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Abstract. Multi-fidelity methods leverage low-cost surrogate models to speed up computations and make occasional
recourse to expensive high-fidelity models to establish accuracy guarantees. Because surrogate and high-
fidelity models are used together, poor predictions by surrogate models can be compensated with frequent
recourse to high-fidelity models. Thus, there is a trade-off between investing computational resources to
improve the accuracy of surrogate models versus simply making more frequent recourse to expensive high-
fidelity models; however, this trade-off is ignored by traditional modeling methods that construct surrogate
models that are meant to replace high-fidelity models rather than being used together with high-fidelity
models. This work considers multi-fidelity importance sampling and theoretically and computationally
trades off increasing the fidelity of surrogate models for constructing more accurate biasing densities and
the numbers of samples that are required from the high-fidelity models to compensate poor biasing densities.
Numerical examples demonstrate that such context-aware surrogate models for multi-fidelity importance
sampling have lower fidelity than what typically is set as tolerance in traditional model reduction, leading
to runtime speedups of up to one order of magnitude in the presented examples.
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1. Introduction. Surrogate models provide low-cost approximations of computationally expen-
sive high-fidelity models and so are widely used to make tractable a variety of outer-loop applications
such as control, optimization, and uncertainty quantification [34]. Typical examples of surrogate
models are simplified-physics models [30, 28, 8], data-fit and machine-learning models [17, 36], and
projection-based reduced models [4, 35, 5, 20, 11]. Multi-fidelity methods combine surrogate models
for speedups and high-fidelity models for accuracy guarantees [34, 29]. Recourse to the high-fidelity
model enables compensation for poor surrogate accuracy, in stark contrast to traditional single-
fidelity methods that use surrogate models alone. The opportunity of multi-fidelity methods, which
we exploit in the following, is that it is unnecessary that surrogate models achieve tight accuracy
guarantees because high-fidelity models are occasionally evaluated to correct results. Rather, it
can be beneficial to use surrogate models with very low accuracy in favor of very cheap training
and evaluation costs. Clearly, there is a limit of how low the accuracy of surrogate models can
be in favor of costs before surrogate models become useless. Thus, in multi-fidelity approaches,
there is a trade-off between increasing the accuracy of surrogate models with expensive training
methods versus making more frequent recourse to the expensive high-fidelity model to compensate
less accurate, but cheaper, surrogate models. Surrogate models that exploit this trade-off are called
context-aware models [31]. This work derives context-aware surrogate models for multi-fidelity im-
portance sampling (MFIS) estimators [32], where the surrogate model is used for constructing a
Laplace approximation as a biasing density. Our numerical results show that such context-aware
surrogate models for MFIS can achieve an error reduction of more than one order of magnitude
compared to using a single model alone.

We review related literature. First, there is work on adaptive discretizations for multi-level
Monte Carlo methods and stochastic collocation methods [21, 22, 23] that adaptively refine meshes
and time steps to obtain a non-uniform hierarchy of surrogate models. Additionally, there is work
on continuous multi-level Monte Carlo [15] that adapts the model hierarchy in a non-uniform fash-
ion. In contrast to coarse-grid discretizations, we will consider surrogate models for constructing
biasing densities, which incur training (offline) costs that we trade off with surrogate-model fidelity
and frequency of recourse to the high-fidelity model. The work [12] learns data-fit surrogate models
for solving Bayesian inverse problems, without building on multi-fidelity methods and thus without
deriving the trade-off between model accuracy and costs. Second, the works [31, 16] explore the
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trade-off between surrogate-model fidelity and number of times to make recourse to the high-fidelity
for multi-fidelity Monte Carlo estimation with control variates, which is in contrast to using impor-
tance sampling for variance reduction as in this work. In [13], the authors consider local, data-fit
approximations and balance the decay rate of the bias due to the approximation with the variance
of sampling with Markov chain Monte Carlo methods. Third, there is a large body of work on using
surrogate models and multi-fidelity methods that build on importance sampling without explicitly
exploiting the trade-off given by surrogate-model fidelity and frequency of recourse to the high-
fidelity model. The work [27, 26] develops a principled strategy to switch between sampling from
a surrogate model and from the high-fidelity model to speedup failure and rare event probability
estimation. In [10], the authors build on a posteriori error estimators to decide if either a surro-
gate model or the high-fidelity model is evaluated. The authors of [19, 18] develop a multi-fidelity
method for importance sampling to efficiently estimate risk-measures such as the conditional value-
at-risk. Another line of work considers multi-level sequential Monte Carlo methods such as [6, 24]
for reducing the costs of finding biasing densities.

We build on MFIS introduced in [32]. In particular, we develop bounds of the error of MFIS
estimator that depends on the surrogate-model fidelity and then derive a trade-off between surrogate-
model fidelity and computational costs. The first key ingredient is that we use a Laplace approxima-
tion computed with the surrogate model as biasing density. The quality of Laplace approximations
has been studied in [14] in terms of the Kullback-Leibler (KL) divergence and in [39] in terms of
the Hellinger distance when the noise level approaches zero. Instead, we consider the χ2 divergence
[42] due to its natural interpretation as the variance of the importance weights. There is a large
body of work on adaptive importance sampling that studies minimizing the χ2 divergence to derive
an optimal biasing density [3, 37, 2], but these works do not consider the cost of surrogate models
during training. The second key ingredient is bounding the error of the importance sampling esti-
mator such as introduced in [9, 1, 38]. These error bounds take the form of a probability divergence
between the target distribution and the biasing distribution, which we will use to separate the error
due to sampling from the error due to the quality of the biasing density that corresponds to the
surrogate-model fidelity.

This manuscript is structured as follows. In Section 2 we outline importance sampling in the
multi-fidelity setting along with the bound on the mean-squared error (MSE) in terms of the χ2

divergence as presented in [1]. Section 3 is the main contribution of this work and derives a bound
on the χ2 divergence of the target from the biasing distribution in terms of the surrogate-model
fidelity that leads to the formulation of an optimization problem for finding a trade-off. In Section 4,
we apply the results from Section 3 in the case where the target distribution is a posterior distri-
bution arising from a Bayesian inverse problem. In Section 5, we demonstrate our method on three
numerical examples. The proposed MFIS estimators with context-aware surrogate models achieve
more than one order of magnitude error reduction compared to traditional importance sampling
that uses the high-fidelity model alone with the same costs.

2. Importance sampling and problem formulation. Section 2.1 describes the setup of our
problem. Section 2.2 is a brief overview of importance sampling and Section 2.3 overviews how the
quality of a biasing density influences importance sampling estimators in terms of the χ2 divergence.
Section 2.4 illustrates the multi-fidelity approach to importance sampling and Section 2.5 formulates
the trade-off between fidelity and number of samples that we are interested in.

2.1. Notation and problem setting. Let (Θ,B(Θ), p) denote a probability space where Θ = Rd
is the domain for parameters θ, B(Θ) is the Borel σ-algebra of Θ, and p is a probability distribution
on Θ. Let p be absolutely continuous with respect to the Lebesgue measure on Rd and refer to
both the measure and the density function as p. Furthermore, the density p may only be known up
to a normalizing constant p = 1

Z p̃, where p̃ ≥ 0 is the un-normalized density and Z =
∫
θ p̃(θ) dθ

is the normalizing constant. In the following, we consider situations where the density p and the
un-normalized density p̃ are expensive to evaluate. The goal is to compute quantities of interest
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with respect to the target distribution p which take the form of expectations

(2.1) Ep [f ] =

∫
Θ
f(θ)p(θ) dθ,

where f is a bounded measurable test function, i.e., ‖f‖L∞ <∞ where ‖f‖L∞ = ess supθ∈Θ|f(θ)|
under the measure p.

2.2. Importance sampling. Let q be another probability distribution on the Borel space
(Θ,B(Θ)) that is absolutely continuous with respect to the Lebesgue measure on Rd and is such that
p is absolutely continuous with respect to q. We let q refer to both the probability distribution and
the density function with respect to the Lebesgue measure. If sampling directly from p is impossible
and the normalizing constant Z is unknown, then self-normalized importance sampling can be used
with q as the biasing distribution to estimate the expectation (2.1). Draw m independent and
identically distributed samples {θ(i)}mi=1

i.i.d.∼ q from the biasing distribution q and re-weight them
with the target distribution p to obtain the self-normalized importance sampling estimator

(2.2) f̂m =

∑m
i=1 f(θ(i))w(θ(i))∑m

i=1w(θ(i))

of Ep [f ], where the importance weights w(θ(i)) are given by evaluating the un-normalized likelihood
ratio w(θ) = p̃(θ)

q(θ) at the samples θ(i). If all w(θ(i)) = 0, then we define f̂m = 0. The estimator (2.2)
is a consistent estimator of Ep [f ] as the sample size m→∞.

2.3. Error of the importance sampling estimator. Theorem 2.1 of [1] gives the following bound
on the MSE of the self-normalized importance sampling estimator (2.2): if p is absolutely continuous
with respect to q, then

(2.3) E
[(
f̂m − Ep [f ]

)2
]
≤

4‖f‖2L∞
m

(
χ2 (p || q) + 1

)
holds, with the χ2 divergence of p from q defined as

(2.4) χ2 (p || q) + 1 = Varq

[
p

q

]
+ 1 =

∫
Θ

(
p(θ)

q(θ)

)2

q(θ) dθ =

∫
Θ

p(θ)

q(θ)
p(θ) dθ.

Note that the inequality (2.3) holds if Eq
[
w2
]

=∞. Since f is bounded, it holds (f̂m − Ep [f ])2 ≤
4‖f‖2L∞ , which means that the bound (2.3) is only useful if m ≥ χ2 (p || q) + 1. The bound (2.3)
motivates setting the effective sample size to

(2.5) meff =
m

χ2 (p || q) + 1
,

so that a large χ2 divergence corresponds to a large variance of the weights, meaning more samples
are needed to reduce the MSE of the estimator (2.2). The effective sample size (2.5) motivates
finding a biasing density q that is close to p with respect to the χ2 divergence. The χ2 divergence
is related to other probability divergences such as the Kullback-Leibler (KL) divergence

KL (p || q) =

∫
Θ

log

(
p(θ)

q(θ)

)
p(θ) dθ

and the Hellinger distance

dH(p, q) =

(
1

2

∫
Θ

(√
p(θ)−

√
q(θ)

)2
dθ

)1/2

.

The relation is a lower bound given by Jensen’s inequality

e2dH(p, q)2 ≤ eKL(p || q) ≤ χ2 (p || q) + 1 ,

see [42] for more general information regarding these probability divergences.
3



2.4. Finding a biasing density. Let (ph)h>0 be a sequence of probability measures on (Θ,B(Θ)),
where the distributions ph are approximations to p and the index h > 0 denotes the fidelity of the
approximation. For each h, let ph be absolutely continuous with respect to the Lebesgue measure
on Rd and use ph to denote both the density function and the distribution. Let the density functions
converge pointwise so ph(θ)→ p(θ) as h→ 0 for every θ ∈ Θ. Define C > 0 as the cost of evaluating
the un-normalized high-fidelity density p̃ and c(h) > 0 as the cost of evaluating the un-normalized
surrogate density p̃h. The un-normalized surrogate densities p̃h can be used instead of p̃ to find a
biasing density qh resulting in the MFIS [32] estimator

(2.6) f̂h,m =

∑m
i=1 f(θ(i))wh(θ(i))∑m

i=1wh(θ(i))
where {θ(i)}mi=1

i.i.d.∼ qh,

of Ep [f ] with the importance weights wh(θ(i)) = p̃(θ(i))/q̃h(θ(i)) given by the ratio of the un-
normalized densities p̃ and q̃h at θ(i). Note that the un-normalized surrogate densities p̃h are
not evaluated in computing the estimator (2.6) and are only evaluated when deriving the biasing
density qh. The bound (2.3) shows that the quality of the biasing density with respect to the MSE
is determined by the variance of the weights wh(θ(i)) and thus that the number of samples needed
to achieve an error tolerance depends directly on the fidelity h of the surrogate density.

2.5. Problem formulation. Multi-fidelity importance sampling gives rise to the following two-
step process of estimating Ep [f ] for test functions f : (i) finding the biasing density qh from p̃h
and (ii) evaluating the un-normalized densities q̃h and p̃ at m samples to obtain an estimate (2.6)
of Ep [f ]. Notice that qh is independent of the test function f and thus can be re-used for many
different test functions. The first step incurs training costs to derive qh using p̃h, and the second step
incurs online costs of evaluating the un-normalized surrogate and expensive high-fidelity densities.
The two steps give rise to a trade-off: investing high training costs to find a good biasing density
that keeps the χ2 divergence low means that fewer evaluations of the expensive high-fidelity density
are required in the online step and vice versa. Traditional model reduction [35, 5] typically targets
computations where the surrogate model replaces the high-fidelity, where such a trade-off does not
exist, instead of combining surrogate and high-fidelity models as in multi-fidelity methods such as
MFIS. Thus, traditional model reduction provides little guidance on the mathematical formulation
of this trade-off and the total costs.

3. Context-aware surrogate models for multi-fidelity importance sampling. We consider the
following trade-off: given an error tolerance ε, what is the optimal fidelity h of the surrogate model
that minimizes the total computational costs subject to the mean-squared error of the multi-fidelity
importance sampling estimator (2.6) being below or equal to the tolerance ε. We refer to such
surrogate models as context-aware because the fidelity is determined specifically for the online
computations of the problem (context) at hand [31], rather than being prescribed without taking
the specific context of multi-fidelity computations into account as in traditional model reduction
[35, 5].

Section 3.1 revisits the notion of a sub-Gaussian distribution which is used in Section 3.2 to
derive an upper bound for χ2 (p || qh) that depends on the fidelity h. Section 3.3 introduces a
Laplace approximation qh of the low-fidelity surrogate density ph to be used as the biasing density
and discusses its properties. Section 3.4 uses the bound (3.3) on the χ2 divergence to formulate
an optimization problem that selects a fidelity h∗ based on the online stage of MFIS and derives
the overall cost complexity of the corresponding estimator. Section 3.5 summarizes the entire
computational procedure in algorithmic form.

3.1. Sub-Gaussian distributions. For importance sampling without a fixed test function f , it
is imperative that the importance weights have finite variance (i.e., finite χ2 divergence) which
means that the tails of the biasing density cannot be significantly lighter than the tails of the target
density p. Sub-Gaussian distributions are characterized by their fast tail decay. A useful norm for
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quantifying the tail decay of a real-valued random variable, X, is the Orlicz norm defined as

‖X‖ψ2
= inf

{
t > 0 | E

[
exp(X2/t2)

]
≤ 2
}
,

see [43, Sec. 2.5, Sec. 3.4] for other equivalent definitions. For a real random vector x = (x1, . . . , xd),
the Orlicz norm is defined to be

‖x‖ψ2
= sup
v∈Sd−1

∥∥vTx∥∥
ψ2
,

where Sd−1 ⊂ Rd is the unit sphere defined as Sd−1 = {v ∈ Rd : ‖v‖2 = 1}. A probability
distribution π is said to be sub-Gaussian if any random variable x ∼ π has ‖x‖ψ2

< ∞. Two
examples of sub-Gaussian distributions are multivariate Gaussians and distributions with compact
support. If x ∼ N(0, σ2I) then ‖x‖ψ2

≤
√

2σ. In the following Lemma 3.1 we give a characterization
of sub-Gaussian distributions that will be used in the following sections. The lemma is a multi-
dimensional version of Proposition 2.5.2 (iv) in [43]. We did not find this specific result in the
literature and so we provide a proof in Appendix A, even though it is a technical auxiliary result
for us only.

Lemma 3.1. A random vector x with density π is sub-Gaussian if and only if there exists a
symmetric positive-definite matrix A such that for all vectors µ ∈ Rd

Eπ
[
exp

(
(x− µ)TA(x− µ)

)]
<∞ .

Remark 3.2. In the case where π is a Gaussian with covariance Σ, the matrix A must be
such that 1

2Σ−1 −A is symmetric positive definite, in which case Lemma 3.1 is closely related to
Fernique’s theorem about the tail decay of Gaussian densities. This constraint on A will translate
to a constraint on the biasing density for non-Gaussian target densities as will be made precise in
the next section.

3.2. Bounding the χ2 divergence. In this section we derive the dependence of the MSE of the
estimator (2.6) with respect to Ep [f ] on the fidelity h used to find the biasing density qh. We bound
χ2 (p || qh) with respect to h and we want this bound to factor into a part depending only on the
ratio p/ph and a part depending only on the ratio ph/qh. The following example demonstrates that
such a decomposition is not straightforward: let

p(x) = ae−ax, ph(x) = be−bx, qh(x) = ce−cx x ≥ 0 ,

for a, b, c > 0, be three exponential distributions. Then

χ2 (p || ph) =

∫ ∞
0

a2

b
e−(2a−b)xdx =

a2

b(2a− b)

if a > b/2 and ∞ otherwise. By taking a = 2, b = 3/2 and c = 1, we have that

χ2 (p || ph) <∞, χ2 (ph || qh) <∞,

but that
χ2 (p || qh) =∞ ,

which means that we cannot directly decompose the χ2 divergence into the product of χ2 divergences
with an intermediate distribution (namely ph). In contrast, the Cauchy-Schwarz inequality gives

(3.1) χ2 (p || qh) + 1 =

∥∥∥∥ pqh
∥∥∥∥
L1(p)

=

〈
p

ph
,
ph
qh

〉
L2(p)

≤
∥∥∥∥ pph

∥∥∥∥
L2(p)

∥∥∥∥phqh
∥∥∥∥
L2(p)

,
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which requires the likelihood ratios p/ph and ph/qh to be in L2(p) as opposed to L1(p), which is
required for the bound (2.3) to hold and be finite. We note that, while we restrict ourselves to
bounded test functions f in this work, other bounds similar to (2.3) exist [1, Theorem 2.3] but
it remains unclear how to write them as a probability divergence between the target and biasing
distributions and they do not necessarily admit a clear decomposition between accuracy of the
surrogate density and accuracy of the approximation to the surrogate density as in (3.1). We also
note that we can allow more general test functions f ∈ L2 as long as we place stronger assumptions
on the ratio of densities so that ‖p/ph‖L∞(p), ‖ph/qh‖L∞(p) < ∞ as in [39]. Here we choose to
loosen these assumptions at the cost of only considering bounded test functions. The next four
assumptions and the theorem that follows are sufficient for the likelihood ratios p/ph and ph/qh to
be in L2(p) and to decompose the χ2 divergence as in the right-hand side of Equation (3.1).

Assumption 3.3 (Exponential form of the densities). The densities p, ph, and qh have the form

p(θ) =
1

Z
e−Φ(θ), ph(θ) =

1

Zh
e−Φh(θ), qh(θ) =

1

Z̃h
e−Φ̃h(θ),

with potentials Φ,Φh, Φ̃h ∈ C2(Θ) that are twice continuously differentiable, normalizing constants
Z,Zh, Z̃h, and Φh(θ)→ Φ(θ) for all θ ∈ Θ as h→ 0.

Assumption 3.4 (Decay of the target density). The target density p is sub-Gaussian with matrix
A; see Lemma 3.1.

Assumption 3.5 (Error of the surrogate potentials). There exists an error function δ(h) > 0 and
a function τ(θ) ≥ 0, such that

Φh(θ) ≤ Φ(θ) + δ(h)τ(θ)

for all θ ∈ Θ, where δ(h)→ 0 as h→ 0.

Assumption 3.6 (Biasing densities). There exists a function γ(h) > 0 and a function ω(θ) ≥ 0
such that for all h

Φ̃h(θ) ≤ Φh(θ) + γ(h)ω(θ)

for all θ ∈ Θ.

Assumption 3.4 is independent of the surrogate densities and is necessary to avoid heavy tailed
target distributions for which importance sampling can fail. Note that we make the sub-Gaussian
assumption specifically because we use a Laplace approximation as the biasing density, which is
Gaussian, in Section 3.3. Assumptions 3.5 and 3.6 are each controlling one of the terms on the
right-hand side of Equation (3.1): Assumption 3.5 ensures that the surrogate densities are suffi-
ciently accurate with respect to the target density while Assumption 3.6 ensures that the choice of
approximation to the surrogate density is sufficiently close. In both cases we only assume the asym-
metric inequality of the form Φh(θ) ≤ Φ(θ) + δ(h)τ(θ) as opposed to |Φh(θ) − Φ(θ)| ≤ δ(h)τ(θ)
(and similarly for Assumption 3.6) because importance sampling can fail if the tails of the biasing
density are lighter than the tails of the target density, but will still converge even if they are heav-
ier. Note that the restrictions on the tails of the biasing and target distribution are inherited by
importance sampling rather than being a restrictions imposed by the proposed approach of trading
off surrogate fidelity and costs.

Remark 3.7. Assumption 3.6 does not assume that γ(h) → 0 as h → 0. Starting with Sec-
tion 3.3, we will choose the density qh to be a Laplace approximation of ph, which does not neces-
sarily converge to ph as h→ 0.

Theorem 3.8 gives the decomposition and bound depending on the fidelity h.

Theorem 3.8. Let Assumptions 3.3, 3.4, 3.5, and 3.6 hold and assume there exist constants
τ0, ω0 > 0 such that

τ(θ) ≤ ‖θ‖2 + τ0, ω(θ) ≤ ‖θ‖2 + ω0 .
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Let hmax be such that for all h ≤ hmax

(3.2) γ(h) ≤ 1

4
λAmin ,

with A being the matrix from Assumption 3.4 and λAmin being its smallest eigenvalue, then for all h
sufficiently small we have that

(3.3) χ2(p || qh) + 1 ≤ K0eK1δ(h)+K2γ(h)

where K0,K1,K2 are all positive constants independent of h.

By the assumption in Theorem 3.8 that γ(h) ≤ λAmin/4, the bound (3.3) can be written in the form

(3.4) χ2(p || qh) + 1 ≤ K̃0eK1δ(h)

where the constant K̃0 now absorbs the dependency on the approximation qh

(3.5) K̃0 = K0eK2λAmin/4 ≥ K0eK2γ(h) .

In the limit as the fidelity h→ 0, the upper bound (3.4) remains bounded by the constant K̃0, which
is determined entirely by the choice of biasing densities qh. Notice that K̃0 > 1 because K0 ≥ 1
(see last line of proof of Theorem 3.8) and the argument K2γ(h) > 0 of the exponential function is
positive by Assumption 3.6.

Proof of Theorem 3.8. By Assumption 3.4, p is sub-Gaussian with matrix A � 0 so that by
Lemma 3.1

1

Z

∫
Θ

exp
(
θTAθ − Φ(θ)

)
dθ <∞ .

Recall that Z is the normalizing constant from Assumption 3.3.
Part 1: Bounding high-fidelity to surrogate ratio

The first term on the right-hand-side of Equation (3.1) can be bounded using Assumption 3.5:∥∥∥∥ pph
∥∥∥∥2

L2(p)

=
1

Z

(
Zh
Z

)2 ∫
Θ

exp {2 (Φh(θ)− Φ(θ))− Φ(θ)} dθ

≤ 1

Z

(
Zh
Z

)2 ∫
Θ

exp
{

2δ(h)
(
‖θ‖2 + τ0

)
− Φ(θ)

}
dθ .

Re-writing this last line gives

(3.6)
∥∥∥∥ pph

∥∥∥∥2

L2(p)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{

2δ(h)‖θ‖2 − Φ(θ)
}

dθ .

Now the two dependencies of the right-hand side of (3.6) on the fidelity h are through the ratio
Zh/Z and through δ(h). For now we just bound the integral on the right-hand side of (3.6), which
is finite since A � 2δ(h)I for all h sufficiently small. Adding and subtracting θTAθ in (3.6) gives∥∥∥∥ pph

∥∥∥∥2

L2(p)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{

2δ(h)‖θ‖2 − Φ(θ)
}

dθ

=
1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
−θT (A− 2δ(h)I)θ + θTAθ − Φ(θ)

}
dθ .

Putting this together with the fact that A− 2δ(h)I � 0 gives

(3.7)
∥∥∥∥ pph

∥∥∥∥2

L2(p)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
θTAθ − Φ(θ)

}
dθ
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to complete the bound of the first term on the right-hand side of Equation (3.1).
Part 2: Bounding surrogate to biasing density ratio

The second term on the right-hand side of Equation (3.1) is bounded in a similar fashion. By
Assumption 3.6 we can bound∥∥∥∥phqh

∥∥∥∥2

L2(p)

=
1

Z

(
Z̃h
Zh

)2 ∫
Θ

exp
{

2
(

Φ̃h(θ)− Φh(θ)
)
− Φ(θ)

}
dθ

≤ 1

Z

(
Z̃h
Zh

)2 ∫
Θ

exp
{

2γ(h)
(
‖θ‖2 + ω0

)
− Φ(θ)

}
dθ

=
1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{

2γ(h)‖θ‖2 − Φ(θ)
}

dθ .

Again we add and subtract θTAθ to obtain∥∥∥∥phqh
∥∥∥∥2

L2(p)

≤ 1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
−θT (A− 2γ(h)I)θ + θTAθ − Φ(θ)

}
dθ .

Using this with the fact that A− 2γ(h)I � 0 for all h ≤ hmax gives

(3.8)
∥∥∥∥phqh

∥∥∥∥2

L2(p)

≤ 1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
θTAθ − Φ(θ)

}
dθ .

Multiplying the right-hand sides of the bounds (3.7) and (3.8) and then taking the square root
gives together with (3.1) that

(3.9)
∥∥∥∥ pqh

∥∥∥∥
L1(p)

≤ 1

Z

(
Z̃h
Z

)
exp {δ(h)τ0 + γ(h)ω0}

∫
Θ

exp
{
θTAθ − Φ(θ)

}
dθ

holds. The integral is independent of h, so it remains to bound the ratio of normalizing constants.
Part 3: Bounding ratio of normalizing constants

In general, if ph is not in the family of biasing densities then we may have Z̃h 6= Zh, and thus,

Z̃h
Z
6→ 1

as h→ 0. Instead we just give a constant upper bound on Z̃h that is independent of the fidelity h.
By Assumption 3.3, the normalizing constant Z̃h satisfies

Z̃h =

∫
Θ

exp
{
−Φ̃h(θ)

}
dθ

=

∫
Θ

exp
{
−Φ̃h(θ) + Φh(θ)− Φh(θ) + Φ(θ)− Φ(θ)

}
dθ

= Z

∫
Θ

exp
{
−Φ̃h(θ) + Φh(θ)− Φh(θ) + Φ(θ)

}
p(θ)dθ .

Dividing by Z and using Assumptions 3.5 and 3.6 we have

(3.10)
Z̃h
Z
≤
∫

Θ
exp

{
−δ(h)(‖θ‖2 + τ0)− γ(h)(‖θ‖2 + ω0)

}
p(θ) dθ ≤ 1 ,

because the term inside the exponential is less than or equal to 0 and p is a density. Finally,
combining the bounds (3.7), (3.8), and (3.10) gives the result

χ2 (p || qh) + 1 =

∥∥∥∥ pqh
∥∥∥∥
L1(p)

≤ exp {δ(h)τ0 + γ(h)ω0}Ep
[
exp

(
θTAθ

)]
,
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where the expectation is independent of h. Here

K0 = Ep
[
exp

(
θTAθ

)]
, K1 = τ0, K2 = ω0

are all independent of the fidelity h.

Remark 3.9. The assumption that τ(θ) ≤ ‖θ‖2+τ0 holds is similar to the pointwise Assumption
4.8 in Theorem 4.6 of [40]. In [40], the pointwise bound can grow faster with respect to θ than
in our case because there the Hellinger distance, which is upper-bounded by the χ2 divergence,
is considered. In our case, under Assumption 3.4, the potential Φ grows at least quadratically
with respect to ‖θ‖. For a similar reason we require that γ(h) ≤ 1

4λ
A
min, even though γ(h) may

not converge to zero. This inherently places restrictions on what approximations may be used as
biasing densities for importance sampling and is analogous to assumptions made on biasing densities
in importance sampling in general such as [1, Theorem 2.1].

3.3. Laplace approximation. In the following, we use a Laplace approximation of a surrogate
density ph as a specific choice of biasing density qh. A Laplace approximation qh is a Gaussian
approximation to the density ph whose mean is a mode of ph

(3.11) µLAP
h = argmin

θ∈Θ
− log p̃h(θ) = argmin

θ∈Θ
Φh(θ),

and whose covariance is the negative inverse Hessian of the log-likelihood evaluated at the mode

(3.12) ΣLAP
h = −

[
∇∇T log p̃h

(
µLAP
h

)]−1
=
[
∇∇TΦh

(
µLAP
h

)]−1
.

A Laplace approximation may not exist for certain distributions where the covariance matrix
ΣLAP
h or Hessian at the mode is not full-rank. If the following proposition applies, then a Laplace

approximation exists and is a suitable biasing distribution; we refer to [39] for in-depth discussions
about Laplace approximations as biasing distributions if the covariance matrix is singular. More
generally, we are interested in finding optimal biasing densities and types of biasing densities than
Laplace approximations. Two notable examples are parametrized transport maps and Gaussian
mixture models for greater flexibility. While such biasing densities may result in better approxima-
tions than the Laplace approximation, they are computationally more challenging to fit and we are
unaware of results that provide similar guarantees on the potential that we prove in the following
proposition.

Proposition 3.10. Let Assumption 3.3 hold and assume there exists a σ2
min > 0, independent of

h, such that

(3.13) θTΣLAP
h θ ≥ σ2

min‖θ‖2 ,

for all θ ∈ Θ. Further, assume there exist constants V ∈ R and v > 0 such that

(3.14) Φh(θ) ≥ V − v‖θ‖2

for all h. Finally, let BR = {θ : ‖θ‖ ≤ R} be the ball of radius R centered at 0, and assume that
for all D > 0, there exists an R(D) > 0 such that for all θ /∈ BR(D) and all h > 0

(3.15) Φh(θ) ≥ D .

Then, the Laplace approximation satisfies Assumption 3.6 for all h sufficiently small.

Proof. By Assumption 3.3, a Laplace approximation

Φ̃h(θ) = Φh

(
µLAP
h

)
+

1

2

(
θ − µLAP

h

)T [∇∇TΦh(µLAP
h )

]−1 (
θ − µLAP

h

)
9



is the second-order Taylor expansion of Φh around one of the modes µLAP
h . The first derivative is

zero since it is expanded around a minimizer. Therefore,

Φ̃h(θ)− Φh(θ) = −Rh(θ) ,

where Rh(θ) is the remainder of higher order terms from the Taylor expansion. The bound (3.13)
implies that

θT
(
ΣLAP
h

)−1
θ ≤ 1

σ2
min

‖θ‖2 ,

and when combined with the bound (3.14) gives

Φ̃h(θ)− Φh(θ) ≤ Φ̃h(θ)− V + v‖θ‖2

≤ Φh

(
µLAP
h

)
+

1

2σ2
min

‖θ − µLAP
h ‖2 − V + v‖θ‖2 .

Combining this with the fact that ‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 yields

Φ̃h(θ)− Φh(θ) ≤ Φh

(
µLAP
h

)
+

(
1

σ2
min

+ v

)
‖θ‖2 +

1

σ2
min

‖µLAP
h ‖2 − V .

Now we claim that the terms Φh(µLAP
h ) and ‖µLAP

h ‖2 can be bounded independent of h. Let
D = Φ(0) + 1 and consider that, by assumption, there exists a ball BR(D) such that

Φh(θ) ≥ Φ(0) + 1 , ∀θ /∈ BR(D) .

By Assumption 3.3, we know that Φh(0)→ Φ(0) and so that for all h sufficiently small, there exist
points θ′h, such that Φh(θ′h) ≤ Φ(0) + 1. Hence, the minimizers µLAP

h ∈ BR for all h sufficiently
small. Thus, there are constants B1, B2 > 0 independent of h such that Φh

(
µLAP
h

)
≤ B1 and

‖µLAP
h ‖2 ≤ B2. Thus, by setting

γ(h) =
1

σ2
min

+ v, ω(θ) = ‖θ‖2 + ω0, ω0 =
B1 +B2/σ

2
min − V

σ−2
min + v

Assumption 3.6 holds.

If Proposition 3.10 applies, then it is guaranteed that there exists a Laplace approximation and
that its covariance matrix remains non-singular as the fidelity h is reduced: Condition (3.13) ensures
that the covariance matrix ΣLAP

h is positive definite and hence that a Laplace approximation qh
of ph exists for all h > 0. The requirement that σ2

min is independent of h prevents the sequence
of covariance matrices from approaching a singular matrix in the limit h → 0. Condition (3.14) is
related to Assumption 2.6(i) from [40]. A pointwise bound is used to satisfy Assumption 3.6 and
ensure the integrability from Theorem 3.8. Condition (3.15) implies that Φh(θ)→∞ as ‖θ‖ → ∞
uniformly in h, and so we know that a global minimizer exists for each potential Φh; however, it
is not necessarily unique. In the scenario where multiple global minima exist, we may choose any
µLAP
h from the set of global minimizers. In particular, we allow for multi-modal target and surrogate

densities p and ph and allow for the Laplace approximation to be a local approximation of one of
the local optimum as long as the covariance matrix satisfies the assumptions of Proposition 3.10 so
that p, ph, p̃h all satisfy Assumption 3.5 and 3.6, which are necessary for the importance sampling
estimator (2.6) to converge. In particular we note that we do not need to find all global minimizers.

Remark 3.11. If Proposition 3.10 holds, then the Laplace approximation serves as a suitable
biasing density for importance sampling in the sense that Assumption 3.6 holds, which is needed for
Theorem 3.8. Recall that as the fidelity h → 0 we may not have γ(h) → 0 and so χ2(p || qh) may
not go to zero. We note that Proposition 3.10 implies the existence of a Laplace approximation and
Assumption 3.6 but not necessarily a γ(h) that satisfies condition (3.2) in Theorem 3.8.
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3.4. Trading off fidelity and costs of surrogate model for MFIS. We now consider the trade-
off between selecting a fidelity h to construct a Laplace approximation and the number of samples
m in the MFIS estimator (2.6).

3.4.1. Offline and online costs of MFIS with Laplace approximation as biasing density.
The total computational costs of estimating Ep [f ] with the MFIS estimator f̂h,m defined in Equa-
tion (2.6) can be decomposed into training (offline) costs to fit the biasing density qh and the online
costs to sample and re-weight; cf. Section 2.5.

In the training phase, the biasing density is constructed. In the following, we consider a Laplace
approximation qh of the surrogate density ph as the biasing density. The Laplace approximation
is constructed from M evaluations of the un-normalized surrogate density p̃h and so the training
costs are Mc(h) in our case. Recall that c(h) is the cost of evaluating the un-normalized surrogate
density p̃h. For example, in Section 5, M will be the total number of surrogate-density evaluations
used in Newton’s method until machine precision is reached, where both the gradient and Hessian
are computed using either finite differences or the adjoint method as well as computing the Hessian
at the mode.

In the online phase, the weights of the MFIS estimator are obtained by evaluating the target
density and the biasing density at m samples. We model the online costs as mC, where C denotes
the cost of a single evaluation of the un-normalized target density p̃. No evaluations of the surrogate
density are necessary in the online phase because only the biasing density (Laplace approximation in
our case) is evaluated, which has costs that typically are independent of h and negligible compared
to evaluating the target density p̃. However, notice that the online costs depend implicitly on the
fidelity h because the number of samples m to reach an MSE below a threshold depends on the
quality of the biasing distribution in the sense of the divergence χ2(p||qh); cf. Section 2.3.

We obtain as the total costs of the MFIS estimator

(3.16) cost(f̂h,m) = mC +Mc(h) ,

which depends on the number of samples m and on the fidelity h of the surrogate.

3.4.2. Cost complexity bounds of MFIS. The following theorem provides cost-complexity
bounds for the MFIS estimator under assumptions of the surrogate densities cost and error. We
define the context-aware MFIS estimator to be the estimator (2.6) with fidelity h∗ and sample size
m∗ given by the following theorem.

Theorem 3.12. Suppose that Theorem 3.8 and Proposition 3.10 apply. Consider a tolerance
0 < ε ≤ 1 and set K ′0 = 4‖f‖2L∞K̃0 +1, where K̃0 is the constant in Equation (3.5). If the surrogate
density evaluation costs grow as c(h) = β1/h with the fidelity h and the surrogate error decays as
δ(h) = α−1/h in Assumption 3.5, with α, β > 1, and we restrict h ∈ [0, log(α)/2], then there exist
h∗ ∈ [0, log(α)/2] and m∗ ∈ N such that the MFIS estimator f̂h∗,m∗ achieves an MSE less than the
tolerance ε and the costs are bounded as

cost(f̂h∗,m∗) ≤ cost(f̂h∗,m∗) =
CK ′0
ε

eK1ε1/(1+logα β)
+Mε−1/(1+logβ α) .

If instead c(h) = h−β and δ(h) = hα with α, β > 0, then the costs are bounded as

cost(f̂h∗,m∗) ≤ cost(f̂h∗,m∗) =
CK ′0
ε

eK1εα/(α+β)
+Mε−β/(α+β) .

Here we use the notation cost to denote the upper bound to cost(f̂h∗,m∗) as in Theorem 3.12
above.

Remark 3.13. For δ(h) = α−1/h we require that h ≤ log(α)/2 to satisfy the convexity assump-
tion in Lemma 3.14. Note that as ε→ 0, the fidelity h must also go to zero by Equation (3.20). In
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particular, taking ε sufficiently small, smaller than

ε ≤
4‖f‖2L∞K̃0K1C logα

M log β
eK1α−2/ logα

(αβ)−2/ logα ,

will ensure that h ≤ log(α)/2 as required.

The rates on the error δ(h) and the cost c(h) can arise, for example, in the Bayesian inverse
problem setting in Section 4, where surrogate models are used to construct the surrogate densities
ph. Several concrete examples will be given in Section 5. Notice that γ(h) from Assumption 3.6
influences implicitly the constant K̃0 as shown in (3.5), which amplifies Remark 3.7 that it is
unnecessary that γ(h) goes to 0 for h→ 0 for Theorem 3.12 to hold.

Before we prove Theorem 3.12, we state the following lemma that solves an auxiliary optimiza-
tion problem highlighting the trade-off between the costs and fidelity of the surrogate model.

Lemma 3.14. Let ĉ(ĥ) and ê(ĥ) be continuous non-negative convex functions, where one of them
is strictly convex. Let further ĉ(ĥ) decrease monotonically and ê(ĥ) increases monotonically as
ĥ → ∞. Let ε > 0 be a tolerance and M̂ ∈ N be a constant independent of ĥ. Then, there exists a
unique solution (ĥ∗, m̂∗) of

(3.17)
minimize
m̂∈R,ĥ≥0

m̂C + M̂ ĉ(ĥ)

subject to
1

m̂
ê(ĥ) ≤ ε .

Proof of Lemma 3.14. We proceed as follows: first we show that if a solution exists it cannot
occur at zero or infinity (i.e. too high or low fidelity), then we show that a solution exists over a
compact interval, and finally show its uniqueness. For any ĥ, the optimal m̂ is the one that achieves
equality in the constraint

m̂ =
ê(ĥ)

ε
.

Plugging this into the objective function gives the minimization problem over ĥ only.

(3.18) minimize
ĥ≥0

C
ê(ĥ)

ε
+ M̂ ĉ(ĥ) .

We first show that the infimum of the objective function cannot occur as ĥ → ∞ or as ĥ → 0.
Since ĉ(ĥ) is non-negative and decreasing we know that ĉ(ĥ) → c0 for some constant c0 ≥ 0.
Moreover, ê(ĥ) is increasing, so we know that there exists an ĥmax < ∞, such that any optimal
solution ĥ∗ must satisfy ĥ∗ ≤ ĥmax. Similarly, since ê(ĥ) is non-negative and decreasing as ĥ → 0
we know that ê(ĥ)→ e0 for some constant e0 ≥ 0 as ĥ→ 0. Moreover, ĉ(ĥ) is increasing as ĥ→ 0,
and since the objective function (3.18) is monotonically increasing as ĥ → 0, we know that there
exists an ĥmin > 0, such that any optimal solution ĥ∗ must satisfy ĥ∗ ≥ ĥmin. Hence

minimize
ĥ≥0

C
ê(ĥ)

ε
+ M̂ ĉ(ĥ) = minimize

ĥ∈[ĥmin,ĥmax]
C
ê(ĥ)

ε
+ M̂ ĉ(ĥ)

Since the objective function is continuous over a compact set, we know that a minimizer exists.
Finally, the sum of a strictly convex function and a convex function is strictly convex, so we

know that this objective function is strictly convex in h, and therefore the minimizer is unique.

Proof of Theorem 3.12. Combining the result of Theorem 3.8 in Equation (3.4) with the bound
(2.3), let

e(h) = 4‖f‖2L∞K̃0eK1δ(h) .
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Because the composition of the convex function δ(h) and the strictly convex and increasing function
x 7→ ex is strictly convex, we know that e(h) must be strictly convex and therefore satisfies the
assumptions of Lemma 3.14, meaning that a unique solution ĥ∗, m̂∗ ∈ R exists.

Consider c(h) = β1/h and δ(h) = α−1/h with α, β > 1. We can remove the constraint to instead
minimize

(3.19) minimize
h≥0

4‖f‖2L∞K̃0C

ε
eK1δ(h) +Mc(h),

which is analogous to (3.18). By setting the derivative of (3.19) with respect to h to zero, the
optimal solution satisfies

(3.20)
4‖f‖2L∞K̃0K1C logα

M log β
eK1α−1/h

= ε(αβ)1/h ,

meaning that 1/ĥ∗ ∈ O(logαβ ε
−1) as ε → 0 since the left-hand-side must approach a constant.

Motivated by this observation, we set 1/h∗ = logαβ ε
−1 exactly and then the number of samples

needed is

m∗ = dm̂∗e =

⌈
4‖f‖2L∞K̃0

ε
eK1ε1/(1+logα β)

⌉
≤

4‖f‖2L∞K̃0

ε
eK1ε1/(1+logα β)

+ 1 .

where we have used that logαβ ε = logα ε
1+logα β

=
logβ ε

1+logβ α
. Since ε ≤ 1 we know that eK1ε1/(1+logα β)

/ε >

1, and so

m∗ ≤ K ′0
eK1ε1/(1+logα β)

ε
.

Plugging this in for m into the objective function, gives an upper bound on the total computational
costs

cost(f̂h∗,m∗) ≤
CK ′0
ε

eK1ε1/(1+logα β)
+Mε−1/(1+logβ α) .

Now consider c(h) = h−β and δ(h) = hα with α, β ≥ 1. Set again the derivative to zero to find
that the optimal solution satisfies

4‖f‖2L∞CK̃0K1

M

(
α

β

)
eK1hαhα+β = ε ,

so that ĥ∗ ∈ O(ε1/(α+β)) as ε→ 0. If we set h∗ = ε1/(α+β), then the number of samples needed is

m∗ = dm̂∗e =

⌈
4‖f‖2L∞K̃0

ε
eK1εα/(α+β)

⌉
≤

4‖f‖2L∞K̃0

ε
eK1εα/(α+β)

+ 1 ≤ K ′0
ε

eK1εα/(α+β)
,

with total computational cost bounded as

cost(f̂h∗,m∗) ≤
CK ′0
ε

eK1εα/(α+β)
+Mε−β/(α+β) .

Remark 3.15. Although we have assumed that training costs correspond to fitting the Laplace
approximation, Lemma 3.14 shows that the results will extend more generally to any approximation
where the costs of fitting the biasing density with respect to the fidelity h satisfies the assumption
of Lemma 3.14.
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3.4.3. Discussion of cost complexity bounds of context-aware MFIS. We now compare the
cost bounds of the context-aware MFIS estimators f̂h∗,m∗ derived in Theorem 3.12 with the costs
of fixed-fidelity MFIS estimators f̂h̄,m̄, where the fidelity h̄ is fixed independent of ε. The number
of samples m̄ is selected depending on the tolerance ε as

m̄ = inf

{
m ∈ N :

e(h̄)

m
≤ ε
}
,

analogously to the context-aware MFIS estimator. Note that the sample size depends as well on
the fidelity h̄. The costs of the fixed-fidelity MFIS estimator are

cost(f̂h̄,m̄) = m̄C +Mc(h̄) .

If δ(h) = α−1/h and c(h) = β1/h, then the costs of the fixed-fidelity estimator are bounded as

cost(f̂h̄,m̄) ≤ cost(f̂h̄,m̄) =
CK ′0
ε

eK1α−1/h̄
+Mβ1/h̄ ,

and if δ(h) = hα and c(h) = h−β then the costs are bounded as

cost(f̂h̄,m̄) ≤ cost(f̂h̄,m̄) =
CK ′0
ε

eK1h̄α +Mh̄−β .

We now compare the costs of the context-aware MFIS and the fixed-fidelity MFIS estimators
by comparing their cost upper bounds cost as ε → 0. First, consider the case where δ(h) = α−1/h

and c(h) = β1/h. As ε→ 0, we have that

lim
ε→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= lim

ε→0

CK′0
ε eK1α−1/h̄

+Mβ1/h̄

CK′0
ε eK1ε1/(1+logα β)

+Mε−1/(1+logβ α)
.

Multiply the numerator and denominator by ε to get

lim
ε→0

CK ′0eK1α−1/h̄
+ εMβ1/h̄

CK ′0eK1ε1/(1+logα β)
+Mε1−1/(1+logβ α)

.

As ε → 0, the numerator goes to CK ′0eK1α−1/h̄ and the denominator goes to CK ′0 since α > 1.
Therefore, the speedup obtained with the context-aware MFIS estimator in the limit of ε→ 0 is

lim
ε→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= eK1α−1/h̄

> 1 .

Now consider the other case where δ(h) = hα and c(h) = h−β . We have that

lim
ε→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= lim

ε→0

CK′0
ε eK1h̄α +Mh̄−β

CK′0
ε eK1εα/(α+β)

+Mε−β/(α+β)
.

Multiplying both the numerator and denominator by ε gives

lim
ε→0

CK ′0eK1h̄α + εMh̄−β

CK ′0eK1εα/(α+β)
+Mε1−β/(α+β)

.

As ε → 0, the numerator converges to CK ′0eK1h̄α , and since β/(α + β) < 1, the denominator
converges to CK ′0. Hence, the speedup obtained with the proposed context-aware MFIS estimator
in the limit ε→ 0 is

lim
ε→0

cost(f̂h̄,m̄)

cost(f̂h∗,m∗)
= eK1h̄α > 1 .

In both cases we observe that as the tolerance ε→ 0, the dominant term for the MFIS estimator
cost approaches order O(1/ε) and the bulk of the cost shifts to the online sampling cf. Section 2.5.
We see that the speedup as ε→ 0 depends on the rate of the error δ(h̄) going to zero.
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Algorithm 3.1 Context-aware importance sampling
1: Constants K̃0,K1, C, ε,M, ‖f‖L∞ and functions c, δ
2: Solve the optimization problem (3.17) for (h∗, m̂∗) using ‖f‖L∞ , K̃0,K1, C,M, ε, c, δ
3: Compute a Laplace approximation qh∗ of ph∗ with M evaluations of p̃h∗
4: Draw m∗ = dm̂∗e i.i.d. samples {θ(i)}m∗i=1 from qh∗

5: Compute f̂h∗,m∗ using (2.6) return Estimate f̂h∗,m∗

3.5. Computational procedure. Algorithm 3.1 summarizes the context-aware importance sam-
pling procedure. Given constants K̃0,K1, C,M, ‖f‖L∞ , and the tolerance ε as well as the cost and
accuracy functions c and δ, the context-aware importance sampling Algorithm 3.1 first solves the
optimization problem (3.17) for (ĥ∗, m̂∗). A Laplace approximation to the surrogate density ph∗ is
then computed using Newton’s method. The Hessian at the mode is then inverted directly to obtain
the covariance of the Laplace approximation or can alternatively be stored as a precision matrix to
avoid the matrix inversion. This concludes the offline phase of finding the biasing density. For the
online phase we draw m∗ = dm̂∗e samples from the Laplace approximation qh∗ and re-weight using
the un-normalized high-fidelity density p̃ using the estimator (2.6).

Algorithm 3.1 requires the constants K̃0,K1, C,M, ‖f‖L∞ . Similar to other multi-level and
multi-fidelity methods, we propose to first perform a pilot study to estimate these constants before
using them in the computational procedure. Such pilot studies may be expensive; however, since
the test function f is independent of the constants, we only need to estimate these constants once
and can then re-use them to compute a variety of statistics with respect to the target distribution
p. This makes the context-aware importance sampling procedure appealing for estimating families
of expectations or probabilities such as cumulative density functions or survival functions.

4. Bayesian inverse problems. We now apply the context-aware MFIS estimator for inference
in Bayesian inverse problems where the target p is a posterior distribution and we are interested
in expectations Ep [f ] of this distribution. Section 4.1 describes the general setup of a Bayesian
inverse problem and Section 4.2 applies the results of Section 3 to the case where p is a posterior
distribution.

4.1. Setup of a Bayesian inverse problem. Let data y ∈ Rd′ be generated by an unknown
parameter θtruth ∈ Rd with a Gaussian noise model,

y = F(θtruth) + η,

where η ∼ N(0,Γ), Γ ∈ Rd′×d′ is the covariance matrix (symmetric and positive definite) of the
added noise, and F : Θ → Rd′ is the high-fidelity parameter-to-observable map. Let πpr denote a
prior distribution over the parameter θ, so that the negative log-posterior has the form

− log p(θ) = Φ(θ) =
1

2
‖y −F(θ)‖2Γ−1 − log πpr(θ) .

The norm is defined as ‖v‖2Γ−1 = 〈Γ−1v, v〉. While it is possible to use the prior distribution as a
biasing density, if the posterior contracts around the data then the χ2 divergence of the posterior
from the prior may be very large resulting in a high variance estimator with a low effective sample
size.

Let Fh denote the surrogate parameter-to-observable map with fidelity h and let it be such
that the sequence Fh(θ) → F(θ) converges pointwise for each θ ∈ Θ. Additionally, we assume
that F ,Fh ∈ C2(Θ). In many cases the parameter-to-observable map F is a function of an inter-
mediate state variable u, such as the full solution to a parametrized partial differential equation
(PDE) depending on the parameters θ. The surrogate parameter-to-observable map Fh is given
by approximating this state variable u with an approximation uh. The approximation for the state
variable uh could be given by finite elements [7], finite difference [25], a different time step for an
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ordinary differential equation [25], finitely many terms in a Karhunen-Loève expansion [41], and
others.

We consider the case where the prior πpr is Gaussian N(µpr,Σpr), so that we can write the
potential from Assumption 3.3 as

(4.1) Φ(θ) =
1

2
‖y −F(θ)‖2Γ−1 +

1

2
(θ − µpr)

TΣ−1
pr (θ − µpr).

With a Gaussian prior the resulting posterior distribution is always sub-Gaussian since we can take
the matrix A = 1

4Σ−1
pr in Lemma 3.1. The potentials Φh are defined similarly but with the surrogate

maps Fh replacing F .

4.2. Bounding χ2 divergence with model error. We now translate bounds on the model error
between F and Fh to the χ2 divergence χ2 (p || qh), where qh is a Laplace approximation to the
surrogate posterior ph. The next two assumptions allow us to make the transition.

Assumption 4.1. The high-fidelity parameter-to-observable map F is globally Lipschitz meaning
there exists a constant B > 0 such that for all θ, θ̃ ∈ Θ

‖F(θ)−F(θ̃)‖ ≤ B‖θ − θ̃‖ .

Assumption 4.1 is almost the Lipschitz Assumption 2.7(ii) from [40] except there the constant
B only needs to hold for bounded sets of θ. Assumption 4.1 is satisfied if the map F is linear, for
example, or if the map is the sum of a linear term and a smooth bounded function. Alternatively, we
note that Assumption 4.1 may also be relaxed so that F(θ) grows at most linearly asymptotically
as ‖θ‖ → ∞. Such an assumption will still ensure that the potential does not grow faster than
quadratically as needed for the assumptions of Theorem 3.8.

Assumption 4.2. For all θ ∈ Θ and h we have

‖Fh(θ)−F(θ)‖ ≤ δ̃(h)τ̃(θ)

with δ̃(h)→ 0 as h→ 0 with τ̃(θ) independent of h.

Assumption 4.2 is similar to Assumption (4.11) in Corollary 4.9 of [40], although the pointwise
bound is also looser there than here for the same reason as given in Remark 3.9. Theorem 4.3
is analogous to Theorem 3.8 from earlier but now is applied specifically to the Bayesian inverse
problem.

Theorem 4.3. If Assumptions 4.1 and 4.2 are satisfied with |τ̃(θ)| ≤ ‖θ‖ + τ̃0 for some τ̃0 > 0,
then Assumption 3.5 is also satisfied with

δ(h) =

(
2B + 1

κmin

)
δ̃(h)

and τ(θ) a quadratic function of ‖θ‖ that is independent of h.

Proof. Using the form of the log-posterior (4.1) we write

|Φh(θ)− Φ(θ)| =
∣∣‖Fh(θ)− y‖2Γ−1 − ‖F(θ)− y‖2Γ−1

∣∣
since the prior terms cancel. To simplify notation, set ∆(θ) = F(θ)−Fh(θ) and ζ(θ) = F(θ)− y,
so that ζ(θ)−∆(θ) = Fh(θ)− y. Now, we can instead write

|Φh(θ)− Φ(θ)| =
∣∣‖ζ(θ)‖2Γ−1 − ‖ζ(θ)−∆(θ)‖2Γ−1

∣∣
=
∣∣‖ζ(θ)‖2Γ−1 −

〈
Γ−1 (ζ(θ)−∆(θ)) , ζ(θ)−∆(θ)

〉∣∣
=
∣∣2〈∆(θ),Γ−1ζ(θ)〉 − ‖∆(θ)‖2Γ−1

∣∣ .
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Applying the triangle inequality and then the Cauchy-Schwarz inequality to this last line gives

(4.2) |Φh(θ)− Φ(θ)| ≤ 2‖∆(θ)‖‖Γ−1ζ(θ)‖+ ‖∆(θ)‖2Γ−1 .

Using that y = F(θtruth) + η and the triangle inequality gives

‖Γ−1ζ(θ)‖ = ‖Γ−1(F(θ)− y)‖
≤ ‖Γ−1(F(θ)−F(θtruth))‖+ ‖Γ−1η‖ .

Assumption 4.1 then gives the bound

(4.3) ‖Γ−1ζ(θ)‖ ≤ B

κmin
‖θ − θtruth‖+ ‖Γ−1η‖,

where κmin > 0 is the smallest eigenvalue of the covariance matrix Γ, i.e., the direction along which
the posterior is most peaked. Similarly, we bound

(4.4) ‖∆(θ)‖2Γ−1 = 〈Γ−1∆(θ), ∆(θ)〉 ≤ 1

κmin
‖∆(θ)‖2 .

Substituting bounds (4.3) and (4.4) into (4.2) yields

|Φh(θ)− Φ(θ)| ≤ 2

(
B

κmin
(‖θ − θtruth‖) + ‖Γ−1η‖

)
‖∆(θ)‖+

1

κmin
‖∆(θ)‖2,

and the triangle inequality gives

(4.5) |Φh(θ)− Φ(θ)| ≤ 2

(
B

κmin
(‖θ‖+ ‖θtruth‖) + ‖Γ−1η‖

)
‖∆(θ)‖+

1

κmin
‖∆(θ)‖2 .

Assumption 4.2 along with the assumption that |τ̃(θ)| ≤ ‖θ‖ + τ̃0 says ‖∆(θ)‖ ≤ δ̃(h) (‖θ‖+ τ̃0),
so we get that

|Φh(θ)− Φ(θ)| ≤ 2

(
B

κmin
(‖θ‖+ ‖θtruth‖) + ‖Γ−1η‖

)
δ̃(h) (‖θ‖+ τ̃0) +

1

κmin
δ̃(h)2 (‖θ‖+ τ̃0)2 ,

and thus

|Φh(θ)− Φ(θ)| ≤

(
2B

κmin
‖θtruth‖+ 2‖Γ−1η‖+

δ̃(h)τ̃0

κmin

)
δ̃(h)τ̃0

+

(
2B

κmin
τ̃0 +

2B

κmin
‖θtruth‖+

2

κmin
δ̃(h)τ̃0 + 2‖Γ−1η‖

)
δ̃(h)‖θ‖

+

(
2B

κmin
+

1

κmin
δ̃(h)

)
δ̃(h)‖θ‖2 .

Using that δ̃(h) ≤ 1 for all h sufficiently small and ‖θ‖ ≤ 1 + ‖θ‖2 gives

|Φh(θ)− Φ(θ)| ≤ δ(h)τ(θ),

where
δ(h) =

(
2B + 1

κmin

)
δ̃(h)

is as in Assumption 3.5 and τ(θ) is quadratic in ‖θ‖ and is bounded independent of h.

Corollary 4.4. Suppose that Theorem 3.8 applies with Assumption 3.5 provided by Theorem 4.3.
Then, together with Proposition 3.10 this implies that the cost complexity of the context-aware im-
portance sampling estimator with a Laplace approximation biasing density is given by Theorem 3.12.
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5. Numerical Results. This section demonstrates our context-aware importance sampling ap-
proach on three examples. All runtime measurements were performed on compute nodes equipped
with Intel Xeon Gold 6148 2.4GHz processors and 192GB of memory using a Python 3.6 implemen-
tation.

5.1. Steady-state heat conduction. In the first example we consider a steady-state heat dif-
fusion model with constant heat source and infer a 6-dimensional variable diffusivity.

5.1.1. Problem Setup. Let Ω = (0, 1) ⊂ R and Θ = R6 and consider the PDE

− (exp (k(x;θ))ux(x;θ))x = 1, x ∈ Ω

u(0;θ) = 0

k(1;θ)ux(1;θ) = 0

(5.1)

where θ = (θ1, . . . , θ6)T ∈ Θ, k : Ω × Θ → R is the log-diffusivity, and u : Ω × Θ → R is the
temperature function. The log-diffusivity k(x; θ) is a smoothed piecewise constant. In particular,
let

I(x, α) =

(
1 + exp

(
−x− α

0.005

))−1

and αi = (i− 1)/6 for i = 1, . . . , 7. Define

(5.2) k̂i(x;θ) = (1− I(x, αi))k̂i−1(x;θ) + I(x, αi)θi

for i = 2, . . . , 6 and k̂1(x;θ) = θ1. Now set the log-diffusivity k = k̂6. We discretize (5.1) in the
spatial domain Ω using linear finite elements with mesh width h > 0 (i.e. h−1 many elements)
and the corresponding sparse (tri-diagonal) linear system is solved using a Cholesky factorization.
The parameter-to-observable map Fh : Θ→ R120 is the discretized solution uh with mesh width h
evaluated at 120 equally-spaced points on Ω

(Fh(θ))i = uh(i/120), i = 1, . . . , 120 .

For the high-fidelity parameter-to-observable map we set H−1 = 256 elements, (i.e. F = FH) and
for the surrogate maps Fh we consider h−1 = 8, 12, 16, . . . , 64 (multiples of 4 for the number of
elements).

5.1.2. Setup of the inverse problem. A single observation y = F(θtruth) + η is generated
where θtruth = (1, . . . , 1)T ∈ R6 and η ∼ N(0, 10−5I120×120). The added noise corresponds to
approximately 1% of the true solution u at the right endpoint x = 1. The prior distribution is taken
to be a Gaussian with mean µpr = (1, . . . , 1)T ∈ R6 and covariance Σpr = 10−1I6×6 ∈ R6×6. For
the test function let v1 ∈ R6 be the largest eigenvector of ΣLAP and set

(5.3) f(θ) = 2 · 1
{

(θ − µLAP) · v1 ≥ 0
}
− 1

so that f(θ) ∈ {±1} for all values of θ. The idea behind this choice of test function is that the
asymptotic variance of the MFIS estimator (2.6) is largest whenever f is not tightly concentrated
around its expectation under qh∗ . Here the expectation of f under qh∗ should be close to zero even
though f itself is never close to zero.

5.1.3. Results. A Laplace approximation to each surrogate posterior ph is fit using the Newton-
CG method where the gradient and Hessian matrix are computed using a second-order finite differ-
ence scheme with a total of M = 1150 model evaluations at each fidelity. The cost function has the
form c(h) = c0 + c1/h, where c0 is included to model any baseline cost independent of the fidelity,
and accuracy has the form δ(h) = a1h

2 since we use linear finite elements. The cost is linear in
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h−1 since the system of linear equations is tri-diagonal. We estimate the χ2 divergence with Monte
Carlo estimator

(5.4) χ̂2
h,m = m

∑m
i=1

(
p̃(θ(i))/qh(θ(i))

)2(∑m
i=1 p̃(θ

(i))/qh(θ(i))
)2 −→ χ2 (p || qh) + 1, almost surely as m→∞

and {θ(i)}mi=1 are i.i.d. samples drawn from qh. Then the curve K̃0e
K1h2 is fit using the estimated

χ2 values χ̂2
h,103 for each fidelity h−1 = 8, 12, 16, . . . , 64 averaged over N1 = 500 independent trials.

The measured χ2 values are

χ̂2
meas,h =

1

N1

N1∑
i=1

(
χ̂2
h,m

)(i)
with the superscript (i) denoting one of the independent trials. The fitted curve along with the
measured values are shown in Figure 5.1. The χ2 divergence is large for low fidelities but quickly
levels off and then is limited by the restriction of the biasing density to be the Laplace approximation
rather than the surrogate density itself.

Since we only consider finitely many surrogate models h−1 = 8, 12, 16, . . . , 64, we approximate
the solution of the optimization problem (3.17) with a brute force search to find the best fidelity
h∗ from the list of fidelities that we consider and set m∗ = dm̂∗e with m̂∗ corresponding to h∗.
Figure 5.1 shows the selected fidelity as a function of the tolerance ε. As the tolerance shrinks we
require a higher-fidelity model to fit a Laplace approximation. Using the pair (h∗,m∗), Figure 5.2
shows the theoretical optimal trade-off between cost in seconds and the MSE (tolerance) of the
estimator f̂h∗,m∗ . We estimated the true value Ep [f ] using f̂H,105 and averaged the results over
N2 = 500 independent trials (again denoted by the superscript (i))

(5.5) f̄ =
1

N2

N2∑
i=1

f̂
(i)
H,105 .

Next we estimated the MSE of f̂h∗,m∗ using N3 = 1000 trials

(5.6) M̂SEε =
1

N3

N3∑
i=1

(
f̂

(i)
h∗,m∗ − f̄

)2
.

Here the subscript ε denotes the dependence of the pair (h∗,m∗) on the tolerance ε. Figure 5.2
shows the averaged MSE over N3 = 1000 trials for different tolerances ε as well as the MSE for the
estimators f̂H,mH and f̂h0,mh0

where the number of samples is

mh =

⌈
K̃0

ε
exp

(
K1h

2
)⌉

and h0 = 8 is the lowest fidelity we consider (for the surrogate only estimator we average only
N3 = 500 trials). For moderate error tolerances we can achieve an order of magnitude speedup
since most of the cost comes from fitting a Laplace approximation; using a very accurate model is
not necessary, but using a very cheap surrogate model is insufficient. As the tolerance shrinks, most
of the computation shifts to the online sampling phase which begins to dominate and little speedup
is obtained. This matches the theoretical speedup derived in Section 3.4.

5.2. Euler Bernoulli Problem. In the second example we infer the effective stiffness of an Euler
Bernoulli beam. The forward-model code is available on GitHub1 and was developed by Matthew
Parno as a part of the 2018 Gene Golub SIAM Summer School on “Inverse Problems: Systematic
Integration of Data with Models under Uncertainty”. The rest of the setup of this problem is taken
from Section 4.2 of [33].

1https://github.cim/g2s3-2018/labs
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Figure 5.1. (Left) The measured χ2 divergences, χ̂2
meas,h, between the high-fidelity posterior p and the Laplace

approximation qh to each surrogate posterior ph. (Right) The selected fidelity for the number of elements (h∗)−1 from
the optimization (3.17) as the tolerance ε on the MSE changes.
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Figure 5.2. (Left) The theoretical error tolerance ε against the total cost (seconds of CPU time) to fit the Laplace
approximation qh∗ of ph∗ and draw m∗ samples. (Right) The actual measured M̂SEε against the total cost. Note that
the results shown in the left plot is an upper bound for the results shown in right plot by the bound (2.3).

5.2.1. Problem Setup. Let Ω = (0, 1) ⊂ R and Θ = R6 and consider the PDE

(5.7)
∂2

∂x2

(
E(x;θ)

∂2

∂x2
u(x;θ)

)
= g(x), x ∈ Ω

with boundary conditions

u(0;θ) = 0,
∂u

∂x
(0;θ) = 0,

∂2u

∂x2
(1;θ) = 0,

∂3u

∂x3
(1;θ) = 0

where u : Ω × Θ → R is the displacement and E : Ω × Θ → R is the effective stiffness of the
beam. The applied force g(x) is taken to be g(x) = 1. The effective stiffness E(x;θ) is a smooth
piecewise constant defined in the same way as the log-diffusivity (5.2) but with θi replaced by |θi|
for i = 1, . . . , 6. We discretize (5.7) in the spatial domain Ω with a mesh width h > 0 (i.e. h−1 + 1
grid points) using a second-order finite difference scheme and solve the resulting linear system of
equations for the discretized solution uh at the grid points.

The parameter-to-observable map Fh : Θ → R40 is the linear interpolant of the h−1 + 1 grid
points evaluated at 40 equally spaced points in the spatial domain (0, 1)

(Fh(θ))i = uh

(
i− 1

39

)
, i = 1, . . . , 40
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Figure 5.3. (Left) The measured χ2 divergences, χ̂2
meas,h, of the high-fidelity posterior p from the Laplace approx-

imation qh to each surrogate posterior ph. (Right) The selected fidelity for the number of grid points (h∗)−1 + 1 from
the optimization (3.17) as the tolerance ε on the MSE changes.

Note that we exclude the left end-point at x = 0 since it is fixed by the boundary conditions. We
set the high-fidelity map to be F = FH with H−1 + 1 = 256 grid points and for the surrogate maps
we again consider h−1 + 1 = 8, 12, 16, . . . , 64.

5.2.2. Setup of the inverse problem. A single observation y = F(θtruth)+η ∈ R40 is generated
where θtruth = (1, . . . , 1)T ∈ R6 and η ∼ N(0, Γ) with noise covariance Γ = 5.623 × 10−4I40×40.
The added noise now corresponds to approximately 5% of the true solution u at the right endpoint
x = 1. The prior is again a Gaussian with mean µpr = (1, . . . , 1)T ∈ R6 and covariance Σpr =
1.778 × 10−2I6×6 ∈ R6×6. For the test function we use the same test function (5.3) from the
steady-state heat problem.

5.2.3. Results. We again fit a Laplace approximation to each surrogate posterior ph using
Newton-CG with the gradient and Hessian computed by second-order finite difference approxima-
tions. The total number of model evaluations is M = 1800 at each fidelity. The cost function has
the form c(h) = c0 + c1/h (linear in h−1 because the system of linear equations from the discretiza-
tion is sparse) and the surrogate accuracy has the form δ(h) = a1h

2 from the second-order finite
difference spatial discretization.

We use the χ2 divergence estimator χ̂2
h,105 from (5.4) and average the results over N1 = 100

independent trials to obtain the measured value χ̂2
meas,h as in (5.4) for each surrogate map h−1 +1 =

8, 12, 16 . . . , 64. We then use these measured values to fit the curve K̃0e
K1h2 . Figure 5.3 shows the

results. Observe that the χ2 divergence quickly levels off again.
The fidelity and sample size (h∗,m∗) are found using a brute-force search and Figure 5.3 shows

the selected number of grid points (h∗)−1 + 1 as a function of the MSE tolerance ε. When the
tolerance is small the selected fidelity is the highest fidelity since we do not consider any surrogate
models with h−1 + 1 between 64 and 256. Figure 5.4 shows the theoretical optimal cost and error
trade-off for f̂h∗,m∗ . We estimated the true value Ep [f ] using f̂H,105 with N2 = 100 independent
trials using equation (5.5) and the MSE was estimated with N3 = 2500 independent trials using
equation (5.6). Here the lowest-fidelity surrogate model corresponds to h0 = 16. From the plot we
can observe an order of magnitude speedup for moderate tolerances where we do not need to use a
high-fidelity model to fit the Laplace approximation. Also note that the theoretical trade-off is an
upper bound but the shape matches closely with the measured results.

5.3. Advection-Diffusion Problem. In this example, we infer the initial center of a concen-
tration of gas that diffuses throughout a domain with advection. The forward model is a slightly
modified version of what is shipped with hIPPYlib 2 [44, 45, 46].

2https://hippylib.github.io/tutorials_v3.0.0/4_AdvectionDiffusionBayesian/

21



1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02 1e+03

To
le
ra
nc

e
ε

Cost [s]

Context-aware
High-fidelity alone

Surrogate alone
1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02 1e+03

M
ea
su
re
d
M̂
S
E
ε

Cost [s]

Context-aware
High-fidelity alone

Surrogate alone

Figure 5.4. (Left) The theoretical error tolerance ε against the total cost (seconds of CPU time) to fit the Laplace
approximation qh∗ of ph∗ and draw m∗ samples. (Right) The actual measured M̂SEε against the total cost. Note that
the results in the left plot are upper bounding the results in the right plot by the bound (2.3).

5.3.1. Problem Setup. Following the setup in hIPPYlib [44, 45, 46], consider the domain

Ω = [0, 1]2 \ ([0.25, 0.5]× [0.15, 0.4] ∪ [0.6, 0.75]× [0.6, 0.85]) ⊂ R2 ,

with two rectangular holes, which is also the parameter domain Θ = Ω in this example. Let
u : Ω× [0, 1]×Θ → R denote the concentration of a gas at position x ∈ Ω and time t ∈ [0, 1] and
let it be the solution of the following PDE

(5.8)

∂tu(x, t;θ)− κ∆u(x, t;θ) + v(x) · ∇u(x, t;θ) = 0, (x, t) ∈ Ω× [0, 1] ,

u(x, 0;θ) = e−10(x1−θ1)2−10(x2−θ2)2
, x ∈ Ω ,

κ∇u(x, t;θ) = n, (x, t) ∈ ∂Ω× [0, 1] ,

where κ = 10−3 is the diffusion coefficient, n is the outward unit normal vector from the boundary,
and the velocity field v : Ω → R2 is the solution of the steady-state Navier-Stokes equation with
the left and right walls driving the flow (see Figure 5.5)

(5.9)
− 1

Re
v(x) +∇q(x) + v(x) · ∇v(x) = 0, x ∈ Ω ,

∇ · v(x) = 0, x ∈ Ω ,

v(x) = g(x), x ∈ ∂Ω .

Here Re = 102 is the Reynold’s number of the gas, q : Ω→ R is the pressure field, and g : ∂Ω→ R2

is an external force field acting only on the boundary of the domain. In particular, g(x) = e2

if x1 = 0 on the left wall, g(x) = −e2 if x1 = 1 on the right wall, and g(x) = 0 otherwise,
where e2 = (0, 1)> is the second standard basis vector. Note that the parameter dependence is
only through the initial condition u(x, 0;θ), where θ ∈ Ω corresponds to the center of the initial
concentration. Also note that the velocity field v is independent of the parameters and determined
ahead of time.

Because the parameter domain Θ = Ω is bounded, Assumptions 3.4-3.6 are satisfied. Moreover,
the forward model that maps the initial condition to the solution u is differentiable, and so the
parameter-to-observable map F is differentiable as well. Because it is differentiable on a compact
domain, F is also globally Lipschitz and hence the assumptions needed for Theorem 4.3 apply.

We follow the setup in [44, 45, 46] and discretize (5.8) in the spatial domain Ω using first
order Lagrange finite elements and solve in time using the implicit Euler method to obtain an
approximate solution uh. For the high-fidelity model, the total number of degrees of freedom after
discretizing in space is 14,313 and we use a time step size of 10−3. For the surrogate models
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Figure 5.5. (Left) The velocity field v throughout the domain with the two rectangular barriers. (Middle) The
initial concentration u(x, 0;θ) centered at θ ∈ Θ. (Right) The concentration u(x, 1;θ) at time t = 1 when we observe
the solution. In both middle and right plots the observation points are shown as the four black dots in the bottom-right
corner.

the total number of degrees of freedom in the discretized system ranges from 20 to 3,661 and
we use a time step size of 10−2. The fidelity h here corresponds to the maximum width of a
cell in the mesh, which decreases as the number of degrees of freedom (cells) is increased. The
parameter-to-observable map is the pointwise observation of the concentration at the final time at
four points in the bottom-right quadrant of the domain as in Figure 5.5, which means that Fh(θ) =
(uh(x1, 1;θ) . . . , uh(x4, 1;θ))> ∈ R4 with x1 = (2/3, 1/6)>, x2 = (5/6, 1/6)>, x3 = (2/3, 1/3),
and x4 = (5/6, 1/3)>.

5.3.2. Setup of the inverse problem. We generate a single observation y = F(θtruth) + η ∈
R4, where θtruth = (0.8, 0.2)> and η ∼ N(0, σ2I4×4) with noise variance σ2 = 8.876 × 10−3;
cf. Figure 5.5. The noise corresponds to 10% of the true solution u(x, 1;θ). The prior is Gaussian
with mean µpr = (0.75, 0.25)> and covariance Σpr = 10−2I2×2.

5.3.3. Results. A Laplace approximation to each surrogate posterior ph is fit using Newton’s
method where the gradient and Hessian matrix are computed using the chain rule combined with the
adjoint method. We select a random initial point in the bottom-right quadrant θ0 ∈ [0.5, 1]×[0, 0.5]
and find that 10 Newton iterations, but not fewer, is sufficient for the norm of the gradient of the
log posterior to achieve machine precision. Computing the Hessian at each iteration involves 4
linear solves including the forward solve, the adjoint solve, and the forward and adjoint incremental
equations. Note that although the PDE (5.8) is linear, the dependence through the parameters θ
is nonlinear, and thus we must recompute the Hessian at every iteration (i.e. it is not constant).
We also note that the forward and adjoint solves are re-used for the computation of the gradient,
so that the total number of linear solves needed across the entire offline phase is 40.

To obtain the cost function c(h), we measure the runtime of each surrogate and high fidelity
model and average over 10,000 trials. We finally fit a curve of the form c(h) = c0h

−β . Similarly for
the surrogate error we fit a curve of the form δ(h) ∝ hα. We measure the chi-squared divergence
using 500,000 samples and then fit the curve of the form K̃0eK1δ(h) as shown in Figure 5.6 to
be input into the optimization problem (3.19). Note that the online phase of sampling and re-
weighting according to the high-fidelity posterior p is embarrassingly parallel, and so to reduce the
computational cost we parallelize over nproc = 64 processors. The optimal fidelity or number of
degrees of freedom in this case is given by the solution to the optimization problem

(5.10) minimize
h≥0

4‖f‖2L∞K̃0C

εnproc
eK1δ(h) +Mc(h) ,

and shown in Figure 5.6.
Figure 5.7 shows the speedup predicting by the optimization problem versus the speedup mea-

sured numerically after sampling with the computed biasing density and the context-aware im-
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Figure 5.6. (Left) The measured and fitted values of χ2(qh || p) + 1 for each Laplace approximation to a surrogate
model ph. (Right) The optimal number of degrees of freedom as given by (5.10) for different tolerances ε.
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Figure 5.7. (Left) The upper bound on the mean-squared error vs. the theoretical cost of the entire computational
procedure. (Right) The measured mean-squared error of the context-aware importance sampling estimator with the
optimal surrogate model vs. cost. For the context-aware estimator the mean-squared error is computed by averaging
over 100 independent trials. For the high and low-fidelity estimators the mean-squared error is estimated by averaging
over 50 independent trials.

portance sampling estimator. The reference value used to compute the mean-squared error was
computed using 106 samples from the high-fidelity Laplace approximation and then re-weighted.
Initially, the context-aware estimator selects a much cheaper surrogate model to achieve a large
initial speedup of several orders of magnitude compared to the high-fidelity model for high error
tolerances. For smaller tolerances, more accurate surrogate model are selected to optimize the
cost-error trade-off. In this regime the context-aware estimator outperforms the estimators that
use low-fidelity surrogate models alone due to the chi-squared divergence being lower, allowing for
fewer necessary samples. Note that the results in plot on the left correspond an upper bound and
are independent of the choice of test function, and that for different test functions the actual MSE
may be lower. However, the trend of how the cost-error ratio behaves for different tolerances is
comparable, which demonstrates the viability of the proposed approach.

5.3.4. Extension to 12-dimensional parameter. Instead of inferring the origin of a single ini-
tial concentration of gas, here we infer the origin of six initial concentrations giving rise to a 12-
dimensional parameter. We now have

u(x, 0;θ) =
6∑
i=1

e−10(x1−θ2i−1)2−10(x2−θ2i)2
, x ∈ Ω .

24



1

2

3

4

5

6

7

8

100 1000

M
ea
su
re
d
va
lu
es
χ̂

2 m
ea

s,
h

Number of degrees of freedom

Measured χ̂2
meas,h

Fitted

0

200

400

600

800

1000

1200

1400

1e-041e-031e-021e-011e+00

N
um

be
r
of

de
gr
ee
s
of

fr
ee
do

m

Tolerance ε

Optimal Fidelity

Figure 5.8. (Left) The measured and fitted values of χ2(qh || p) + 1 for each Laplace approximation to a surrogate
model ph. (Right) The optimal number of degrees of freedom as given by (5.10) for different tolerances ε.
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Figure 5.9. (Left) The upper bound on the mean-squared error vs. the theoretical cost of the entire computational
procedure. (Right) The measured mean-squared error of the context-aware importance sampling estimator with the
optimal surrogate model vs. cost. For the context-aware estimator the mean-squared error is computed by averaging
over 100 independent trials. For the high and low-fidelity estimators the mean-squared error is estimated by averaging
over 50 independent trials.

The forward model is the same except that we add four additional sensors in the top corner of
the domain for observing data so that F : Ω6 ⊂ R12 → R8. We also increase the relative noise
in the observations to 20%. We again take a Gaussian prior with covariance Σpr = 4 × 10−3I. A
reference value of the posterior mean was computed using 106 importance-weighted samples from
the Laplace approximation to the high-fidelity posterior. The rest of the setup is the same as in
previous subsections. Figures 5.8 and 5.9 show that the context-aware estimator outperforms both
the estimator that uses the high-fidelity alone and the estimator that only uses the low-fidelity
model for constructing the biasing density.
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Appendix A. Proof of Lemma 3.1.

Proof. Suppose that x is a sub-Gaussian random vector and consider the matrix to be a multiple
of the identity, A = αI with α > 0. We now only need to show that there exists an α > 0 such
that for all µ ∈ Rd

Eπ
[
exp

(
α‖x− µ‖2

)]
= Eπ

[
exp

(
(x− µ)TA(x− µ)

)]
<∞ .

Since ‖v +w‖2 ≤ 2‖v‖2 + 2‖w‖2 by the triangle inequality and the fact that (a+ b)2 ≤ 2a2 + 2b2,
we get the upper bound

Eπ
[
exp

(
α‖x− µ‖2

)]
≤ Eπ

[
exp

(
2α‖µ‖2 + 2α‖x‖2

)]
= exp

(
2α‖µ‖2

)
Eπ
[
exp

(
2α‖x‖2

)]
.

Therefore, we only need to find α > 0 such that

Eπ
[
exp

(
2α‖x‖2

)]
<∞ .

We now use the assumption that x is sub-Gaussian by taking the marginals

Eπ
[
exp

(
2α‖x‖2

)]
= Eπ

[
exp

(
2α

d∑
i=1

x2
i

)]

= Eπ

[
exp

(
2α

d∑
i=1

|eTi x|2
)]

= Eπ

[
d∏
i=1

exp
(
2α|eTi x|2

)]
,
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where ei is the i-th canonical unit vector. We proceed by induction on the dimension d and
repeatedly use the Cauchy-Schwarz inequality to show that this expectation is finite. When d = 1,
take α1 such that 1√

2α1
> ‖x‖ψ2 so that

Eπ
[
exp

(
2α1|eT1 x|2

)]
= Eπ

[
exp

(
|eT1 x|2

(1/
√

2α1)2

)]
≤ 2 .

Note that since x is sub-Gaussian ‖x‖ψ2 <∞ we can indeed find an α1 > 0 to satisfy the inequality.
Now suppose that for dimension d− 1 there exists an αd−1 such that

Eπ

[
d−1∏
i=1

exp
(
2αd−1|eTi x|2

)]
= Cd−1 <∞ .

By using the Cauchy-Schwarz inequality, we get that

Eπ

[
d∏
i=1

exp
(
2αd|eTi x|2

)]
≤ Eπ

[
d−1∏
i=1

exp
(
4αd|eTi x|2

)]1/2

Eπ
[
exp

(
4αd|eTd x|2

)]1/2
.

Taking αd ≤ αd−1/2 gives

Eπ

[
d−1∏
i=1

exp
(
4αd|eTi x|2

)]1/2

≤ Eπ

[
d−1∏
i=1

exp
(
2αd−1|eTi x|2

)]1/2

= C
1/2
d−1 .

Taking αd such that 1√
4αd

> ‖x‖ψ2 gives

Eπ
[
exp

(
4αd|eTd x|2

)]1/2 ≤ Eπ
[
exp

(
|eTd x|2

(1/
√

4αd)2

)]1/2

≤
√

2 .

Thus, take αd < 1
4 min{2αd−1, ‖x‖−2

ψ2
}, so that

Eπ

[
d∏
i=1

exp
(
2αd|eTi x|2

)]
≤
√

2Cd−1 <∞ .

Since the dimension is finite, we know that we will always be able to take αd > 0. Setting α = αd,
shows the first direction of the lemma.

For the converse suppose that there exists a symmetric positive-definite matrix A � 0 so that
for all vectors µ

Eπ
[
exp

(
(x− µ)TA(x− µ)

)]
<∞ .

In particular, for µ = 0
Eπ
[
exp

(
xTAx

)]
= C <∞ .

For any v ∈ Sd−1, we have that

Eπ
[
exp

(
|vTx|2

t2

)]
≤ Eπ

[
exp

(
‖x‖2

t2

)]
,

since |vTx| ≤ ‖v‖‖x‖. Also, since the minimum eigenvalue satisfies λAmin ≤ xTAx
‖x‖2 for all x 6= 0, we

get

Eπ
[
exp

(
‖x‖2

t2

)]
≤ Eπ

[
exp

(
xTAx

λAmint
2

)]
= Eπ

[{
exp

(
xTAx

)}1/λAmint
2
]
.
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If λAmint
2 > 1, then the function

g(x) = x1/(λAmint
2)

is concave and increasing in x. By Jensen’s inequality, we obtain

Eπ
[{

exp
(
xTAx

)}1/λAmint
2
]
≤ Eπ

[
exp

(
xTAx

)]1/λAmint
2

= C1/λAmint
2
.

Setting C1/λAmint
2 ≤ 2 and solving for t gives

t ≥

√
logC

λAmin log 2
.

Since this inequality holds for every v ∈ Sd−1 we know that ‖x‖ψ2 < ∞ and hence x is sub-
Gaussian.
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