in time
like E ≡ E0 exp iωtx̂, we can define the quantities

ṽp ≡ ±
iω

ωc

Ẽx
B

(5.13)
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ṽE ≡ −
Ẽx
B

(5.14)

Then the following equations of motion hold:

v̈x = −ω2
c (vx − ṽp) (5.15)

v̈y = −ω2
c (vy − ṽE) (5.16)

If E is assumed to vary slowly so that ω2 << ω2
c , these can be solved in a way that

sums the velocities from drift and gyration separately:

vx = v⊥ exp iωct+ ṽp (5.17)

vy = ±iv⊥ exp iωct+ ṽE (5.18)

The resulting guiding center drift has two parts. The x-component, called the polariza-
tion drift, is parallel to E and has opposite directions for ions and electrons. It is generally
stated as

vp = ± 1

ωcB

dE

dt
(5.19)

The y-component is the ordinary E × B drift where vE oscillates slowly with the electric
field oscillation frequency ω [5].

6. Conclusions. The particle-in-cell simulation methodology was discussed, as well as
the practical differences between the gyrokinetic and fully kinetic variations. The motiva-
tion of increasing the computational efficiency of PIC algorithms was established with the
goal of extending the application of the fully kinetic methodology to whole-domain magnetic
confinement fusion device simulations so that sheath and wall effects can be accurately in-
cluded. The Boris-Bunemann algorithm was introduced and its computational advantages
in accuracy and efficiency were discussed relative to other particle advancement methods.
Machine learning was introduced in the context of the physical sciences and, more specif-
ically, plasma physics. The advantages of machine learning in terms of potential gains in
uncertainty quantification and computational efficiency were discussed. A neural network
architecture was outlined for application to the Boris-Bunemann particle advancement prob-
lem. A training and evaluation methodology was outlined in which the Boris-Bunemann
algorithm would provide training and reference solutions for the machine learning algorithm
in order to ensure that effects such as the E × B drift, grad-B drift and curvature drift are
accurately captured and accounted for by a machine learning model. The motivation of
this work is to develop and test a machine learning model trained by the Boris-Bunemann
particle advancement algorithm for use in kinematic plasma simulations and to compare its
accuracy and computational cost with the original Boris-Bunemann algorithm.
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