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Abstract

Bayesian inference is a ubiquitous and flexible tool for updating a belief (i.e., learning)

about a quantity of interest given observed data, which ultimately can be used to inform

upstream decision-making. In particular, Bayesian inverse problems allow one to learn from

data through the lens of physics-based models, typically given in the form of a parameter-to-

observable map based on a system of partial differential equations, by prescribing a posterior

probability distribution that reflects prior information about the parameters as well as the

observed data. The computational task underlying Bayesian inference is to approximate the

posterior distribution through sampling in order to compute expectations and to quantify

uncertainties of the unknown parameters, requiring many evaluations of an expensive high-

fidelity physics-based model. For this purpose, multifidelity methods present an attractive

avenue for reducing the computational burden of Bayesian inference by leveraging low-cost

surrogate models to speedup computations while making limited recourse to expensive high-

fidelity models to establish accuracy guarantees of the final inferred quantities. Because the

surrogate and high-fidelity models are used together, poor approximations by the surrogate

models can be compensated with more frequent recourse to the high-fidelity model during

sampling. Thus, multifidelity methods give rise to a trade-off between investing computa-

tional resources needed to learn a good deterministic approximation and the computational

resources needed for sampling with respect to the high-fidelity posterior distribution. We

introduce two methods: context-aware importance sampling and multilevel Stein variational
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gradient descent. The first method selects a single optimal surrogate model to derive the

approximation, while the second uses a hierarchy of surrogate models in a sequential fashion

to derive increasingly accurate approximations. For both methods, we show through both

theoretical cost complexity bounds and numerical examples that these approaches achieve up

to multiple orders of magnitude in speedup when compared to their traditional counterparts.
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Chapter 1

Introduction

1.1 Multifidelity methods for outer loop applications

1.1.1 Outer-loop applications

Computational models form the bedrock of many scientific and engineering applications. For

a wide range of problems, high-fidelity models are needed to sufficiently resolve the underlying

physical system but require significant computational costs to evaluate. Moreover, many

applications have an outer-loop structure that involves repeatedly evaluating the high-fidelity

model at different inputs, potentially being intractable when the number of high-fidelity

model evaluations needed is high. Several prominent examples of outer-loop applications

include the following:

• Inference: Inferring a quantity of interest, e.g. the mean or variance, from a proba-

bility distribution via Monte Carlo methods typically requires repeated evaluations of

the log density or its gradient to draw samples.
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• Optimization: Many optimization methods iteratively update a set of design variables

to minimize an objective function that depends on the high-fidelity model by evaluating

its derivatives.

• Data assimilation: Filtering-based methods that integrate observational data into

existing models typically alternate between a prediction step where the model is eval-

uated and an update step where the model parameters are adjusted to reflect the new

data.

• Control: Controlling a system to a desired state with feedback requires monitoring

the system by evaluating the model for the system and adjusting the control variables

accordingly.

In each of these cases, when the number of model evaluations is prohibitive one may

resort to replacing the high-fidelity model with a low-fidelity or surrogate model that is

cheaper to evaluate. While this may make the application in question more tractable, the

surrogate model may fail to capture important or fine behavior of the high-fidelity model

resulting in a biased outer-loop result depending on accuracy of the surrogate model. In

contrast, multifidelity methods [Peherstorfer et al., 2018d] leverage both the high-fidelity

model and the available surrogate models to reduce the computational costs of the outer-loop

application while maintaining accuracy of the final outer-loop result. Effective multifidelity

methods delegate the bulk of the computation to the low-fidelity models which may be orders

of magnitude faster to evaluate than the high-fidelity model while making limited recourse

to the high-fidelity model to ensure accuracy. In this thesis, we narrow our focus specifically

to the task of inference.
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1.1.2 Types of Surrogate Models

There are a variety of surrogate models each with different accuracy guarantees and costs.

When the underlying physical system is modeled by a partial differential equation (PDE) or

ordinary differential equation (ODE), coarse grid surrogate models can be obtained by solv-

ing the PDE on a coarser mesh. Coarse grid surrogate models typically enjoy approximation

guarantees from numerical analysis and are straightforward to implement by changing the

number of grid points or using built-in mesh refinement functions in the same code used

to compute the high-fidelity model [Trottenberg et al., 2001, Giles, 2008]. Data-fit mod-

els [Forrester and Keane, 2009,Rasmussen and Williams, 2016,Hastie et al., 2001,Swischuk

et al., 2019,Qian et al., 2020] are another class of surrogate models where machine learning

techniques leverage large amounts of data to learn a good approximation to the high-fidelity

model. These models are often black-box and non-intrusive making them suitable to almost

any high-fidelity model, but often require lots of data with limited accuracy guarantees.

Recently, scientific machine learning has focused on using expressive deep neural networks

as surrogate models to approximate the solution to high-dimensional PDEs [Raissi et al.,

2019,Bruna et al., 2022,Dissanayake and Phan-Thien, 1994,Sirignano and Spiliopoulos, 2018]

that are out of reach for traditional grid-based methods. Simplified-physics models [Ng and

Willcox, 2016,Majda and Gershgorin, 2010,Cao et al., 2011,Konrad et al., 2021] are another

class of surrogate models that aim to capture the important physical behavior, often by con-

sidering linearized models, but require an understanding of the underlying process. These

surrogate models range in difficulty of their implementation. In some cases, closed-form

solutions may be available while in others one may need to write completely new code for

to solve the simplified model. Yet another class of surrogate models are projection-based

models such as system-theoretic model reduction [Antoulas, 2005,Antoulas et al., 2020] and

reduced basis and POD methods [Quarteroni et al., 2011, Benner et al., 2015, Hesthaven
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et al., 2016,Chen et al., 2017], which capture the dominant singular values of the solution.

Often these models have approximation guarantees but are typically intrusive. An excep-

tion are non-intrusive and data-driven model reduction methods [Peherstorfer and Willcox,

2016,Benner et al., 2020, Ionita and Antoulas, 2014,Qian et al., 2020] which do not require

access to the high-fidelity model, making them amenable to legacy code bases, for example.

1.1.3 Multilevel methods

Multifidelity methods can leverage heterogeneous surrogate models to speed up computation

of the outer-loop result. In contrast, multilevel methods use a hierarchy of low-fidelity models

with increasing accuracy and costs. Typically, the multilevel hierarchy is obtained through

coarse grid discretizations where the level corresponds to the number of grid points or degrees

of freedom in the discretized system. In these cases, one can obtain rates on the error of the

surrogate models as well as rates on the cost of the surrogate models in terms of the level.

These rates are often essential for determining how much computation should be invested

at each level. For example, in multilevel Monte Carlo (MLMC) [Cliffe et al., 2011, Giles,

2008,Teckentrup et al., 2013,Haji-Ali et al., 2016] the rates are used to determine the number

of samples to take at each level. Because of their increasing accuracy, multilevel methods

have also been used successfully for hierarchical preconditioning in optimization [Weissmann

et al., 2022, Li et al., 2021] where lower levels are used to find good initializations for the

more expensive higher levels, see also the works [Gorodetsky et al., 2020b,Robinson et al.,

2006,Lam et al., 2015] for multifidelity optimization when there is no clear hierarchy. This

is akin to classical multigrid methods [Briggs et al., 2000,Hackbush, 1985,Trottenberg et al.,

2001] which utilize coarse discretizations to speed up solving a system on finer discretizations.
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1.2 Statistical inference

In the remainder of this thesis we will consider the task of inferring a quantity of interest of

the form

Eπ[f ] =
∫
Θ

f(θ)π(θ)dθ (1.1)

from a target distribution π over Θ ⊂ Rd with f being an integrable test function. Note

that in the following we write π to denote both the target distribution and its density

function. In low dimensions, typically less than three, and when f is smooth, one may

use a quadrature rule to efficiently compute the integral (1.1). For moderate dimensions

quasi-Monte Carlo [Morokoff and Caflisch, 1995] and sparse grid techniques [Bungartz and

Griebel, 2004, Nobile et al., 2008] are available but quickly become limited as the dimen-

sion increases. In higher dimensions, however, one must resort to Monte Carlo methods.

The standard Monte Carlo estimator draws independent and identically distributed (i.i.d.)

samples {θ[i]}Ni=1 from the target distribution π and computes

f̂MC
N =

1

N

N∑
i=1

f(θ[i]) (1.2)

to estimate the quantity of interest (1.1).

Two scenarios that give rise to the inference problem of computing (1.1) are forward un-

certainty propagation and inverse uncertainty quantification. In forward uncertainty propa-

gation we can sample directly from the target distribution π and the test function f depends

on a high-fidelity model so that computing the estimator (1.2) gives rise to an outer-loop.

In this scenario we are equivalently estimating the mean of the pushforward distribution

f#π (hence “propagation”) such that f#π(A) = π(f−1(A)) for any Borel set A ⊂ Θ. A

notable example is rare event estimation where f(θ) = 1{G(θ) ≥ t}, G is the high-fidelity

model, and t ∈ R is a threshold. For inverse uncertainty quantification, or Bayesian inverse
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problems, π is a posterior distribution where the likelihood depends on given observed data

and a high-fidelity model. In this setting π may only be known up to a normalizing constant

and cannot be sampled from directly, hence the outer loop application may be to use Markov

chain Monte Carlo (MCMC) or possibly variational inference to draw approximate samples

from π. We review Bayesian inverse problems in more detail in Section 1.3.

1.2.1 Trading off deterministic approximations and sampling for

rejection sampling

When π cannot be sampled from directly, we may instead draw samples {θ[i]}Ni=1 ∼ µ from

a proposal distribution µ that approximates π and then apply an accept/reject step [Robert

and Casella, 2004] to obtain independent samples from π. Set

Dπ,µ = max
θ∈Θ

π(θ)

µ(θ)
, (1.3)

which necessarily satisfies Dπ,µ ≥ 1, by the fact that µ and π must both integrate to one,

with Dπ,µ = 1 if and only if π = µ. Rejection sampling, summarized in Algorithm 1,

proceeds by first sampling a proposal θ′ from the proposal distribution µ as well as an

independent uniform random variable U ∼ Uniform[0, 1]. The proposed sample is accepted

if U ≤ π(θ′)/(Dπ,µµ(θ
′)) and rejected otherwise. After N samples have been accepted, the

rejection sampling estimator becomes

f̂RS
N =

1

N

N∑
i=1

f(θ[i]) . (1.4)

The constant Dπ,µ quantifies how close the approximating density µ is to the target

density π with larger values indicating lower acceptance rates and poorer approximations.

The expected number of trials until a proposal is accepted is Dπ,µ and therefore we expect
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Algorithm 1: Rejection sampling with an auxiliary distribution

1 Inputs: Target density π, auxiliary density µ and constant Dπ,µ;

Result: Samples θ[1], . . . ,θ[N ]

2 Initialize the set of target samples S = {} and index i = 1;
3 while |S| < N do
4 Sample θ′ ∼ µ and U ∼ Uniform[0, 1];

5 Compute acceptance probability α = π(θ′)
Dπ,µµ(θ

′)
;

6 if U ≤ α then

7 Set θ[i] = θ′ and S = S ∪ θ[i];
8 i+ 1← i;

9 end

10 end

NDπ,µ total evaluations of the target density to compute the estimator (1.4). Learning

an accurate approximation µ will often require information from the target density π and

incur computational costs, for example by evaluating the high-fidelity model that π depends

on. Thus, there is a trade-off of computational resources between learning an accurate

deterministic approximation and the sampling effort required.

In a multifidelity setting where a surrogate density π(ℓ) is available, one may instead

learn the approximation µ using information about π(ℓ) to reduce the cost of constructing

the deterministic approximation at the expense of requiring potentially more sampling effort

through a larger constant Dπ,µ. In general we have

Dπ,µ ≤
(
max
θ∈Θ

π(θ)

π(ℓ)(θ)

)(
max
θ∈Θ

π(ℓ)(θ)

µ(θ)

)
= Dπ,π(ℓ)Dπ(ℓ),µ , (1.5)

which shows that the sampling effort required to compute (1.4) depends on both the fidelity

ℓ of the surrogate density as well as how well µ approximates the surrogate density π(ℓ).

Moreover, if there are many surrogate models with a hierarchical structure, one can use

them sequentially to cheaply learn an approximation µ, which we consider in more detail in

Chapter 3. Decompositions such as (1.5) are commonplace in the analysis of multifidelity
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methods for inference and typically are written in terms of a metric or divergence on the

space of probability measures. For example, the work [Marzouk and Xiu, 2009] considers the

KL divergence in the context of stochastic collocation. In Chapter 2 we consider importance

sampling where the sampling effort is controlled by the χ2 divergence and in Chapter 3 we

consider Stein variational gradient descent [Liu and Wang, 2016] where the sampling effort

is determined by the KL divergence.

1.2.2 Multifidelity methods for sampling

We give a brief overview of related literature on multifidelity and multilevel methods for

sampling.

Forward UQ

First there are methods geared towards forward uncertainty propagation where one is able

to directly sample from the target distribution but must evaluate the high-fidelity model at

the samples. These methods are primarily variance reduction methods which attempt to

limit the number of high-fidelity samples needed as much as possible. The two common ap-

proaches are control variates and importance sampling. The classical approach is multilevel

Monte Carlo [Giles, 2008,Cliffe et al., 2011] which relies on correlations between surrogate

models at consecutive levels to obtain a control variates estimator with reduced variance.

Other multifidelity control variates estimators can leverage surrogate models when there is

no clear hierarchy [Peherstorfer, 2019,Maurais, 2022,Peherstorfer et al., 2016b,Peherstorfer

et al., 2018a,Peherstorfer et al., 2018b,Kramer et al., 2019] and can be thought of as regres-

sions on the low-fidelity models [Schaden and Ullmann, 2020,Gorodetsky et al., 2020a]. On

the other hand, multifidelity importance sampling [Peherstorfer et al., 2016a, Peherstorfer

et al., 2017] methods use surrogate models to approximate an optimal biasing density that

minimizes the variance. Importance sampling methods are particularly successful for rare

event estimation [Li and Xiu, 2010,Li et al., 2011,Chen and Quarteroni, 2013] and multiple

8



surrogate models may be used in a sequential fashion as in the multifidelity cross-entropy

method [Peherstorfer et al., 2018c] or multilevel sequential Monte Carlo [Wagner et al., 2020].

Inverse UQ

When the target distribution cannot be directly sampled one must instead draw ap-

proximate samples, for example from an auxiliary or proposal distribution as discussed in

Section 1.2.1. A general approach is transport-map based [Moselhy and Marzouk, 2012,Mar-

zouk et al., 2016] and variational approximations [Ranganath et al., 2014,Zhang et al., 2019]

where one fits a tractable distribution to the target distribution that can then be sampled di-

rectly. Normalizing flows [Rezende and Mohamed, 2015,Tabak and Turner, 2012,Tabak and

Vanden-Eijnden, 2010] are a particular example where an efficient neural network architec-

ture is used to parameterize the density. Because variational approximations are typically fit

by minimizing the Kullback-Leibler (KL) divergence from the target, multilevel optimization

techniques such as [Li et al., 2021,Weissmann et al., 2022] may be used to reduce compu-

tational costs. Stein variational gradient descent (SVGD) [Liu and Wang, 2016] and its

multilevel extension [Alsup et al., 2021] is a nonparametric form of variational inference that

relies on an ensemble of particles instead. We present these methods in detail in Chapter 3.

While variational approximations have the advantage of being able to draw independent

samples, they are asymptotically biased.

Monte Carlo methods, on the other hand, particularly Markov chain Monte Carlo (MCMC),

produce consistent estimates at the cost of the samples being correlated with potentially long

autocorrelation times [Liu, 2004]. In general, successful MCMCmethods with faster decaying

autocorrelation learn a good proposal to generate better samples such as affine invariant en-

semble samplers [Goodman and Weare, 2010,Leimkuhler et al., 2018] and parametric-based

approaches that are trained adaptively [Gabrié et al., 2022]. Moreover, there are methods

that exploit hierarchies of distributions such as multistage MCMC methods [Christen and

Fox, 2005,Fox and Nicholls, 1997], multilevel Metropolis-Hastings [Dodwell et al., 2015], and
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MCMC methods with importance sampling [Hoang et al., 2013]. Variational approximations

may also be used in tandem with MCMC to serve as better proposal densities [Parno and

Marzouk, 2018,Gabrié et al., 2022] with a multifidelity extension in [Peherstorfer and Mar-

zouk, 2019]. In addition to better proposal densities for MCMC, variational approximations

may serve as better biasing densities for importance sampling [Alsup and Peherstorfer, 2022],

which we discuss in detail in Chapter 2.

Finally, there are particle-based methods that iteratively evolve an ensemble of particles

to approximate the target distribution such as ensemble Kalman filters [Iglesias et al., 2013,

Schillings and Stuart, 2017] and sequential Monte Carlo [Liu, 2004]. Multilevel particle

filters [Jasra et al., 2017], multilevel sequential Monte Carlo [Beskos et al., 2017] methods, and

multilevel ensemble Kalman filtering [Hoel et al., 2016] update high and low-fidelity particles

concurrently and rely on telescoping sums of correlated differences between successive levels

similar to multilevel Monte Carlo [Cliffe et al., 2011]. Additionally one can use transport

maps to extend to nonlinear filtering [Gregory et al., 2016]. In contrast, the multilevel

sequential Monte Carlo methods presented in [Latz et al., 2018,Wagner et al., 2020] use a

sequence of distributions to approximate the target distribution similar to multilevel SVGD

discussed in Chapter 3.

1.3 Bayesian inverse problems

We provide a brief overview of Bayesian inverse problems [Stuart, 2010,Kaipio and Somersalo,

2007, Sullivan, 2015] which serve as a prototypical example where the target distribution

depends on a high-fidelity model and cannot be sampled but has a hierarchy of surrogate

models available which can be leveraged in a multifidelity or multilevel method. Classical

inverse problems seek to recover a set of model parameters θ⋆ ∈ Θ ⊂ Rd given measured data

y ∈ Rq. The model parameters and the measured data are related through a parameter-to-
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observable map G : Θ→ Rq that describes the underlying physical system by

y = G(θ⋆) + η , (1.6)

where η ∼ N(0,Γ) is noise that corrupts the observations. The noise model (1.6) defines a

likelihood function L(θ;y) for the parameter given the data

L(θ;y) = 1

(2π)q/2|Γ|1/2
exp

(
−1

2
∥y −G(θ)∥2Γ−1

)
, (1.7)

where ∥v∥2Γ−1 =
〈
v, Γ−1v

〉
. In general the likelihood function does not define a probability

distribution over the parameter as it may not integrate to 1. However, if additional infor-

mation encoded in a prior distribution π0 is available, then Bayes’ rule gives a posterior

distribution over the parameters

π(θ) =
1

Z
exp

(
−1

2
∥y −G(θ)∥2Γ−1

)
π0(θ) , (1.8)

where Z is a normalization constant

Z =

∫
Θ

exp

(
−1

2
∥y −G(θ)∥2Γ−1

)
π0(θ)dθ (1.9)

to ensure that the posterior is a probability distribution. When the parameter-to-observable

map G is nonlinear, the posterior π may be intractable to sample from its normalizing

constant Z unknown.

1.3.1 Multifidelity methods for Bayesian inverse problems

For many scientific and engineering applications, the parameter-to-observable map G de-

pends on the solution of an underlying PDE or system of PDEs that describes a physical
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system. In these cases, the parameter-to-observable map can be written as the composition

G = Bobs ◦ F of a solution operator F : Θ→ U that maps the parameters to the solution of

the PDE in a function space U and an observation operator Bobs : U → Rq, which is typically

a linear functional of the solution e.g. pointwise observations at specified points. Moreover,

when the system of PDEs cannot be solved exactly, and thus we cannot directly evaluate

G, we must resort to a numerical method that discretizes the underlying PDE problem to

approximately evaluate the solution operator F . Let F (ℓ) denote such an approximation

with G(ℓ) = Bobs ◦ F (ℓ) as the corresponding surrogate parameter-to-observable map. The

index ℓ denotes the fidelity of the surrogate model and for example may correspond to the

number of elements in a finite element [Brenner and Scott, 2008] approximation, the num-

ber of grid points in finite differences [LeVeque, 2007], the number of times steps for an

ordinary differential equation [LeVeque, 2007], the number of terms in a Karhunen-Loève

expansion [Sullivan, 2015], and others. Larger fidelities ℓ correspond to more accurate the

approximation G(ℓ) of G with surrogate posterior densities defined as

π(ℓ)(θ) =
1

Zℓ
exp

(
−1

2

∥∥y −G(ℓ)(θ)
∥∥2
Γ−1

)
π0(θ) , (1.10)

and Zℓ defined analogously as Z (1.9). Although in this thesis we only consider finite dimen-

sional parameters θ ∈ Rd one may also consider the case where the parameter corresponds to

a general Banach space, for example when the parameter is a field or function. For discussion

of infinite dimensional Bayesian inverse problems we refer to the works [Stuart, 2010, Sul-

livan, 2015]. In certain cases we may approximate the solution of an infinite dimensional

inverse problem in a low-dimensional function space by defining an interpolation operator

I int : Θ → U0 where U0 is a function space containing the infinite dimensional parameter.

We present several concrete examples of this in both Chapters 2 and 3.

Remark 1. In Chapter 2 we deviate slightly from this notation and instead let G(h) denote
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the surrogate parameter-to-observable map (model) at fidelity h. In this setting, small h > 0

corresponds to more accurate higher-fidelity models with larger h corresponding to lower-

fidelity models. Although the difference is primarily notational, in this setting specifically

we consider a continuum of fidelities h that may denote, for example, the mesh width or time

step size in the solution of an ODE. The rest of the set up is the same, e.g. π(h) corresponds

to the surrogate densities.

1.3.2 Linear Bayesian inverse problems

In general, the posterior distribution cannot be sampled directly and we must use one of the

methods discussed in Section 1.2.2 to perform inference. An exception to this is when the

parameter-to-observable model G is linear with a Gaussian noise model (1.6) and prior π0 =

N(µ0,Σ0) so that the posterior π becomes a Gaussian as well. For linear inverse problems

we may express the parameter-to-observable map G as a matrix G so that G(θ) = Gθ. The

posterior mean is given as a weighted average of the prior mean µ0 and the data y

µ =
(
Σ−1

0 +G⊤Γ−1G
)−1 (

Σ−1
0 µ0 +G⊤Γ−1y

)
, (1.11)

and the posterior covariance is a weighted harmonic average of the prior covariance Σ0 and

the covariance G⊤Γ−1G

Σ =
(
Σ−1

0 +G⊤Γ−1G
)−1

. (1.12)

Linear Bayesian inverse problems can serve as a helpful tool for understanding the behavior

of posterior distributions even in the nonlinear setting. For example, from (1.12) we see that

if Γ = γI for some constant γ > 0, then

Σ = γ
(
γΣ−1

0 +G⊤G
)−1

,
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asymptotically approaches γG⊤G as the noise level γ → 0. The Bernstein-von Mises theo-

rem [van der Vaart, 1998] implies that the posterior behaves asymptotically as Gaussian as

the noise level approaches zero. Small noise levels γ may correspond to either informative

or large quantities of data. If the matrix G is full rank, then the posterior will concen-

trate around the data y as γ → 0. However if G is not full rank, the inverse problem is

ill-conditioned and the posterior will not concentrate around the data even as the noise level

shrinks. Finally, because the posteriors in linear Bayesian inverse problems are Gaussian we

can often compute exactly the probability distances and divergences between the surrogate

densities π(ℓ) and the target density π which are needed for determining the sampling effort

as in Section 1.2.1.

1.4 Context-aware learning: Trade-offs in

multifidelity inference

1.4.1 Challenges of multifidelity inference

Multifidelity methods provide a principled way for combining both high-fidelity models and

available low-fidelity models to speed up outer-loop applications while maintaining accuracy

of the outer-loop result. However, the manner in which low-fidelity models are constructed,

see Section 1.1.2, is often divorced from the outer-loop application itself. This leads to an

inefficiency where sub-optimal surrogate models may be used to assist in the outer-loop

task. On one extreme, the outer-loop application may be insensitive to the accuracy of

the low-fidelity resulting in wasted computational resources additionally evaluating the low-

fidelity model. On the other extreme, the outer-loop application may require a very accurate

surrogate model to be effective and offers no improvement over using the high-fidelity model

alone. With regards to inference, poor approximating distributions derived from sub-optimal
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surrogate densities can result in considerable sampling effort. Thus, there arises a need to

understand the trade-off between the accuracy of the deterministic approximation and the

effort required by the sampling procedure in order to derive more efficient approximations.

Furthermore, for multilevel methods where a hierarchy of increasingly accurate surrogate

models are available, one must determine how much sampling effort to expend on each level.

1.4.2 Contributions

While traditional surrogate models are often constructed in ignorance of the particular outer-

loop application, e.g. inference, context-aware surrogate models [Peherstorfer, 2019, Far-

cas, 2020,Alsup and Peherstorfer, 2022,Werner and Peherstorfer, 2022,Shyamkumar et al.,

2022,Farcas et al., 2022] specifically take the outer-loop application (i.e., the context) into

consideration to further reduce the computational cost.

• We introduce context-aware importance sampling, published in [Alsup and Peherstor-

fer, 2022], that adaptively selects a surrogate model based on the outer-loop application

as opposed to traditional multifidelity importance sampling where a static surrogate

model is chosen.

• We present multilevel Stein variational gradient descent, which we introduced and

developed in our works [Alsup et al., 2021,Alsup et al., 2022] respectively, that utilizes

a hierarchy of surrogate models to sequentially derive good initializations for SVGD

thereby reducing the total computational cost.

• For both context-aware importance sampling and MLSVGD we derive cost-complexity

bounds as well as demonstrate speedups numerically on a suite a different problems.

Both results indicate speedups of the proposed methods over their traditional counter-

parts.
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π µ1 µ2 µ3 π

Figure 1.1: (Left) Single-level multifidelity methods, such as context-aware importance sampling,
select a single optimal surrogate model. (Right) Hierarchical multifidelity methods, such as
MLSVGD, chain together increasingly accurate approximations.

Previously, context-aware methods for inference relied on control variates [Peherstorfer,

2019]. In Chapter 2, we present context-aware importance sampling (CAIS), which we

published in [Alsup and Peherstorfer, 2022], where the selected surrogate model is used to

derive a biasing density for importance sampling. Here we derive an optimization problem

that describes the trade-off between the fidelity of the surrogate model used to learn the

biasing density and the sampling effort required to re-weight the samples with respect to the

high-fidelity model. We obtain theoretical cost complexity bounds for the CAIS estimator

as well as the traditional multifidelity importance sampling (MFIS) estimator [Peherstorfer

et al., 2016a], where the fidelity is fixed, to show that the CAIS estimator achieves the same

error tolerance at a reduced cost. Further, both estimators are tested on three different

Bayesian inverse problems where we observe an order of magnitude speedup for the CAIS

estimator coinciding with our theoretical results.

While context-aware importance sampling selects a single optimal approximation for

importance sampling, in Chapter 3 we present a multilevel extension to SVGD, which we

published in [Alsup et al., 2021] and provided further analysis for in [Alsup et al., 2022],

that chains together a hierarchy of approximations to reduce the computational cost, c.f.

Figure 1.1. To do so we use information on the rates at which the surrogate models converge

as well as the rate at which SVGD converges in order to prescribe the sampling effort needed

at each level. We again derive cost complexity bounds for both SVGD and MLSVGD to
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show that MLSVGD enjoys a theoretical speedup and demonstrate speedups up to one

order of magnitude in three separate numerical examples. In particular, we demonstrate

that MLSVGD can efficiently infer glacier ice flow for the Haut Glacier d’Arolla [Alsup

et al., 2022].
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Chapter 2

Context-aware importance sampling

In this chapter we present our published work [Alsup and Peherstorfer, 2022] which derives an

optimal trade-off between surrogate-model fidelity and computational costs for multifidelity

importance sampling (MFIS) [Peherstorfer et al., 2016a]. To derive the trade-off we develop

bounds on the error of the MFIS estimator that depend on the surrogate-model fidelity

that we then combine with existing bounds on the error of general importance sampling

estimators [Chatterjee and Diaconis, 2018,Agapiou et al., 2017, Sanz-Alonso, 2018]. As in

Section 1.2.1, these error bounds take the form of a probability divergence between the target

distribution and the biasing distribution, which we use to separate the statistical error due to

sampling and the deterministic approximation error due to the quality of the biasing density.

Here the biasing density is taken to be the Laplace approximation of the surrogate density

due to its favorable approximation guarantees and tractability to both compute and sample

from. Note that there is a large body of work on adaptive importance sampling that studies

minimizing the χ2 divergence to derive an optimal biasing density [Al-Qaq et al., 1995,Ryu

and Boyd, 2014, Akyildiz and Mı́guez, 2021], but these works do not consider the cost of

surrogate models during training as we do here.

18



2.1 Preliminaries

2.1.1 Notation and problem setting

Let (Θ,B(Θ), π) denote a probability space where Θ = Rd is the domain for parameters

θ, B(Θ) is the Borel σ-algebra of Θ, and π is a probability distribution on Θ. Let π

admit a density function with respect to the Lebesgue measure on Rd and refer to both

the distribution and the density function as π : Θ → R. In many applications, particularly

Bayesian inference, c.f. Section 1.3, the density π may only be evaluated up to a normalizing

factor

π =
1

Z
π̃, Z =

∫
Θ

π̃(θ) dθ ,

where π̃ ≥ 0 is the unnormalized density and Z ∈ (0,∞) is the normalizing constant. In the

following, we consider situations where the density π and the unnormalized density π̃ are

expensive to evaluate. The task at hand is to compute quantities of interest with respect to

the target distribution π which take the form of expectations

Eπ[f ] =
∫
Θ

f(θ)π(θ) dθ, (2.1)

where f is a bounded measurable test function, i.e., ∥f∥L∞ <∞ where ∥f∥L∞ = ess supθ∈Θ|f(θ)|

under the measure π.

2.1.2 Importance sampling

Let µ be another probability distribution on the Borel space (Θ,B(Θ)) that also admits a

density function with respect to the Lebesgue measure on Rd. Again let µ refer to both

the probability distribution and the density function with respect to the Lebesgue measure.

Moreover, assume that π is absolutely continuous with respect to µ, so that for any Borel set
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B ∈ B(Θ) such that µ(B) = 0, π(B) = 0 as well. If sampling directly from π is impossible

then one may instead estimate the quantity of interest (2.1) through importance sampling

with µ as the biasing density. Draw N independent and identically distributed samples

{θ[i]}Ni=1
i.i.d.∼ µ and compute the weights

w(θ[i]) =
π(θ[i])

µ(θ[i])
, i = 1, . . . , N . (2.2)

The importance sampling estimator is given by

f̂ IS
N =

1

N

N∑
i=1

w(θ[i])f(θ[i]) . (2.3)

In the case where the normalizing constant Z, and hence the exact density π, is unknown,

then self-normalized importance sampling can be used to estimate the expectation (2.1).

Draw N independent and identically distributed samples {θ[i]}Ni=1
i.i.d.∼ µ from the biasing

distribution µ and re-weight them with the target distribution π to obtain the self-normalized

importance sampling estimator

f̂SNIS
N =

∑N
i=1 f(θ

[i])w̃(θ[i])∑N
i=1 w̃(θ

[i])
(2.4)

of Eπ[f ], where the importance weights w̃(θ[i]) are now given by evaluating the unnormalized

density ratio

w̃(θ[i]) =
π̃(θ[i])

µ(θ[i])
(2.5)

at the samples θ[i]. If all w̃(θ[i]) = 0, then we define f̂SNIS
N = 0. The estimator (2.4) is a

consistent estimator of Eπ[f ] as the sample size N →∞.
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2.2 Error of the importance sampling estimator

The standard importance sampling estimator (2.3) is unbiased and therefore the mean-

squared error (MSE) of the estimator is equal to its variance

MSE[f̂ IS
N ] = E

[(
f̂ IS
N − Eπ[f ]

)2]
= Var

[
f̂ IS
N

]
=

1

N
Varµ

[
π(θ)

µ(θ)
f(θ)

]

Since the test function f is bounded we can bound

1

N
Varµ

[
π(θ)

µ(θ)
f(θ)

]
≤ ∥f∥

2
L∞

N
Eµ

[(
π(θ)

µ(θ)

)2
]
.

Note that because Eµ[π(θ)/µ(θ)] = 1, the variance is exactly the χ2 divergence of the target

density π to the biasing density µ defined as

χ2 (π || µ) = Varµ

[
π(θ)

µ(θ)

]
= Eµ

[(
π(θ)

µ(θ)

)2
]
− 1 =

∫
Θ

π(θ)

µ(θ)
π(θ)dθ − 1 . (2.6)

Therefore, the mean-squared error of the importance sampling estimator (2.3) is bounded

by

MSE[f̂ IS
N ] ≤ ∥f∥

2
L∞

N

(
χ2 (π || µ) + 1

)
. (2.7)

Similarly, if only the unnormalized density π̃ is available, then [Agapiou et al., 2017, Theo-

rem 2.1] gives the following bound on the MSE of the self-normalized importance sampling

estimator (2.4)

MSE[f̂SNIS
N ] ≤ 4 ∥f∥2L∞

N

(
χ2 (π || µ) + 1

)
. (2.8)
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Note that because the upper bounds on the right-hand-sides of (2.7) and (2.8) only depend

on the test function through its norm ∥f∥L∞ , we immediately obtain a uniform bound on the

MSE over any test functions f with ∥f∥L∞ ≤ M for some M < ∞. Because f is bounded,

we trivially have that

(f − Eπ[f ])2 ≤ 4 ∥f∥2L∞ ,

so that the bounds (2.7) and (2.8) are only useful if the sample size N ≥ χ2 (π || µ) + 1 is

sufficiently large and motivates the definition of the effective sample size

Neff =
N

χ2 (π || µ) + 1
. (2.9)

The effective sample size (2.9) corresponds to the number of i.i.d. samples from the target

distribution π that are needed to achieve an equivalent mean-squared error as the importance

sampling estimator (2.3). A large χ2 divergence of the target π from the biasing density µ

results in a lower effective sample size which motivates learning a biasing density µ with a

small χ2 divergence.

Note that our formulation of importance sampling is slightly different from the typical

setting where importance sampling is used as variance reduction to estimate the quantity of

interest (2.1) of a specific fixed test function f , as in the case of rare event estimation for

example. In the case where f is fixed, the optimal biasing density that minimizes the MSE

takes the form

µ⋆(θ) =
|f(θ)|π(θ)∫

Θ
|f(θ′)| π(θ′)dθ′ , (2.10)

and for f > 0 gives zero MSE. Learning the optimal biasing density (2.10) for a fixed test

function f is a separate objective from what we consider in this work since we seek a biasing

density to approximate π directly, as opposed to |f | π. This is again reflected in the effective

sample size Neff ≤ N which is never greater than the actual sample size N if we had drawn
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i.i.d. samples from π directly.

2.2.1 Learning a biasing density

To determine an appropriate biasing density µ that results in a large effective sample size (2.9)

one must use information about the unnormalized target density π̃. For example, in adaptive

importance sampling one may consider a parametric family of biasing densities {µα : α ∈ A}

such as a Gaussian or mixture of Gaussians, transport maps, or normalizing flows [Tabak and

Turner, 2012,Rezende and Mohamed, 2015,Moselhy and Marzouk, 2012] and then optimize

over the parameters α to obtain an optimal biasing density

α∗ = arg min
α∈A

χ2 (π || µα) . (2.11)

The practicality of the adaptive importance sampling approach depends on how tractable the

optimization problem (2.11) is. For example [Ryu and Boyd, 2014] consider only exponential

families for the biasing density, guaranteeing that the problem (2.11) is convex, while others

may consider instead minimizing the KL divergence to fit transport maps [Moselhy and

Marzouk, 2012] or normalizing flows [Tabak and Turner, 2012,Rezende and Mohamed, 2015],

or as in the cross-entropy method [Peherstorfer et al., 2018c]. Moreover, while Gaussian

mixture models, transport maps, and normalizing flows offer greater flexibility to more closely

match the target density, they may be more computationally challenging to fit and lack

approximation guarantees. Another approach, which we explore in Section 2.3.3 is when

the biasing density µ is the Laplace approximation to π, which requires optimizing the log

density log π and computing the Hessian at the optimal point.
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2.2.2 Multifidelity importance sampling

When the high-fidelity target density π is computationally expensive to evaluate, the costs

of learning an appropriate biasing density can be prohibitive. Instead for many applications

it is beneficial to replace the high-fidelity target π with a low-fidelity surrogate density

that is computationally cheaper. Let (π(h))h>0 denote a sequence of low-fidelity probability

distributions that approximate π, where the index h denotes the fidelity of the approximation.

Again we assume each π(h) admits a density with respect to the Lebesgue measure and refer to

π(h) as both the density function and the distribution and that the unnormalized low-fidelity

densities may be written

π(h) =
1

Zh
π̃(h), Zh =

∫
Θ

π̃(h)(θ)dθ .

Let the low-fidelity densities converge pointwise to the high-fidelity density so that for each

θ ∈ Θ, π(h)(θ)→ π(θ) as h→ 0. Define the cost of evaluating the unnormalized high-fidelity

density π̃(θ) at any point θ ∈ Θ to be Chigh > 0 and the cost of evaluating the unnormalized

low-fidelity density π(h) to be given by c(h), where c : (0,∞) → [0,∞). Multifidelity

importance sampling (MFIS) [Peherstorfer et al., 2016a] replaces the unnormalized high-

fidelity density π̃ with an unnormalized low-fidelity density π̃(h) to learn a biasing density

µh for importance sampling. The MFIS estimator for (2.1) is

f̂MFIS
h,N =

∑N
i=1 w̃h(θ

[i])f(θ[i])∑N
i=1 w̃h(θ

[i])
, {θ[i]} i.i.d.∼ µh , (2.12)

with the importance weights given by

w̃h(θ
[i]) =

π̃(θ[i])

µh(θ
[i])

. (2.13)
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Because the unnormalized low-fidelity density π̃(h) is only evaluated when deriving the biasing

density µh and not when computing estimator (2.12), the MFIS estimator (2.12) is consistent

with respect to the quantity of interest Eπ[f ] as N → ∞. Moreover, because the biasing

density µh is learned from only using the unnormalized low-fidelity density π̃(h), and not

the particular test function f , the biasing density may be recycled for many different test

functions. The bound (2.8) shows that the mean-squared error of the MFIS estimator (2.12)

depends on the effective sample size (2.9) resulting from using the biasing density µh, and

therefore the number of samples required to achieve a predetermined error tolerance depends

directly on the fidelity h of the low-fidelity density.

2.2.3 Problem formulation

Given a low-fidelity surrogate density π(h), estimating a quantity of interest Eπ[f ] using the

MFIS estimator (2.12) is a two-step procedure. First, one must learn a suitable biasing

density µh from the low-fidelity density π̃(h), for example, by repeatedly evaluating the log

density and its gradients to solve an optimization problem. Second, one must evaluate

the unnormalized high-fidelity density π̃ to re-weight the N samples drawn from the biasing

density µh using the estimator (2.12). The first step of learning a biasing density can typically

be done in an offline fashion before a specific test function f is provided and incurs a training

cost that depends on the fidelity h from evaluating π̃(h). The second step of computing the

estimator (2.12) incurs online costs for evaluating the unnormalized high-fidelity density π̃

to re-weight the N samples. The combination of both of these steps results in a trade-off

between offline versus online computational costs. Initially investing high computational

resources to learn a good biasing density will result in higher effective sample sizes for

the online phase, thereby reducing the number of expensive high-fidelity evaluations of π̃

to achieve a fixed error tolerance. Conversely, investing too little computational resources

initially will result in a biasing density with a large χ2 divergence from the target π and
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will suffer from requiring many high-fidelity density evaluations to compensate. This two-

step approach for MFIS, as well as other multifidelity methods, combines both the low and

high-fidelity models in constrast to raditional model reduction techniques [Quarteroni et al.,

2011,Benner et al., 2015] where the low-fidelity model replaces the high-fidelity model. As a

result, traditional model reduction provides little guidance on the mathematical formulation

of this trade-off and the total combination of online and offline costs.

2.3 Context-aware surrogate models for multifidelity

importance sampling

We are concerned with the following optimal trade-off problem for multifidelity importance

sampling: Given a tolerance ϵ, such that the mean-squared error of the MFIS estimator (2.12)

must be less than or equal to ϵ, determine the optimal surrogate density π(h) that min-

imizes the total computational cost of fitting the biasing density µh and computing the

estimate (2.12). We refer to such cost-optimal surrogate models as context-aware because

the fidelity is determined specifically for the online computations of the problem (context) at

hand [Peherstorfer, 2019], rather than being prescribed without taking the specific context of

multifidelity computations into account as in traditional model reduction [Quarteroni et al.,

2011,Benner et al., 2015].

2.3.1 Sub-Gaussian distributions

For importance sampling without a fixed test function f , both estimators (2.3) and (2.4)

require that the target density π is absolutely continuous with respect to the biasing density

µmeaning that the support of π is contained within the support of µ and that the importance

weights (2.2) and (2.5), respectively, have finite variance so that the chi-squared divergence
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χ2 (π || µ) remains finite. This restriction implies that the tails of the target density π as

∥θ∥ → ∞ cannot be much heavier than the tails of the biasing density µ. Sub-Gaussian

distributions η are characterized by fast decaying densities, which can be quantified by the

Orlicz norm defined for real-valued random variables X ∼ η as

∥X∥ψ2
= inf

{
t > 0 : E

[
exp(X2/t2)

]
≤ 2
}
.

For vector-valued random variables X = (X1, . . . , Xd) ∈ Rd with multivariate distributions,

the Orlicz norm is defined in terms of one dimensional projections

∥X∥ψ2
= sup

v∈Sd−1

∥∥v⊤X
∥∥
ψ2
,

with Sd−1 ⊂ Rd being the unit sphere: Sd−1 = {v ∈ Rd : ∥v∥2 = 1}. A probability

distribution η is said to be sub-Gaussian if any random variable X ∼ η has ∥X∥ψ2
<∞. We

refer to the book [Vershynin, 2018, Sec. 2.5, Sec. 3.4] for other equivalent definitions of sub-

Gaussian distributions. The class of sub-Gaussian distributions is flexible and includes all

Gaussian distributions, distributions with compact support, Gaussian mixtures with finitely

many components, and posterior distributions from Bayesian inference where the prior is

Gaussian. If X ∼ N(0, σ2Id×d), where Id×d is the d-dimensional identity matrix, then

∥X∥ψ2
=

√
8

3
σ , (2.14)

(c.f. Appendix A.1), and is constant factor multiplied by the standard deviation, which

controls the rate of decay for the Gaussian density. For distributions η with compact support

supp(η) ⊂ Rd, the random variableX ∈ supp(η) remains bounded and hence has finite Orlicz

norm. In the following Lemma 1, which is a multi-dimensional version [Vershynin, 2018,

Proposition 2.5.2 (iv)], we provide a useful characterization of sub-Gaussian distributions
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that will be helpful for controlling the chi-squared divergence of the target density π to the

biasing density µ. Since Lemma 1 is a technical auxiliary result, we relegate its proof to be

found in Appendix A.2.

Lemma 1. A random vector X ∼ η, and hence the distribution η, is sub-Gaussian if and

only if there exists a symmetric positive-definite matrix A ≻ 0 such that for all vectors

m ∈ Rd

Eη
[
exp

(
(X −m)⊤A(X −m)

)]
<∞ . (2.15)

Analogous to the Orlicz norm for an isotropic Gaussian (2.14), observe that in the proof

of Lemma 1, if ∥X∥ψ2
is small then α can be chosen to be large, commensurate with the

fast decay of the target density η. Conversely, if λmin(A) is small then ∥X∥ψ2
will be large,

corresponding to large variance in the example (2.14). We note that any sub-Gaussian

distribution such that the negative log density that increases − log η(θ) → ∞ as ∥θ∥ → ∞

must grow at least quadratically fast in order for the expectation (2.15) in Lemma 1 to

remain finite.

Remark 2. When η is a Gaussian distribution with covariance Σ, the matrix A must be

such that 1
2
Σ−1 −A remains positive definite, in which case Lemma 1 is closely related to

Fernique’s theorem about the tail decay of Gaussian densities. This constraint on A will

translate to a constraint on the biasing density for non-Gaussian target densities as will be

made precise in Section 2.3.2.

2.3.2 Bounding the chi-squared divergence

To formulate the optimal trade-off problem described in Section 2.2.3 we need a bound on the

mean-squared error, and hence the χ2 divergence from the high-fidelity target density π to the

biasing density µh, that depends explicitly on the fidelity h of the surrogate density π(h) used
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to derive the biasing density. In this section we derive an upper bound on χ2 (π || µh) that

decomposes into a factor that depends only on the fidelity of the deterministic approximation

π(h) to π and a second factor that takes into account the quality of the approximation of

the learned biasing density µh to π(h). Such a decomposition is not straightforward for the

χ2 divergence, which is not a strict metric on the space of probability distributions, since it

does not admit a triangle inequality. For example, let

π(x) = ae−ax, π(h)(x) = be−bx, µh(x) = ce−cx x ≥ 0 ,

for a, b, c > 0, be three exponential distributions. Then

χ2
(
π || π(h)

)
=

∫ ∞

0

a2

b
e−(2a−b)xdx =

a2

b(2a− b)

if a > b/2 and ∞ otherwise. Taking a = 2, b = 3/2 and c = 1, so that a < 2b and b < 2c,

but a ≥ 2c gives

χ2
(
π || π(h)

)
<∞, χ2

(
π(h) || µh

)
<∞,

but

χ2
(
π || π(h)

)
=∞ ,

meaning that we cannot directly decompose the χ2 divergence into the product of χ2 di-

vergences with an intermediate distribution (namely π(h)). Alternatively, by rewriting the

χ2 divergence as the L1 norm of the ratio between the target and biasing densities, the

Cauchy-Schwarz inequality can be used to give the following decomposition

χ2 (π || µh) + 1 =

∥∥∥∥ πµh
∥∥∥∥
L1(π)

=

〈
π

π(h)
,
π(h)

µh

〉
L2(π)

≤
∥∥∥ π

π(h)

∥∥∥
L2(π)

∥∥∥∥π(h)

µh

∥∥∥∥
L2(π)

. (2.16)
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An effect of the Cauchy-Schwarz inequality is that the decomposition (2.16) requires the

stronger assumption that the density ratios π/π(h) and π(h)/µh are in L2(π) as opposed

to comparing the ratio of the target density to the biasing density π/µh directly, which

only needs to be in L1(π) and is sufficient for the bound on the mean-squared error of

the MFIS estimator (2.8) to hold. Although here we restrict the test functions f to be

bounded, we could instead allow more general test functions f ∈ L2 at the cost of placing

stronger assumptions on the ratio of densities so that
∥∥π/π(h)

∥∥
L∞(π)

,
∥∥π(h)/µh

∥∥
L∞(π)

< ∞

as in [Schillings et al., 2020]. The following four assumptions and theorem are sufficient to

decompose the χ2 divergence as in (2.16) by bounding the L2 norms of the ratios of densities

π/π(h) and π(h)/µh.

Assumption 1 (Exponential form of the densities). The densities p, ph, and qh have the form

π(θ) =
1

Z
e−Φ(θ), π(h)(θ) =

1

Zh
e−Φ(h)(θ), µh(θ) =

1

Z̃h
e−Φ̃(h)(θ) ,

with potentials (negative log densities) Φ,Φ(h), Φ̃(h) ∈ C2(Θ) that are twice continuously

differentiable, normalizing constants Z,Zh, Z̃h, and Φ(h)(θ)→ Φ(θ) for all θ ∈ Θ as h→ 0.

Assumption 2 (Decay of the target density). The target density π is sub-Gaussian with

matrix A; see Lemma 1.

Assumption 3 (Error of the surrogate densities). There exists an error function δ(h) ≥ 0 and

a function τ(θ) ≥ 0, such that

Φ(h)(θ) ≤ Φ(θ) + δ(h)τ(θ)

for all θ ∈ Θ, where δ(h)→ 0 as h→ 0.

Assumption 4 (Error of biasing densities). There exists a function γ(h) ≥ 0 and a function
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ω(θ) ≥ 0 such that for all h > 0

Φ̃(h)(θ) ≤ Φ(h)(θ) + γ(h)ω(θ)

for all θ ∈ Θ.

Remark 3. We borrow the term “potential” from statistical physics to refer to the negative log

densities Φ,Φ(h), Φ̃(h) since a particle in a potential energy field U at a particular temperature

will have the invariant Gibbs distribution e−U .

Assumption 1 is a weak assumption on the densities since any positive density function

on Θ may be written in exponential form. For the biasing density µh we typically know the

normalizing constant Z̃h and only write it in exponential form for convenience to simplify

the analysis in Theorem 1. The differentiability of the negative log densities in Assumption 1

is only necessary for fitting the Laplace approximation as a biasing density in Section 2.3.3

which requires evaluating the Hessian of the negative log density. Assumption 2 that the

target density π is sub-Gaussian is sufficient to avoid heavy tails where the χ2 divergence

can become infinite for Gaussian biasing densities, particularly the Laplace approximation

as in Section 2.3.3, resulting in poor importance sampling estimators (2.4). This assumption

is also independent of the low-fidelity surrogate densities π(h), although since π(h) → π

pointwise, the surrogate densities will be sub-Gaussian as well, except in pathological cases.

The two assumptions 3 and 4 each control one of the terms in the decomposition on the

right-hand-side for the bound (2.16). Assumption 3 ensures that the surrogate densities do

not decay significantly faster than the high-fidelity target density. Because, Φ(h) → Φ this

assumption is straightforward to satisfy by taking h sufficiently small. Assumption 4 places

a similar requirement on the learned biasing density that it cannot decay significantly faster

than the surrogate density. For the MFIS estimator (2.4) we only need that the biasing

density does not decay significantly faster than the high-fidelity target density only, but this
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stronger requirement is necessary for the analysis and derivation of a bound on the MSE

that depends explicitly on the fidelity h. Note that for both assumptions we assume an

asymmetric inequality because the estimator (2.4) may be poor if the tails of the target

density are heavier than biasing density, but the reverse with heavier tails for the biasing

density will still result in a consistent estimator. We emphasize that Assumptions 2, 3,

and 4 are all inherited from constraints of importance sampling as opposed to arising from

trading off the surrogate fidelity and costs as discussed in 2.2.3. We also emphasize that

Assumption 4 on the growth of the biasing density potential relative to the the surrogate

potential Φ does not require that γ(h)→ 0 as h→ 0. Indeed such a requirement is not true

in general unless the family of biasing densities contains the true surrogate densities e.g. if

the surrogate density itself is Gaussian. Building on the decomposition (2.16), Theorem 1

gives a bound on χ2 (π || µh) depending on the fidelity h so long as the biasing density µh

satisfies the appropriate constraints.

Theorem 1. Let Assumptions 1, 2, 3, and 4 hold and assume there exist constants τ0, ω0 > 0

such that

τ(θ) ≤ ∥θ∥2 + τ0, ω(θ) ≤ ∥θ∥2 + ω0 .

Let hmax be such that for all h ≤ hmax

γ(h) ≤ 1

4
λmin(A) , (2.17)

with A being the matrix from Assumption 2 and λmin(A) being its smallest eigenvalue, then

for all h sufficiently small we have that

χ2 (π || µh) + 1 ≤ K0e
K1δ(h)+K2γ(h) (2.18)

where K0, K1, K2 are all positive constants independent of h.
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Proof of Theorem 1. By Assumption 2, π is sub-Gaussian with matrix A ≻ 0 so that by

Lemma 1

1

Z

∫
Θ

exp
(
θ⊤Aθ − Φ(θ)

)
dθ <∞ .

Recall that Z is the normalizing constant from Assumption 1.

Part 1: Bounding high-fidelity to surrogate ratio

The first term on the right-hand-side of Equation (2.16) can be bounded using Assump-

tion 3:

∥∥∥ π

π(h)

∥∥∥2
L2(π)

=
1

Z

(
Zh
Z

)2 ∫
Θ

exp
{
2
(
Φ(h)(θ)− Φ(θ)

)
− Φ(θ)

}
dθ

≤ 1

Z

(
Zh
Z

)2 ∫
Θ

exp
{
2δ(h)

(
∥θ∥2 + τ0

)
− Φ(θ)

}
dθ .

Re-writing this last line gives

∥∥∥ π

π(h)

∥∥∥2
L2(π)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
2δ(h) ∥θ∥2 − Φ(θ)

}
dθ . (2.19)

Now the two dependencies of the right-hand side of (2.19) on the fidelity h are through the

ratio Zh/Z and through δ(h). For now we just bound the integral on the right-hand side

of (2.19), which is finite since A ≻ 2δ(h)I for all h sufficiently small. Adding and subtracting

θ⊤Aθ in (2.19) gives

∥∥∥ π

π(h)

∥∥∥2
L2(π)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
2δ(h) ∥θ∥2 − Φ(θ)

}
dθ

=
1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
−θ⊤ (A− 2δ(h)I)θ + θ⊤Aθ − Φ(θ)

}
dθ .

Putting this together with the fact that A− 2δ(h)I ≻ 0 gives

∥∥∥ π

π(h)

∥∥∥2
L2(π)

≤ 1

Z

(
Zh
Z

)2

exp (2τ0δ(h))

∫
Θ

exp
{
θ⊤Aθ − Φ(θ)

}
dθ (2.20)

33



to complete the bound of the first term on the right-hand side of Equation (2.16).

Part 2: Bounding surrogate to biasing density ratio

The second term on the right-hand side of Equation (2.16) is bounded in a similar fashion.

By Assumption 4 we can bound

∥∥∥∥π(h)

µh

∥∥∥∥2
L2(π)

=
1

Z

(
Z̃h
Zh

)2 ∫
Θ

exp
{
2
(
Φ̃(h)(θ)− Φ(h)(θ)

)
− Φ(θ)

}
dθ

≤ 1

Z

(
Z̃h
Zh

)2 ∫
Θ

exp
{
2γ(h)

(
∥θ∥2 + ω0

)
− Φ(θ)

}
dθ

=
1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
2γ(h) ∥θ∥2 − Φ(θ)

}
dθ .

Again we add and subtract θ⊤Aθ to obtain

∥∥∥∥π(h)

µh

∥∥∥∥2
L2(π)

≤ 1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
−θ⊤ (A− 2γ(h)I)θ + θ⊤Aθ − Φ(θ)

}
dθ .

Using this with the fact that A− 2γ(h)I ⪰ 0 for all h ≤ hmax gives

∥∥∥∥π(h)

µh

∥∥∥∥2
L2(π)

≤ 1

Z

(
Z̃h
Zh

)2

exp (2ω0γ(h))

∫
Θ

exp
{
θ⊤Aθ − Φ(θ)

}
dθ . (2.21)

Multiplying the right-hand sides of the bounds (2.20) and (2.21) and then taking the

square root gives together with (2.16) that

∥∥∥∥ πµh
∥∥∥∥
L1(π)

≤ 1

Z

(
Z̃h
Z

)
exp {δ(h)τ0 + γ(h)ω0}

∫
Θ

exp
{
θ⊤Aθ − Φ(θ)

}
dθ (2.22)

holds. The integral is independent of h, so it remains to bound the ratio of normalizing

constants.

Part 3: Bounding ratio of normalizing constants
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In general, if π(h) is not in the family of biasing densities then we may have Z̃h ̸= Zh,

and thus,

Z̃h
Z
̸→ 1

as h → 0. Instead we just give a constant upper bound on Z̃h that is independent of the

fidelity h. By Assumption 1, the normalizing constant Z̃h satisfies

Z̃h =

∫
Θ

exp
{
−Φ̃(h)(θ)

}
dθ

=

∫
Θ

exp
{
−Φ̃(h)(θ) + Φ(h)(θ)− Φ(h)(θ) + Φ(θ)− Φ(θ)

}
dθ

= Z

∫
Θ

exp
{
−Φ̃(h)(θ) + Φ(h)(θ)− Φ(h)(θ) + Φ(θ)

}
p(θ)dθ .

Dividing by Z and using Assumptions 3 and 4 we have

Z̃h
Z
≤
∫
Θ

exp
{
−δ(h)(∥θ∥2 + τ0)− γ(h)(∥θ∥2 + ω0)

}
π(θ)dθ ≤ 1 , (2.23)

because the term inside the exponential is less than or equal to 0 and π is a density. Finally,

combining the bounds (2.20), (2.21), and (2.23) gives the result

χ2 (π || µh) + 1 =

∥∥∥∥ πµh
∥∥∥∥
L1(π)

≤ exp {δ(h)τ0 + γ(h)ω0}Eπ
[
exp

(
θ⊤Aθ

)]
,

where the expectation is independent of h. Here

K0 = Eπ
[
exp

(
θ⊤Aθ

)]
, K1 = τ0, K2 = ω0

are all independent of the fidelity h.

The requirement in Theorem 1 that γ(h) ≤ λmin(A)/4, allows us to obtain an alternative
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bound to (2.18) which depends only on the error of the surrogate potentials.

χ2 (π || µh) + 1 ≤ K̃0e
K1δ(h) , (2.24)

where the constant K̃0 now absorbs the dependency on the approximation µh and is given

by

K̃0 = K0e
K2λmin(A)/4 ≥ K0e

K2γ(h) . (2.25)

Subtracting 1 from both sides of the bound (2.24) and taking the limit h→ 0 gives

lim
h→0

χ2 (π || µh) ≤ K̃0 − 1 ,

with K̃0 ≥ K0 > 1, which is determined by the choice of biasing densities µh. Note that when

π and µh are both Gaussian, as is the case for linear Bayesian inverse problems discussed

in Section 1.3.2, the exact χ2 divergence also has an exponential form similar to (2.24),

c.f. (B.6) in Appendix B.

Remark 4. The assumption that τ(θ) ≤ ∥θ∥2 + τ0 holds is similar to the pointwise Assump-

tion 4.8 in [Stuart, 2010, Theorem 4.6]. In [Stuart, 2010], the pointwise bound can grow

faster with respect to θ than in our case because there the Hellinger distance (3.8), which is

upper-bounded by the χ2 divergence, is considered.

2.3.3 Laplace approximation as biasing density

In this section we consider the explicit choice of biasing density µh to be a Laplace approxi-

mation of the surrogate density π(h). A Laplace approximation to the surrogate density π(h)

is a Gaussian approximation whose mean is the mode

µLAP
h = arg min

θ∈Θ
− log π̃(h)(θ) = arg min

θ∈Θ
Φ(h)(θ), (2.26)
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and whose covariance is the negative inverse Hessian of the density evaluated at the mode

ΣLAP
h = −

[
∇∇⊤ log π̃(h)

(
µLAP
h

)]−1
=
[
∇∇⊤Φ(h)

(
µLAP
h

)]−1
. (2.27)

Importantly, the Laplace approximation can be computed by evaluating only the unnormal-

ized density π̃(h) and its derivatives. Note that in the case of a multimodal surrogate density

with two or more global optima for the potential Φ(h), we may choose any of the modes; see

Figure 2.1. Furthermore, determining the global optima for (2.26) in practice may be infea-

sible so the Laplace mean is taken to be a local mode instead. Multimodal distributions can

be problematic if the biasing density decays too quickly to place sufficient probability in the

regions of the other modes, violating Assumption 4, and therefore causing the MFIS estima-

tor (2.12) to have large or even infinite variance. Another potential issue is that a Laplace

approximation may not exist for certain distributions where either the covariance matrix

ΣLAP
h or Hessian at the mode is not full-rank. This is the case, for example, in a uniform

distribution where the Hessian of the log density is zero everywhere. The work [Schillings

et al., 2020] provides more in-depth discussion about Laplace approximations as biasing den-

sities when the covariance matrix becomes singular, which is often the case in concentrated

posteriors, c.f. Section 1.3.2.

The following proposition gives conditions on the surrogate densities π(h) for the Laplace

approximation to exist and shows that a γ(h) to satisfy Assumption 4 exists. However, the

γ(h) provided by Proposition 1 may not automatically satisfy the additional assumption

that γ(h) ≤ λmin(A) in (2.17) of Theorem 1, which may still need to verified independently,

potentially with an alternative γ(h).

Proposition 1. Let Assumption 1 hold and assume there exists a σ2
min > 0, independent of

h, such that

θ⊤ΣLAP
h θ ≥ σ2

min ∥θ∥
2 , (2.28)
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Figure 2.1: A Laplace approximation for the density of a Gaussian mixture with two modes.

for all θ ∈ Θ. Further, assume there exist constants V ∈ R and v > 0 such that

Φ(h)(θ) ≥ V − v ∥θ∥2 (2.29)

for all h. Finally, let BR = {θ : ∥θ∥ ≤ R} be the ball of radius R centered at 0, and assume

that for all D > 0, there exists an R(D) > 0 such that for all θ /∈ BR(D) and all h > 0

Φ(h)(θ) ≥ D . (2.30)

Then, the Laplace approximation satisfies Assumption 4 for all h sufficiently small.

Proof. By Assumption 1, a Laplace approximation

Φ̃(h)(θ) = Φ(h)
(
µLAP
h

)
+

1

2

(
θ − µLAP

h

)⊤ [∇∇⊤Φ(h)(µLAP
h )

]−1 (
θ − µLAP

h

)
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is the second-order Taylor expansion of Φ(h) around one of the modes µLAP
h .

The first derivative is zero since it is expanded around a minimizer. Therefore,

Φ̃(h)(θ)− Φ(h)(θ) = −Rh(θ) ,

where Rh(θ) is the remainder of higher order terms from the Taylor expansion. The

bound (2.28) implies that

θ⊤ (ΣLAP
h

)−1
θ ≤ 1

σ2
min

∥θ∥2 ,

and when combined with the bound (2.29) gives

Φ̃(h)(θ)− Φ(h)(θ) ≤ Φ̃(h)(θ)− V + v ∥θ∥2

≤ Φ(h)
(
µLAP
h

)
+

1

2σ2
min

∥∥θ − µLAP
h

∥∥2 − V + v ∥θ∥2 .

Combining this with the fact that ∥v −w∥2 ≤ 2 ∥v∥2 + 2 ∥w∥2 yields

Φ̃(h)(θ)− Φ(h)(θ) ≤ Φ(h)
(
µLAP
h

)
+

(
1

σ2
min

+ v

)
∥θ∥2 + 1

σ2
min

∥∥µLAP
h

∥∥2 − V .

Now we claim that the terms Φ(h)(µLAP
h ) and

∥∥µLAP
h

∥∥2 can be bounded independent of

h. Let D = Φ(0) + 1 and consider that, by assumption, there exists a ball BR(D) such that

Φ(h)(θ) ≥ Φ(0) + 1 , ∀θ /∈ BR(D) .

By Assumption 1, we know that Φh(0) → Φ(0) and so that for all h sufficiently small,

there exist points θ′
h, such that Φh(θ

′
h) ≤ Φ(0) + 1. Hence, the minimizers µLAP

h ∈ BR for

all h sufficiently small. Thus, there are constants B1, B2 > 0 independent of h such that
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Φ(h)
(
µLAP
h

)
≤ B1 and

∥∥µLAP
h

∥∥2 ≤ B2. Thus, by setting

γ(h) =
1

σ2
min

+ v, ω(θ) = ∥θ∥2 + ω0, ω0 =
B1 +B2/σ

2
min − V

σ−2
min + v

Assumption 4 holds.

The assumption (2.28) in Proposition 1 ensures existence of the Laplace approximation

for each h > 0 and moreover ensures that as h→ 0 they remain non-singular. This instead

can be viewed as a constraint for the Hessians of the surrogate potentials Φ(h) at the mode

to remain bounded as h→ 0:

αmaxI−∇∇⊤Φ(h)(µLAP
h ) ≻ 0 ,

for some αmax > 0. The condition (2.30) implies that Φ(h)(θ)→∞ as ∥θ∥ → ∞ uniformly in

h ensuring that a global minimizer (2.26) exists for each potential Φ(h) as well as preventing

the sequence of global minimizers being unbounded as h → 0. We recall that although a

global minimizer exists for each potential Φ(h), it does not necessarily have to be unique.

Finally, the last condition (2.29) is analogous to Assumption 2.6(i) from [Stuart, 2010] and

is necessary to satisfy Assumption 4 needed for Theorem 1.

2.3.4 Trading off fidelity and costs of surrogate model for MFIS

In this section we consider the trade-off problem to select the optimal fidelity h for learning

the Laplace approximation as a biasing density and computing the MFIS estimator (2.12).

Offline and online costs of MFIS with Laplace approximation as biasing density

The dominant costs of estimating the quantity of interest (2.1) with the MFIS estima-

tor (2.12) are the offline training costs to learn the biasing density using the unnormalized
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surrogate density π̃(h) and the online costs to evaluate the importance weights w̃(h)(θ[i]) for

i = 1, . . . , N in (2.13). In the following analysis we assume that the costs of drawing sam-

ples from the biasing density θ[i] ∼ µh as well as the costs of evaluating the biasing density

µh(θ
[i]) are negligible compared to the costs Chigh and c(h) of evaluating the high-fidelity

and low-fidelity surrogate densities, respectively. Although here we consider the Laplace ap-

proximation as the biasing density due to its favorable approximation guarantees and ease to

compute, the analysis in this section apply to a general biasing density for which Theorem 1

applies and for which the costs to evaluate the density and sample from are negligible. For

the offline phase for learning the biasing density we assume that we perform N0 evaluations

of the unnormalized surrogate density π̃(h) to fit the Laplace approximation µh. Therefore,

the total costs of the offline phase are modeled as

coffline = N0c(h) . (2.31)

For example, in the numerical examples in Section 2.5, N0 is the number of density evalu-

ations used in Newton’s method to achieve machine precision in the gradient of − log π̃(h)

and evaluate the Hessian at the mode. After learning the Laplace approximation the esti-

mator (2.12) can be computed in an online phase, which involves evaluating the high-fidelity

target density at N samples, whose total costs can be modeled as

conline = NChigh . (2.32)

Combining both online and offline costs, we model the total cost of the MFIS estimator (2.12)

as

cost(f̂MFIS
h,N ) = conline + coffline = NChigh +N0c(h) . (2.33)
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Although the online costs are independent of the surrogate density π(h) used to fit the Laplace

approximation, as we showed in the bound (2.8) and Theorem 1, the mean-squared error of

the estimator (2.12) is controlled by the effective sample size (2.9) and, in turn, the fidelity

h.

Context-aware importance sampling

In this section we derive the context-aware importance sampling (CAIS) estimator based on

an optimization problem for the trade-off described in Section 2.2.3. Consider the following

optimization problem for the optimal fidelity h and number of online samples N that mini-

mizes the total cost (2.33) of the MFIS estimator given the constraint that its mean-squared

error is bounded above by a tolerance ϵ:

min
h>0, N∈N

NChigh +N0c(h) ,

such that
4K̃0

N
eK1δ(h) ≤ ϵ ,

(2.34)

where the constants K̃0, K1 are given by Theorem 1 and (2.25) and the function δ(h) is as

in Assumption 3. Using the bounds (2.8) and (2.24) derived from Theorem 1, any solu-

tion (h,N) to (2.34) is guaranteed to provide an estimator f̂MFIS
h,N with mean-squared error

bounded above by ϵ. Because the optimization problem (2.34) is over integer sample sizes,

we instead solve a relaxed optimization problem where we allow the arguments to be real-

valued. Lemma 2 below defines this relaxation of the optimization problem and shows that

a unique solution exists under mild conditions.

Lemma 2. Let c(ĥ) and e(ĥ) be continuous non-negative convex functions, at least one of

which is strictly convex. Let further c(ĥ) be monotonically decreasing and e(ĥ) be monoton-

ically increasing as ĥ → ∞. Let ϵ > 0 be a tolerance and N0 ∈ N and Chigh be constants

42



independent of ĥ. Then, there exists a unique solution (ĥ∗, N̂∗) ∈ (0,∞)× (0,∞) of

min
ĥ>0, N̂>0

N̂Chigh +N0c(ĥ) ,

such that
1

N̂
e(ĥ) ≤ ϵ .

(2.35)

Proof of Lemma 2. We proceed as follows: first we show that if a solution exists it cannot

occur at zero or infinity (i.e. too high or low fidelity), then we show that a solution exists

over a compact interval, and finally show its uniqueness. For any ĥ, the optimal N̂ is the

one that achieves equality in the constraint

N̂ =
e(ĥ)

ϵ
. (2.36)

Plugging this into the objective function gives the minimization problem over ĥ only.

min
ĥ>0

Chigh e(ĥ)

ϵ
+N0c(ĥ) . (2.37)

We first show that the infimum of the objective function cannot occur as ĥ → ∞ or

as ĥ → 0. Since c(ĥ) is non-negative and decreasing as h → ∞ we know that c(ĥ) → c0

for some constant c0 ≥ 0. Moreover, e(ĥ) is increasing, so we know that there exists an

ĥmax < ∞, such that any optimal solution ĥ∗ must satisfy ĥ∗ ≤ ĥmax. Similarly, since e(ĥ)

is non-negative and decreasing as ĥ → 0 we know that e(ĥ) → e0 for some constant e0 ≥ 0

as ĥ → 0. Moreover, c(ĥ) is increasing as ĥ → 0, and since the objective function (2.37) is

monotonically increasing as ĥ → 0, we know that there exists an ĥmin > 0, such that any

optimal solution ĥ∗ must satisfy ĥ∗ ≥ ĥmin. Hence

min
ĥ>0

Chigh e(ĥ)

ϵ
+N0c(ĥ) = min

ĥ∈[ĥmin,ĥmax]
Chigh e(ĥ)

ϵ
+N0c(ĥ)
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Since the objective function is continuous over a compact set, we know that a minimizer

exists. Finally, the sum of a strictly convex function and a convex function is strictly convex,

so we know that this objective function is strictly convex in ĥ, and therefore the minimizer

is unique.

Remark 5. We use the notation ĥ and N̂ in the relaxed optimization problem (2.35) to

indicate that the variable N̂ may not be an integer and that the optimal solution (ĥ∗, N̂∗)

of (2.35) may not necessarily be the same as the optimal solution of (2.34).

To apply Lemma 2, let δ from Assumption 3 also be convex, although not necessarily

strictly convex, and set

e(ĥ) = 4K̃0e
K1δ(h) . (2.38)

The function e(ĥ) is non-negative and strictly convex since it is the composition of the

increasing and strictly convex function x 7→ ex and the convex function δ. Let (ĥ∗, N̂∗) be

the solution to the optimization problem (2.35) with e(ĥ) given by (2.38). We define the

context-aware importance sampling (CAIS) estimator

f̂CAIS
h∗,N∗ = f̂MFIS

h∗,N∗ , (2.39)

where h∗ = ĥ∗ and N∗ =
⌈
N̂∗
⌉
. We refer to the surrogate model or density π(h∗) as a

context-aware surrogate model precisely because it takes the cost of the online importance

sampling into consideration during the optimization (2.34), c.f. Section 1.1.1.

Because N∗ ≥ N̂∗ the CAIS estimator (2.39) is guaranteed to have a mean-squared error

bounded by ϵ. Moreover, in practical applications only a subset of fidelities h1 > . . . > hL

may be available. In this case, assuming at least hL ≤ ĥ∗, we choose the largest (poorest)
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fidelity that does not exceed ĥ∗,

h∗ = max
{
ℓ : hℓ ≤ ĥ∗

}
,

which guarantees that the mean-squared error of (2.39) will be bounded above by ϵ.

Cost complexity bounds of CAIS

In this section we derive an upper bound on the cost complexity of the CAIS estimator (2.39)

in terms of the MSE tolerance ϵ and compare with the cost complexity of (2.12) at a fixed

fidelity h̄ when the biasing density is given by the Laplace approximation.

Theorem 2. Suppose that both Theorem 1 and Proposition 1 apply. Consider a tolerance

0 < ϵ ≤ 1 and set K ′
0 = 4 ∥f∥2L∞ K̃0 + 1, where K̃0 is the constant in Equation (2.25).

1. If the surrogate density evaluation costs grow as c(h) = β1/h with the fidelity h and the

surrogate error decays as δ(h) = α−1/h in Assumption 3, with α, β > 1, and we restrict

h ∈ (0, log(α)/2], then the total costs (2.33) of the context-aware importance sampling

estimator (2.39) are bounded as

cost(f̂CAIS
h∗,N∗) ≤ cost(f̂CAIS

h∗,N∗) =
ChighK ′

0

ϵ
eK1ϵ1/(1+logα β)

+N0ϵ
−1/(1+logβ α) . (2.40)

2. If instead c(h) = h−β and δ(h) = hα with α, β > 0, then the costs are bounded as

cost(f̂CAIS
h∗,N∗) ≤ cost(f̂CAIS

h∗,N∗) =
ChighK ′

0

ϵ
eK1ϵα/(α+β)

+N0ϵ
−β/(α+β) . (2.41)

Proof of Theorem 2. Recall that the CAIS estimator (2.39) solves the relaxed optimization
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problem (2.35) with

e(h) = 4 ∥f∥2L∞ K̃0e
K1δ(h) .

The function δ(h) = α−1/h is convex over the interval (0, log(α)/2] and decreasing as h→ 0,

while c(h) = β1/h is convex and increasing as h → 0, so the assumptions of Lemma 2 are

valid and there exists a unique solution ĥ∗ > 0 and N̂∗ > 0.

We can remove the constraint in (2.35) to instead minimize

min
ĥ>0

4 ∥f∥2L∞ K̃0C
high

ϵ
eK1δ(ĥ) +N0c(ĥ), (2.42)

as is done in (2.37). By setting the derivative of (2.42) with respect to ĥ to zero, the optimal

solution ĥ∗ satisfies

4 ∥f∥2L∞ K̃0K1C
high logα

N0 log β
eK1α−1/ĥ∗

= ϵ(αβ)1/ĥ
∗
. (2.43)

Since ĥ∗ > 0, the left-hand-side of (2.43) is bounded below by a constant independent of ϵ

and therefore ĥ∗ → 0 as ϵ → 0 to balance the right-hand-side. In particular, we must have

1/ĥ∗ ∈ O(logαβ ϵ−1) as ϵ → 0. This motivates setting h† = 1/ logαβ ϵ
−1, which scales as

the same rate as the optimal solution ĥ∗. By plugging in h†, the corresponding number of

samples needed to achieve the constraint of ϵ will be

N † =

⌈
4 ∥f∥2L∞ K̃0

ϵ
eK1ϵ1/(1+logα β)

⌉
≤ 4 ∥f∥2L∞ K̃0

ϵ
eK1ϵ1/(1+logα β)

+ 1 ,

where we have used that logαβ ϵ =
logα ϵ

1+logα β
=

logβ ϵ

1+logβ α
. Since ϵ ≤ 1 we know that eK1ϵ1/(1+logα β)

/ϵ >

1, and so

N † ≤ K ′
0

eK1ϵ1/(1+logα β)

ϵ
.
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Because the CAIS estimator (2.39) uses the optimal parameters h∗ > 0 and N∗ ∈ N that

solve (2.35) we know that plugging (h†, N †) into the formula for the total costs (2.33) will

give an upper bound, which we denote by cost, on the total computational costs of the CAIS

estimator

cost(f̂CAIS
h∗,N∗) ≤

ChighK ′
0

ϵ
eK1ϵ1/(1+logα β)

+N0ϵ
−1/(1+logβ α) .

Now consider c(h) = h−β and δ(h) = hα with α, β ≥ 1, which again satisfy the necessary

assumptions of Lemma 2. As in the previous case, set the derivative of (2.37) to zero to find

that the optimal solution satisfies

4 ∥f∥2L∞ ChighK̃0K1

N0

(
α

β

)
eK1ĥαĥα+β = ϵ ,

so that, by the same reasoning as before, ĥ∗ ∈ O(ϵ1/(α+β)) as ϵ → 0. If we now set h† =

ϵ1/(α+β), then the number of samples needed is

N † =

⌈
4 ∥f∥2L∞ K̃0

ϵ
eK1ϵα/(α+β)

⌉
≤ 4 ∥f∥2L∞ K̃0

ϵ
eK1ϵα/(α+β)

+ 1 ≤ K ′
0

ϵ
eK1ϵα/(α+β)

,

with total computational cost bounded as

cost(f̂CAIS
h∗,N∗) ≤ cost(f̂CAIS

h∗,N∗) ≤
ChighK ′

0

ϵ
eK1ϵα/(α+β)

+N0ϵ
−β/(α+β) .

Remark 6. Note that for when c(h) = β1/h and δ(h) = α−1/h in Theorem 2 we require that

h ∈ (0, log(α)/2] to ensure that δ(h) is convex. However, as ϵ→ 0 we know that ĥ∗ → 0 as

well, and therefore this requirement will automatically be satisfied for ϵ sufficiently small.

The case where the tolerance ϵ is large so that the optimal fidelity ĥ∗ > log(α)/2 corresponds

to a very poor fidelity ĥ∗ being optimal.
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The particular rates for the cost c(h) and accuracy δ(h) of the surrogate densities π(h)

commonly arise in Bayesian inverse problems (c.f. 1.3) and correspond to typical rates from

numerical analysis where the fidelity hmay correspond to a mesh width, for example. We now

compare the upper bound on the cost complexity for the context-aware importance sampling

estimator (2.39) derived in Theorem 2 with the cost complexity of the MFIS estimator (2.12)

with a fixed fidelity h̄ > 0 that is independent of ϵ. For the fixed fidelity h̄, the fewest number

of samples N̄ needed to guarantee that the MSE of the MFIS estimator f̂MFIS
h̄,N̄

is bounded

above by ϵ is given by

N̄ =

⌈
4 ∥f∥2L∞ K̃0

ϵ
eK1δ(h̄)

⌉
.

The total costs (2.33) of the fixed fidelity estimator are therefore,

cost(f̂MFIS
h̄,N̄ ) = N̄Chigh +N0c(h̄) . (2.44)

In the first scenario of Theorem 2 where δ(h) = α−1/h and β1/h, the costs (2.44) can be

bounded above as

cost(f̂MFIS
h̄,N̄ ) ≤ cost(f̂MFIS

h̄,N̄ ) ≤ ChighK ′
0

ϵ
eK1α−1/h̄

+N0β
1/h̄ .

Similarly, in the scenario where δ(h) = hα and c(h) = h−β the total costs are bounded as

cost(f̂MFIS
h̄,N̄ ) ≤ cost(f̂MFIS

h̄,N̄ ) ≤ ChighK ′
0

ϵ
eK1h̄α +N0h̄

−β .

We now compare the cost complexity upper bound of the context-aware estimator cost(f̂CAIS
h∗,N∗)

to that of the standard MFIS estimator with a fixed fidelity cost(f̂MFIS
h̄,N̄

) in the limit as the

tolerance ϵ→ 0. As ϵ→ 0, the dominant term for the cost complexity of both estimators is

due to the online phase whose costs scale as ϵ−1 and is the usual Monte Carlo cost-complexity
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rate. For the fixed fidelity MFIS estimator the offline costs remain fixed with respect to ϵ

and eventually become negligible relative to the online costs as ϵ → 0. On the other hand,

for the CAIS estimator, the offline costs are adaptive to the tolerance ϵ since the online costs

are also taken into consideration for the optimization problem (2.34). However, as ϵ → 0

the optimal fidelity h∗ → 0 as well, and hence the surrogate densities π(h∗) converge. This

leads to diminishing returns for investing more computational resources to find better biasing

densities at high fidelities (small h). Therefore, for the CAIS estimator the dominant term

is also the online costs as ϵ→ 0. When δ(h) = α−1/h and c(h) = β1/h we have that

lim
ϵ→0

cost(f̂MFIS
h̄,N̄

)

cost(f̂CAIS
h∗,N∗)

= lim
ϵ→0

ChighK′
0

ϵ
eK1α−1/h̄

+N0β
1/h̄

ChighK′
0

ϵ
eK1ϵ1/(1+logα β) +N0ϵ

−1/(1+logβ α)

= lim
ϵ→0

ChighK ′
0e
K1α−1/h̄

+ ϵN0β
1/h̄

ChighK ′
0e
K1ϵ1/(1+logα β) +N0ϵ

1−1/(1+logβ α)

= eK1α−1/h̄

.

Because eK1α−1/h̄
> 1, as ϵ→ 0 the CAIS estimator (2.39) obtains an asymptotic speedup over

the MFIS estimator (2.12) with fixed fidelity h̄. In particular, if h̄ is small, corresponding

to an accurate surrogate density π(h), the speedup factor becomes closer to 1 due to the

diminishing returns of investing more resources into learning a better biasing density at

higher fidelities. Similarly, we can derive an asymptotic speedup as ϵ → 0 for the CAIS

estimator over the MFIS estimator at fidelity h̄ when δ(h) = hα and c(h) = h−β. As before

we consider the ratio of the upper bounds on the cost complexity and take the limit ϵ→ 0:

lim
ϵ→0

cost(f̂MFIS
h̄,N̄

)

cost(f̂CAIS
h∗,N∗)

= lim
ϵ→0

ChighK′
0

ϵ
eK1h̄α +N0h̄

−β

ChighK′
0

ϵ
eK1ϵα/(α+β) +N0ϵ−β/(α+β)

= lim
ϵ→0

ChighK ′
0e
K1h̄α + ϵN0h̄

−β

ChighK ′
0e
K1ϵα/(α+β) +N0ϵ1−β/(α+β)

= eK1h̄α .
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Again we see that the speedup factor of the CAIS estimator over the MFIS estimator with

fidelity h̄ is strictly greater than 1 and moreover that smaller h̄ again produces a smaller

speedup. In both scenarios, δ(h) = α−1/h and δ(h) = hα, the parameter α controls how

quickly the surrogate densities π(h) converge to the high-fidelity target density π (c.f. As-

sumption 3) with larger α resulting in faster converging surrogate densities and a smaller

asymptotic speedup. For general rates δ(h) the asymptotic speedup will depend on how

quickly δ(h)→ 0.

2.3.5 Computational procedure

Computing the context-aware estimator (2.39) involves the additional step of learning the

context-aware surrogate model π(h∗), i.e. determining the optimal fidelity h∗, before the two-

step process of computing the MFIS estimator (c.f. Section 2.2.3). Algorithm 2 summarizes

the entire computational procedure for estimating a quantity of interest Eπ[f ] using context-

aware importance sampling. Similar to other multifidelity methods, the procedure requires

knowledge of the costs Chigh and the function c for evaluating the unnormlaized high and low

fidelity densities, respectively, as well the function δ from Assumption 3, which controls the

accuracy of the surrogate densities. For context-aware importance sampling, the constants

K̃0 and K1 from Theorem 2 must be provided as well. Note that for multifidelity importance

sampling with a fixed fidelity h̄, the constants K̃0 and K1 are still needed in order to provide

guarantees on the mean-squared error, so the requirement is not unique to the CAIS estima-

tor (2.39) only. Additionally, the tolerance ϵ and number of offline evaluations N0 may be

chosen by the user, although N0 must be chosen to sufficiently fit the Laplace approximation

(e.g. achieve machine precision in the gradient in the numerical optimization of (2.26)). The

test function f must also be specified by the user as long as it is bounded with either the

constant ∥f∥L∞ or some known upper bound on |f |. The algorithm first solves the relaxed

optimization problem (2.35) to determine the fidelity h∗ for the context-aware surrogate
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model π(h∗) and number of online samples N∗ =
⌈
N̂∗
⌉
. Next the unnormalized surrogate

density π̃(h∗) is used to fit the Laplace approximation µh∗ . Since the Laplace approximation

requires evaluating the Hessian at the mode we compute the mean of the Laplace approx-

imation µLAP
h∗ using Newton’s method, although any optimization method may be used to

solve (2.26). Once the Hessian ∇∇⊤Φ(h∗)µLAP
h∗ is computed we may either invert it to obtain

the covariance of the Laplace approximation (2.27) or avoid the inversion and use it directly

as the precision matrix, which is more amenable for high dimensional problems. Once the

Laplace approximation µh∗ has been computed, we draw N∗ =
⌈
N̂∗
⌉
samples from µh∗ and

compute the importance weights (2.13) using the unnormalized high-fidelity target density

π̃, to obtain the estimate (2.39).

Algorithm 2: Context-aware importance sampling

Input : Constants K̃0, K1, C
high, ϵ, N0, ∥f∥L∞ and functions c, δ

1 Solve the optimization problem (2.35) for (ĥ∗, N̂∗) using

∥f∥L∞ , K̃0, K1, C
high, N0, ϵ, c, δ;

2 Compute the Laplace approximation µh∗ using π̃(h∗), where h∗ = ĥ∗;

3 Draw N∗ =
⌈
N̂∗
⌉
i.i.d. samples {θ[i]}N∗

i=1 from µh∗ ;

4 Compute f̂CAIS
h∗,N∗ using (2.12);

Return: Estimate f̂CAIS
h∗,N∗

In practice, one may perform a pilot study to estimate the constants Chigh, K̃0, K1 and

functions c, δ that are not specified by the user and may be unknown ahead of time. Pi-

lot studies are common in other multilevel and multifidelity methods where the algorithm

parameters determine the trade-off between accuracy of the surrogate model and error of

the estimator, as is the case here. Although the cost of the pilot study itself may be non-

negligible it only needs to be performed once and may be amortized as the constants may be

recycled to estimate arbitrary quantities of interest by replacing the test function f . Thus,

context-aware importance sampling is attractive for estimating families of quantities of in-

terest where the test function depends on an additional hyperparameter f(θ; λ) for λ ∈ Λ
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such as cumulative density functions where

f(θ; λ) = 1{θ ≤ λ}, λ ∈ R ,

or survival functions 1− f(θ;λ).

2.4 Bayesian inverse problems

Bayesian inverse problems, discussed in Section 1.3, are a prototypical example of where one

can obtain surrogate densities π(h) by replacing the high-fidelity model G with a surrogate

model G(h). In this section we show that the context-aware importance sampling estima-

tor (2.39) can be applied to inference of a posterior arising from a Bayesian inverse problem

where the target π is the posterior corresponding to the high-fidelity model. For Bayesian

inference the posterior π is always absolutely continuous with respect to the prior π0 and

the χ2 divergence χ2 (π || π0) of the posterior to the prior is bounded since

∫
Θ

L(θ;y)π(θ)dθ <∞ ,

where we have used the fact that the likelihood L(θ;y) is bounded with respect to θ.

Therefore, one option to obtain a consistent estimator is to use importance sampling with

the prior distribution as the biasing density. However, if the posterior concentrates around

the observation y, then χ2 (π || π0) may be large resulting in an estimator with high variance

(c.f. Appendix B for linear inverse problems). A better option will be to use a biasing density

that better adapts to the posterior such as the Laplace approximation or others discussed in

Section 2.2.1.

Remark 7. Both a blessing and a curse: As discussed in Section 1.3.2, when the noise

level goes to zero the posterior converges asymptotically to the Laplace approximation by

52



Bernstein-von Mises theorem [van der Vaart, 1998]. However because the posterior becomes

more concentrated around its mean the optimization and computation of the Hessian be-

comes increasingly difficult minor numerical errors in either the mean or Hessian can result

in poor sampling with large importance weights.

Recall from Section 1.3 that G(h) denotes the surrogate parameter-to-observable map

with fidelity h and let it be such that the sequence G(h)(θ) → G(θ) converges pointwise

for each θ ∈ Θ. In addition to the set up in Section 1.3, we assume that G,G(h) ∈ C2(Θ)

to guarantee that the Hessian at the mode will exist for the Laplace approximation and

moreover that the Taylor expansion in the proof of Proposition 1 will be valid. We consider

the case where the prior π0 is Gaussian N(µ0,Σ0), so that we can write the potential from

Assumption 1 as

Φ(θ) =
1

2
∥y −G(θ)∥2Γ−1 +

1

2
(θ − µ0)

⊤Σ−1
0 (θ − µ0). (2.45)

With a Gaussian prior, the resulting posterior distribution is always sub-Gaussian since we

can take the matrix A = 1
4
Σ−1

0 in Lemma 1. Without loss of generality assume that µ0 = 0

so that

Eπ0

[
exp

(
1

4
θ⊤Σ−1

0 θ

)]
∝ 1

(2π)d/2|Σ0|1/2

∫
Rd

L(θ; y) exp

(
−1

4
θ⊤Σ−1

0 θ

)
dθ <∞ ,

since the likelihood L(θ; y) is bounded. The surrogate potentials Φ(h) are defined similarly

but with the surrogate maps G(h) replacing G.

2.4.1 Bounding chi-squared divergence with model error

In order to apply Theorem 1 and obtain a bound on the χ2 divergence in terms of the model

fidelity h, we translate bounds on the model error between G and G(h) to bounds on the
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error between the corresponding potentials Φ and Φ(h), respectively, for Assumption 3. The

following two assumptions allow for this transition.

Assumption 5. The high-fidelity parameter-to-observable map G is globally Lipschitz mean-

ing there exists a constant B > 0 such that for all θ,θ′ ∈ Θ

∥G(θ)−G(θ′)∥ ≤ B ∥θ − θ′∥ .

Assumption 6. For all θ ∈ Θ and h > 0 we have

∥∥G(h)(θ)−G(θ)
∥∥ ≤ δ̃(h)τ̃(θ)

with δ̃(h)→ 0 as h→ 0 with τ̃(θ) independent of h.

Assumption 5 is almost the Lipschitz Assumption 2.7(ii) from [Stuart, 2010] except there

the constant B only needs to hold for bounded sets of θ. Assumption 5 is satisfied if the map

G is linear, for example, or if the map is the sum of a linear term and a smooth bounded

function. Alternatively, we note that Assumption 5 may also be relaxed so that G(θ) grows

at most linearly asymptotically as ∥θ∥ → ∞. Such an assumption will still ensure that the

potential does not grow faster than quadratically as needed for the assumptions of Theorem 1.

Assumption 6 is similar to Assumption (4.11) in Corollary 4.9 of [Stuart, 2010], although the

pointwise bound is also looser there than here because the χ2 divergence is an upper bound

on the Hellinger distance c.f. Remark 4. Theorem 3 is analogous to Theorem 1 from earlier

but now is applied specifically to the Bayesian inverse problem.

Theorem 3. If Assumptions 5 and 6 are satisfied with |τ̃(θ)| ≤ ∥θ∥ + τ̃0 for some τ̃0 > 0,
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then Assumption 3 is also satisfied with

δ(h) =

(
2B + 1

κmin

)
δ̃(h)

and τ(θ) a quadratic function of ∥θ∥ that is independent of h.

Proof. Using the form of the log-posterior (2.45) we write

∣∣Φ(h)(θ)− Φ(θ)
∣∣ = ∣∣∥G(h)(θ)− y∥2Γ−1 − ∥G(θ)− y∥2Γ−1

∣∣
since the prior terms cancel. To simplify notation, set ∆(θ) = G(θ) − G(h)(θ) and ζ(θ) =

G(θ)− y, so that ζ(θ)−∆(θ) = G(h)(θ)− y. Now, we can instead write

∣∣Φ(h)(θ)− Φ(θ)
∣∣ = ∣∣∥ζ(θ)∥2Γ−1 − ∥ζ(θ)−∆(θ)∥2Γ−1

∣∣
=
∣∣∥ζ(θ)∥2Γ−1 −

〈
Γ−1 (ζ(θ)−∆(θ)) , ζ(θ)−∆(θ)

〉∣∣
=
∣∣2⟨∆(θ),Γ−1ζ(θ)⟩ − ∥∆(θ)∥2Γ−1

∣∣ .
Applying the triangle inequality and then the Cauchy-Schwarz inequality to this last line

gives ∣∣Φ(h)(θ)− Φ(θ)
∣∣ ≤ 2∥∆(θ)∥∥Γ−1ζ(θ)∥+ ∥∆(θ)∥2Γ−1 . (2.46)

Using that y = G(θ⋆) + η and the triangle inequality gives

∥Γ−1ζ(θ)∥ = ∥Γ−1(G(θ)− y)∥

≤ ∥Γ−1(G(θ)−G(θ⋆))∥+ ∥Γ−1η∥ .
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Assumption 5 then gives the bound

∥Γ−1ζ(θ)∥ ≤ B

κmin

∥θ − θ⋆∥+ ∥Γ−1η∥, (2.47)

where κmin > 0 is the smallest eigenvalue of the covariance matrix Γ, i.e., the direction along

which the posterior is most peaked. Similarly, we bound

∥∆(θ)∥2Γ−1 = ⟨Γ−1∆(θ), ∆(θ)⟩ ≤ 1

κmin

∥∆(θ)∥2 . (2.48)

Substituting bounds (2.47) and (2.48) into (2.46) yields

∣∣Φ(h)(θ)− Φ(θ)
∣∣ ≤ 2

(
B

κmin

(∥θ − θ⋆∥) + ∥Γ−1η∥
)
∥∆(θ)∥+ 1

κmin

∥∆(θ)∥2,

and the triangle inequality gives

∣∣Φ(h)(θ)− Φ(θ)
∣∣ ≤ 2

(
B

κmin

(∥θ∥+ ∥θ⋆∥) + ∥Γ−1η∥
)
∥∆(θ)∥+ 1

κmin

∥∆(θ)∥2 . (2.49)

Assumption 6 along with the assumption that |τ̃(θ)| ≤ ∥θ∥+τ̃0 says ∥∆(θ)∥ ≤ δ̃(h) (∥θ∥+ τ̃0),

so we get that

∣∣Φ(h)(θ)− Φ(θ)
∣∣ ≤ 2

(
B

κmin

(∥θ∥+ ∥θ⋆∥) + ∥Γ−1η∥
)
δ̃(h) (∥θ∥+ τ̃0) +

1

κmin

δ̃(h)2 (∥θ∥+ τ̃0)
2 ,
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and thus

∣∣Φ(h)(θ)− Φ(θ)
∣∣ ≤( 2B

κmin

∥θ⋆∥+ 2∥Γ−1η∥+ δ̃(h)τ̃0
κmin

)
δ̃(h)τ̃0

+

(
2B

κmin

τ̃0 +
2B

κmin

∥θ⋆∥+ 2

κmin

δ̃(h)τ̃0 + 2∥Γ−1η∥
)
δ̃(h)∥θ∥

+

(
2B

κmin

+
1

κmin

δ̃(h)

)
δ̃(h)∥θ∥2 .

Using that δ̃(h) ≤ 1 for all h sufficiently small and ∥θ∥ ≤ 1 + ∥θ∥2 gives

∣∣Φ(h)(θ)− Φ(θ)
∣∣ ≤ δ(h)τ(θ),

where

δ(h) =

(
2B + 1

κmin

)
δ̃(h)

is as in Assumption 3 and τ(θ) is quadratic in ∥θ∥ and is bounded independent of h.

Corollary 1. Suppose that Theorem 1 applies with Assumption 3 provided by Theorem 3.

Then, together with Proposition 1 this implies that the cost complexity of the context-aware

importance sampling estimator with a Laplace approximation biasing density is given by

Theorem 2.

2.5 Numerical results

The following three numerical examples demonstrate the context-aware importance sampling

estimator (2.39) and in particular its cost complexity compared with the standard MFIS

estimator (2.12) at a fixed fidelity h̄. All runtime measurements were performed on compute

nodes equipped with Intel Xeon Gold 6148 2.4GHz processors and 192GB of memory using

a Python 3.6 implementation.
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2.5.1 Steady-state heat conduction

In this section we consider the problem of inferring the heat-conductivity of a one-dimensional

rod whose temperature is governed by a steady-state heat equation.

Problem Setup

Let Ω = (0, 1) ⊂ R and Θ = R6 and consider the parametric differential equation for the

temperature u : Ω×Θ→ R

− (exp (κ(x;θ))ux(x;θ))x = 1 , x ∈ Ω

u(0;θ) = 0 ,

k(1;θ)ux(1;θ) = 0 ,

(2.50)

parameterized by θ = (θ1, . . . , θ6)
⊤ ∈ Θ and where κ : Ω×Θ→ R is the log heat conductivity.

The log heat conductivity κ(x; θ) is a smoothed piecewise constant function over the interval

[0, 1] such that κ(x;θ) ≈ θi over the sub-interval x ∈
[
i−1
6
, i

6

)
for i = 1, . . . , 6. In particular,

let

I(x, α) =

(
1 + exp

(
−x− α
0.005

))−1

and αi = (i− 1)/6 for i = 1, . . . , 6. Define

κ̂i(x;θ) = (1− I(x, αi))κ̂i−1(x;θ) + I(x, αi)θi (2.51)

for i = 2, . . . , 6 and κ̂1(x;θ) = θ1, and set κ = κ̂6. Figure 2.2 illustrates a sample log

heat-conductivity with the quantity 0.005 in (2.51) controlling the width of the smoothing

between the sub-intervals. For brevity, define I int : R6 → C[0, 1] to be the interpolation

operator that maps the parameter θ ∈ R6 to the continuous function κ(·;θ) : [0, 1] → R

given by (2.51). The high-fidelity and surrogate models G and G(h) discretize (2.50) in the
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spatial domain Ω using linear finite elements with an equi-spaced mesh of width h > 0 to

obtain an approximation u(h). The discretization gives rise to a sparse tri-diagonal linear

system which is positive definite due to the positivity of the heat conductivity exp (κ(x;θ))

and is solved using SciPy’s solveh banded method that wraps LAPACK’s pbsv function,

which performs a Cholesky factorization of the system. Let F (h) : C1[0, 1]→ C[0, 1] denote

the solution operator that maps κ(·;θ) to the finite element solution u(h)(·,θ). The finite

element solution u(h) is then observed at 120 equally-spaced points throughout Ω with the

observation operator Bobs : C[0, 1]→ R120 defined by

Bobs(u(h))i = u(h)(xi;θ), xi =
i

120
,

for i = 1, . . . , 120. The full parameter-to-observable surrogate models are then given by

G(h) = Bobs ◦ F (h) ◦ I int ,

for h−1
i = 4(i+1) with i = 1, . . . , 15 (multiples of 4 for the number of elements in the mesh)

and the high-fidelity model is given by using h−1
0 = 256 elements

G = Bobs ◦ F (h0) ◦ I int .

Setup of the inverse problem

Let y ∈ R120 be a single observation given by evaluating the high-fidelity model G at the

true parameter θ⋆ = 16 (a 6-dimensional vector of all ones) and perturbed by Gaussian noise

y = G(θ∗) + η, η ∼ N(0, 10−5I120×120) .
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Figure 2.2: A smoothed piecewise constant function given by (2.51).

The standard deviation
√
10−5 of the added noise η corresponds to approximately 1% of the

high-fidelity solution u = F (h0) ◦ I int(θ⋆) at the right endpoint x = 1. The true solution

u(x;θ⋆) and the observed data y are show in Figure 2.3.

The prior distribution is taken to be Gaussian with mean µ0 = 16 and prior covariance

Σ0 = 10−1I6×6. The test function f for the quantity of interest (2.1) is taken to be

f(θ) = 2 · 1{(θ − µLAP)⊤v1 ≥ 0} − 1 , (2.52)

where µLAP andΣLAP are the mean and covariance of the Laplace approximation to the high-

fidelity posterior π = π(h0) and v1 is the eigenvector corresponding to the largest eigenvalue

of ΣLAP normalized to have unit norm. The choice (2.52) for the test function f is motivated

by trying to maximize the left-hand-side of the inequality

(f − Eπ[f ])2 ≤ 4 ∥f∥L∞ ,
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Figure 2.3: The true solution u(x;θ⋆) of the steady-state heat equation (2.50) and the observed
data y ∈ R120 over the domain.

so that the bound (2.8) on the mean-squared error of the MFIS estimator (2.12) is as tight

as possible. Since the test function (2.52) satisfies f(θ) ∈ {±1} for all θ ∈ Θ, in the case

where the high-fidelity posterior π is exactly Gaussian so that the Laplace approximation

π = µh0 we know that by symmetry Eπ[f ] = 0 and therefore

(f − Eπ[f ])2 = ∥f∥L∞ .

Pilot study

To estimate the constants K̃0 and K1 required for Algorithm 2 in computing the CAIS

estimator (2.39) we perform a pilot study in which we first estimate the χ2 divergences

from the Laplace approximations µhi of the surrogate densities π(hi) for i = 1, . . . , 15 to the

high-fidelity target density π and then fit a curve for the upper bound (2.24). First we note

that because the solution operator F (h) approximates the solution u to (2.50) with linear
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finite elements the accuracy of the surrogate models has the form δ(h) = h2 for δ as in

Assumption 3. Moreover, the costs may be modeled as

c(h) = c0 +
c1
h
,

which scales linearly with the number of elements h−1 due to the sparse tri-diagonal structure

of the resulting linear system. The Laplace approximation µhi to each surrogate posterior

π(hi) for i = 1, . . . , 15 is fit using Newton’s method until the norm of the gradient
∥∥∇Φ(hi)

∥∥
has reached machine precision. In this problem the gradient and Hessian matrix are com-

puted using a second-order finite difference scheme and find that 15 Newton iterations with

N0 = 1150 total model evaluations are sufficient to fit the Laplace approximation for each

fidelity. Once the Laplace approximations µhi for i = 1, . . . , 15 have been fit we estimate the

χ2 divergence with Monte Carlo estimator

χ̂2
h,N = N

∑N
i=1

(
π̃(θ[i])/µh(θ

[i])
)2

(∑N
i=1 π̃(θ

[i])/µh(θ
[i])
)2 , {θ[i]}Ni=1

i.i.d.∼ µh . (2.53)

As N →∞ the estimator (2.53) converges almost surely to χ2 (π || µh)+1. Here we compute

χ̂2
h,N with N = 103 samples for each fidelity hi, i = 1, . . . , 15 and average over Nrep = 500

independent trials so that

χ̂2
meas,h =

1

N1

N1∑
i=1

(
χ̂2
h,N

)[i]
, (2.54)

where the index i corresponds to an independent trial of estimating (2.53). Thus, a total of

5× 105 samples are drawn. The constants K̃0 and K1 are then estimated by fitting a curve

of the form

K̃0e
K1δ(h) ,
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where recall that δ(h) = h2, to the data points {(hi, χ̂2
meas,hi

)}15i=1 using a log transformation

and then fitting a first-order polynomial to

log(K̃0) +K1δ(h) .

Results

Figure 2.4 shows the fitted curve using the constants K̃0 and K1 obtained during the pilot

study along with the estimated χ2 data {(hi, χ̂2
meas,hi

)}15i=1. For low fidelities, i.e. large mesh

width h, the χ2 divergence is large due to the poor approximation of the surrogate density.

As the fidelity improves and h → 0, i.e. number of elements increases, the χ2 divergence

quickly converges to a constant that depends on the use of the Laplace approximation as the

biasing density rather than the surrogate density itself. If a more flexible family of biasing

densities were considered such as Gaussian mixtures, transport maps, or normalizing flows,

then the limiting constant may be brought down even further. Since we only consider finitely

many surrogate models 1, . . . , h15, we approximate the solution of the optimization problem

(2.34) with a brute force search to find the best fidelity h∗ ∈ {h1, . . . , h15} from the list of

fidelities that we consider and set N∗ =
⌈
N̂∗
⌉
with N̂∗ corresponding to h∗ through

N̂∗ =
4 ∥f∥2L∞ K̃0

ϵ
eK1δ(h∗) . (2.55)

Figure 2.4 shows the selected fidelity h∗ and thus the corresponding optimal number of

elements as a function of the tolerance ϵ on the MSE. As the tolerance shrinks a higher fidelity

model is required to fit the Laplace approximation to reduce the number of samples needed

in the online phase. Furthermore, notice that because the χ2 divergence χ2 (π || µh1) where

h−1
1 = 8 is significantly larger than the rest that this surrogate model is never selected, even

when the tolerance is very large. Figure 2.5 shows the theoretical optimal trade-off between
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cost (runtime in seconds) and the MSE (tolerance) of the CAIS estimator (2.39) compared

with the trade-off for MFIS estimator (2.12) with a fixed fidelity. Note that the costs of

the pilot study are not included in the total costs of computing the CAIS estimator (2.39)

as the constants are assumed to be provided as in Algorithm 2. Moreover, we assume that

the cost of solving the optimization problem (2.35) for the optimal fidelity is itself negligible

relative to the cost of evaluating the surrogate and high-fidelity models. For the actual MSE

of the estimators, first a ground truth reference value f̄ for Eπ[f ] was computed using 105

evaluations of the high-fidelity model with the estimator f̂MFIS
h0,105

and averaged the results over

N2 = 500 independent trials (again denoted by the superscript [i]) for 5× 107 total samples

f̄ =
1

N2

N2∑
i=1

f̂
[i]

h0,105
. (2.56)

Then, for each tolerance ϵ the MSE of the CAIS estimator (2.39) is estimated usingN3 = 1000

trials

M̂SEϵ =
1

N3

N3∑
i=1

((
f̂CAIS
h∗,N∗

)[i]
− f̄

)2

, (2.57)

where the subscript ϵ denotes the dependence of the pair (h∗, N∗), and thus the CAIS

estimator, on the tolerance ϵ. Figure 2.5 shows both the estimated MSE (2.57) over N3 =

1000 trials for different tolerances ϵ as well as the MSE for the estimators f̂h0,N(h0) and

f̂h1,N(h1) where the number of samples depending on h is

N(h) =

⌈
K̃0

ϵ
exp

(
K1h

2
)⌉

and h1 = 8 is the lowest fidelity we consider (for the surrogate only estimator we average only

N3 = 500 trials). Figure 2.5 shows the estimated MSE (2.57) over N3 = 1000 trials for the

CAIS estimator (2.39) as well as two MFIS estimators with fixed fidelities h0 = 1/256 and

h1 = 1/8, respectively the highest and lowest fidelities. Note that the true MSE estimated
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Figure 2.4: (Left) The measured χ2 divergences χ̂2
meas,h given by (2.54) of χ2 (π || µhi) for i =

1, . . . , 15 and the corresponding fitted curve. (Right) The selected fidelity h∗ ∈ {h1, . . . , h15} for
the optimal number of elements (h∗)−1 from the optimization (2.34) as the tolerance ϵ on the MSE
changes.

in the right plot of 2.5 is bounded above by the tolerance ϵ shown in the left plot due

to the constraint in the optimization problem (2.34). For moderate error tolerances as

small as ϵ = 10−2 we observe an order of magnitude speedup of the CAIS estimator (2.39)

over the MFIS estimator with the fidelity fixed to be the high-fidelity h0. This speedup

is attributed to the reduction in cost of fitting the Laplace approximation to the cheaper

surrogate density π(h∗). For these moderate error tolerances, few samples are needed in the

online phase to sufficiently reduce the variance and thus using the high-fidelity density π

to learn a more accurate biasing density is excessive. Conversely, as the tolerance ϵ → 0,

most of the computational costs shift to the online sampling phase punishing poor biasing

densities derived from low fidelity surrogate models (e.g. π(h1) in Figure 2.5) and resulting in

little speedup. Since here we consider only a fixed set of fidelities h0 > h1 > . . . > h15, once

the tolerance ϵ is sufficiently small the high-fidelity density π = π(h0) will be selected and no

more speedup will be achieved as one may consider δ(h) = 0 for h ≤ h0. These empirical

observations are consistent with the theoretical speedup derived in Section 2.3.4, which in

particular depended upon the rate at which δ(h)→ 0.
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Figure 2.5: (Left) The error tolerance ϵ against the total costs (2.33) (runtime in seconds) to fit
the Laplace approximation µh∗ of π(h∗) and compute the CAIS estimator f̂CAIS

h∗,N∗ with N∗ samples
compared against the MFIS estimator (2.12) with a fixed fidelity. (Right) The estimated MSE,

M̂SEϵ, with respect to ground truth reference value against the total costs.

2.5.2 Euler Bernoulli Beam Model

In this example, we infer the effective stiffness of an Euler Bernoulli beam and follow the

setup presented in Section 4.2 of [Peherstorfer and Marzouk, 2019]. The forward-model code

in this example is available on GitHub1 and was developed by Matthew Parno as a part of

the 2018 Gene Golub SIAM Summer School on “Inverse Problems: Systematic Integration

of Data with Models under Uncertainty”.

Problem Setup

Consider a cantilever beam of unit length modeled by the unit interval Ω = (0, 1) ⊂ R and

fixed at the origin. Given an applied force g(x) throughout the domain Ω the displacement

u : Ω×Θ→ R of the beam is governed by the parametric fourth-order differential equation

∂2

∂x2

(
E(x;θ)

∂2

∂x2
u(x;θ)

)
= g(x), x ∈ Ω (2.58)

1https://github.cim/g2s3-2018/labs
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with boundary conditions

u(0;θ) = 0,
∂u

∂x
(0;θ) = 0,

∂2u

∂x2
(1;θ) = 0,

∂3u

∂x3
(1;θ) = 0

where Θ = R6 and E : Ω × Θ → R is the effective stiffness of the beam. Here g(x) = 1

is taken to be constant and so the effective stiffness function E(x;θ) completely determines

the displacement of the beam with larger effective stiffness resulting in less displacement.

As in the steady-state heat condutction example 2.5.1, the effective stiffness is taken to be

a smoothed piecewise constant function given by (2.51) but with the parameter coordinates

θi replaced by their absolute values |θi| for i = 1, . . . , 6 to enforce positivity of the effective

stiffness. Again we let I int : R6 → C2[0, 1] denote the interpolation operator that maps

the parameters θ to the effective stiffness function E(·;θ). Note that taking the absolute

values |θi| of the parameters in (2.51) will result in a parameter-to-observable map that is

not differentiable. However, in the set up of the inverse problem, the prior, and therefore

posterior, will be concentrated in a region of Θ away from the set

{θ ∈ Θ : ∃i ∈ {1, . . . , 6}, θi = 0} ,

where the interpolation operator is not differentiable. In other words, the parameter-to-

observable map will be smooth in the region of the prior and posterior and hence fitting

the Laplace approximation is not an issue. Given an effective stiffness E(x;θ), the forward

models F (h) solve the equation (2.58) using a second-order finite difference scheme with a

mesh width h > 0 that gives h−1 + 1 total grid points xi = ih for i = 0, . . . , h−1. The

resulting sparse linear system of equations is then solved using SciPy’s spsolve function

to obtain a vector of the approximate solution u(h) ∈ Rh−1+1 evaluated at the grid points

x0, . . . , xh−1 . Finally, the solution operator F (h) : C2[0, 1]→ C[0, 1] maps the finite difference

solution vector u(h) to its continuous piecewise linear interpolant u(h) : [0, 1]→ R such that
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Figure 2.6: The true solution u(x;θ⋆) of the Euler-Bernoulli equation (2.58) and the observed data
y ∈ R40 over the domain.

u(h)(xi) = (u(h))i for i = 0, . . . , h−1. The approximate solution u(h) is then observed at

40 equally spaced points throughout the unit interval with the observation operator Bobs :

C[0, 1]→ R40 defined by

Bobs(u(h))i = u(h)
(
i− 1

39

)
, i = 1, . . . , 40 ,

so that the full parameter-to-observable maps are given by G(h) = Bobs◦F (h)◦I int : R6 → R40.

Note that the left end-point at x = 0 is not observed since it is fixed by the boundary

condition u(0;θ) = 0. As with the steady-state heat conduction problem, the high-fidelity

model G is chosen to use h−1
0 + 1 = 256 grid points and the surrogate models G(h) use

h−1
i + 1 = 4(i+ 1) grid points for i = 1, . . . , 15.
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Setup of the inverse problem

A single synthetic observation y ∈ R40 by evaluating the ground truth parameters θ⋆ = 16 ∈

R6 and perturbing with Gaussian noise

y = G(θ⋆) + η, η ∼ N(0,Γ) ,

with noise covariance Γ = 5.623×10−4I40×40. The standard deviation of the noise
√
5.623× 10−4

corresponds to 5% of the true solution u = F (h0)◦I int(θ⋆) at the end of the beam x = 1. The

prior π0 is taken to be Gaussian with mean µ0 = 16 and covariance Σ0 = 1.778× 10−2I6×6.

The test function f for the quantity of interest (2.1) is the same as in (2.52) where we recall

that its purpose was to obtain as tight of an upper bound for (2.8) as possible.

Pilot study

We perform a similar pilot study as in 2.5.1 to estimate the constants K̃0, K1 required

for computing Algorithm 2. Again we fit a Laplace approximation µhi for each surrogate

density π(hi), i = 1, . . . , 15 using Newton’s method with finite difference approximations

for the gradient and Hessian at each iteration. We find that 20 iterations of Newton’s

method with the finite difference approximations for the derivatives is sufficient to achieve

near machine precision in the norm of the gradient ∇Φ(hi) for each surrogate model. Thus,

when combined with the additional model evaluations to approximate the Hessian, a total

of N0 = 1800 surrogate model evaluations are performed throughout the entire offline phase.

Because a second-order finite difference scheme is used to discretize (2.58), the accuracy

of the surrogate models have the form δ(h) = h2. Moreover, the stiffness matrix for the

resulting linear system is sparse so the costs c(h) scale linearly in the number of grid points

and we model

c(h) = c0 +
c1
h
.
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The χ2 divergences χ2 (π || µhi) for i = 1, . . . , 15 are then estimated with estimator χ̂2
hi,105

from (2.53) and averaged over N1 = 100 independent trials to obtain the estimated value

χ̂2
meas,hi

as in (2.54). The constants K̃0 and K1 are then fit to the data {(hi, χ̂2
meas,hi

)}15i=1

using a linear polynomial for

log(K̃0) +K1h
2 .

Results

Figure 2.7 shows both the estimated χ2 values χ̂2
meas,hi

as well as the fitted curve K̃0e
K1h2 . As

in the steady-state heat conduction problem 2.5.1, the χ2 divergence quickly levels off once

the number of grid points is sufficient to provide a indicating an accurate biasing density.

The lowest fidelity surrogate models are never selected due to the large χ2 divergences for

h−1+1 < 24. Using the fitted constants K̃0 and K1, the optimal fidelity h∗ ∈ {h1, . . . , h15} is

found using a brute-force search with Figure 2.7 showing the optimal number of grid points

(h∗)−1 + 1 for different tolerances ϵ on the MSE. We see that once the tolerance ϵ becomes

less than 10−2 the optimal number of grid points levels off as there are diminishing returns

for investing more computational resources in the online phase. Note that this is in contrast

to the theoretical analysis of Section 2.3.4 where we showed that the fidelity h∗ → 0 as ϵ→ 0

and is because here we do not consider any surrogate models with h−1 + 1 between 64 and

256 grid points. Figure 2.8 shows the theoretical total costs and tolerance ϵ trade-off for

both the CAIS estimator (2.39) as well as the MFIS estimator (2.12) with a fixed fidelity.

Again we consider the fixed low-fidelity model to be h3 with h−1
3 + 1 = 16 grid points. For

the true MSE estimated in the right plot of Figure 2.8, we first estimated a ground truth

reference value f̂ of Eπ[f ] using f̂h0,105 averaged over N2 = 100 independent trials using

equation (2.56). Then the MSE is estimated by averaging over N3 = 2500 independent trials

using equation (2.57). We again see that for error tolerances as small as 10−2 the CAIS

estimator enjoys an order of magnitude speedup over the fixed fidelity MFIS estimator with
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Figure 2.7: (Left) The measured χ2 divergences χ̂2
meas,h given by (2.54) of χ2 (π || µhi) for i =

1, . . . , 15 and the corresponding fitted curve. (Right) The selected fidelity h∗ ∈ {h1, . . . , h15} for
the optimal number of elements (h∗)−1 from the optimization (2.34) as the tolerance ϵ on the MSE
changes.

the high-fidelity density π used to fit the biasing density. As the tolerance ϵ → 0 shrinks

both the costs of the context-aware and high-fidelity alone estimators are asymptotically the

same and both outperform the the low-fidelity alone MFIS estimator due to the poor biasing

density that is constructed.

2.5.3 Advection-diffusion Problem

In this example, we consider a concentration of gas in air that diffuses throughout a domain

with advection given by wind. In particular, we want to infer the initial center of the

concentration of gas given observations of the concentration at a later time. The forward

model is taken from hIPPYlib 2 [Villa et al., 2016,Villa et al., 2018,Villa et al., 2021] with

minor modifications.

2https://hippylib.github.io/tutorials v3.0.0/4 AdvectionDiffusionBayesian/
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Figure 2.8: (Left) The error tolerance ϵ against the total costs (2.33) (runtime in seconds) to fit
the Laplace approximation µh∗ of π(h∗) and compute the CAIS estimator f̂CAIS

h∗,N∗ with N∗ samples
compared against the MFIS estimator (2.12) with a fixed fidelity. (Right) The estimated MSE,

M̂SEϵ, with respect to ground truth reference value against the total costs.

Problem Setup

Following the setup in hIPPYlib, consider the domain

Ω = [0, 1]2 \ ([0.25, 0.5]× [0.15, 0.4] ∪ [0.6, 0.75]× [0.6, 0.85]) ⊂ R2 ,

as the unit square with two rectangular holes. For this problem the parameter corresponds

to a point in the domain, and so we set Θ = Ω. Now let u : Ω × [0, 1] × Θ → R denote

the concentration of the gas at position x ∈ Ω and time t ∈ [0, 1] which is governed by the

following advection-diffusion PDE

∂tu(x, t;θ)− κ∆u(x, t;θ) + v(x) · ∇u(x, t;θ) = 0, (x, t) ∈ Ω× [0, 1] ,

u(x, 0;θ) = e−10(x1−θ1)2−10(x2−θ2)2 , x ∈ Ω ,

κ∇u(x, t;θ) = n, (x, t) ∈ ∂Ω× [0, 1] ,

(2.59)

where the initial concentration is parameterized to be a Gaussian centered at θ ∈ Θ. Here

κ = 10−3 is the diffusion coefficient that controls the rate at which the gas diffuses, n is the
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outward unit normal vector from the boundary, and v : Ω→ R2 is the velocity field for the

wind that moves the concentration around the domain. In particular, the velocity field v is

the solution of the steady-state Navier-Stokes equation

− 1

Re
v(x) +∇q(x) + v(x) · ∇v(x) = 0, x ∈ Ω ,

∇ · v(x) = 0, x ∈ Ω ,

v(x) = g(x), x ∈ ∂Ω ,

(2.60)

with the left and right walls driving the flow through the boundary condition that v(x) =

g(x) (see Figure 2.9). In Equation (2.60) the constant Re = 102 is the Reynold’s number

of the surrounding air, q : Ω → R is the corresponding pressure field, and external force

g : ∂Ω→ R given by

g(x) =


e2 , x1 = 0

−e2 , x1 = 1

0 , x1 ∈ (0, 1) ,

where e2 = (0, 1)⊤. From the left plot in Figure 2.9 we see that indeed the the wind is

flowing towards the top of the domain along the left wall where x1 = 0 and towards the

bottom of the domain along the right wall where x1 = 1. The dependence on the solution

u(x, t;θ) of (2.59) on the parameter θ is only through the initial condition u(x, 0;θ) and

that, in particular, the velocity field v for the wind (2.60) is independent of θ. Thus, we can

precompute v once (for each mesh). Although the PDE (2.59) is linear for u, it is nonlinear

in the parameters θ due to the form of the initial concentration. To be consistent with the

other numerical examples 2.5.1 and 2.5.2, let the interpolation operator I int : Θ → C2[0, 1]

be defined by

I int(θ) = e−10(x1−θ1)2−10(x2−θ2)2 ,
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which maps the parameters θ = (θ1, θ2)
⊤ to the initial concentration field. The forward

models F (h) : C2[0, 1] → C[0, 1] approximate the solution operator which maps the initial

concentration u(x, 0;θ) to the final concentration u(x, 1;θ) at time t = 1. Following [Villa

et al., 2016, Villa et al., 2018, Villa et al., 2021], the spatial domain Ω is discretized with

first order Lagrange finite elements and then integrates in with implicit Euler in time to

obtain the approximation u(h)(x, 1;θ). Here the fidelity h is the maximum width of a cell

in the mesh and decreases as the number of cells, and hence degrees of freedom, increases.

For the high-fidelity approximation F to the solution operator, a discretization with 14,313

degrees of freedom and a time step size of 10−3 is used. The surrogate models using the

approximations F (h) are defined similarly with the total number of degrees of freedom in

the discretized system ranging from 20 to 3,661 and with a time step size of 10−2. For each

surrogate model F (h) and high-fidelity model F , the computation of the velocity field v is

done by solving the steady-sate Navier-Stokes equation (2.60) by discretizing with mixed

quadratic and linear finite elements for the velocity and pressure components, respectively,

on the same spatial mesh used to solve (2.59) for the concentration u. The resulting nonlinear

system is then solved using Newton’s method until the relative norm of the gradient is below

10−4 its initial value. Pointwise observations of the concentration at the final time are taken

at four points in the bottom-right quadrant of the domain as in Figure 2.9 with observation

operator Bobs : C[0, 1]→ R4 defined by

Bobs(u(h)) =



u(h)(x1, 1;θ)

u(h)(x2, 1;θ)

u(h)(x3, 1;θ)

u(h)(x4, 1;θ)


,

(
x1 x2 x3 x4

)
=

2/3 5/6 2/3 5/6

1/6 1/6 1/3 1/3

 .

The full parameter-to-observable maps G(h) : R2 → R4 are given by G(h) = Bobs ◦F (h) ◦ I int.

Because the parameter domain Θ = Ω is bounded, we do not have to worry about the biasing
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Figure 2.9: (Left) The velocity field v throughout the domain Ω with the two rectangular barriers.
(Middle) The true initial concentration u(x, 0;θ⋆) centered at θ⋆ = (0.8, 0.2)⊤ ∈ Θ. (Right) The
true concentration u(x, 1;θ⋆) at the final time t = 1 when we observe the solution. In both middle
and right plots the observation points are shown as the four black dots in the bottom-right corner.

density or surrogate densities decaying too fast for importance sampling to fail as long as

they are absolutely continuous with respect to each other. In particular, Assumptions 2, 3,

and 4 are satisfied. Moreover, Assumptions 6 and 5 are satisfied because the forward models

F and F (h), and hence the parameter-to-observable maps G and G(h), are differentiable on

a compact domain and therefore globally Lipschitz. As a result Theorem 3 may be applied

to obtain the cost complexity of the CAIS estimator (2.39) given by Theorem 2.

Setup of the inverse problem

A single observation

y = G(θ⋆) + η , η ∼ N(0,Γ) ,

is generated from the true initial concentration center θ⋆ = (0.8, 0.2)⊤ and perturbed by

Gaussian noise with covariance Γ = 8.876×10−3I4×4. The standard deviation
√
8.876× 10−3

of the added noise is 10% of the norm of the true solution u(x, 1;θ⋆). For the prior we take

a Gaussian with mean µ0 = (0.75, 0.25)⊤ and covariance Σ0 = 10−2I2×2 and restrict it to

have zero density outside of the domain Ω. The restriction of the prior to be supported over

the domain Θ is only necessary to ensure that the posterior has zero density outside of the
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domain. Practically this is straightforward to implement because samples can be drawn by

sampling from the unrestricted distribution N(µ0,Σ0) and rejecting those that lie outside

of Ω. Moreover, the prior is only needed up to a normalizing constant since self-normalized

importance sampling (2.4) is used.

Fitting the Laplace approximation

Similar to pilot studies of the previous two examples, we fit the Laplace approximation to each

surrogate posterior π(h) using Newton’s method. However, instead of using finite differences

to approximate the gradients and Hessians of the potentials Φ(h), here we leverage fast adjoint

solvers available in hIPPYlib to efficiently compute the derivatives. In particular, hIPPYlib

computes the gradient and Hessian of the negative log-likelihood

1

2

∥∥y − Bobs ◦ F (h)(u0)
∥∥2
Γ−1

with respect to the initial concentration u0. To obtain the derivatives with respect to the

parameters θ we apply the chain rule with the derivatives of the interpolation operator

with respect to θ. Although (2.59) is a linear PDE and hence the solution operator F (h) is

linear, the interpolation operator I int is nonlinear and thus the Hessian must be re-evaluated

at every step of Newton’s method. In particular, evaluating the gradient requires solving

both the forward problem as well as the adjoint problem while the Hessian requires two

additional linear solves for the forward incremental and adjoint incremental equations. We

consider the cost of each of these four linear solves to be equivalent and therefore set the

number of surrogate model evaluations to be 4 per iteration of Newton’s method. To fit

the Laplace approximation we start at a random initial point in the bottom-right quadrant

θ0 ∈ [0.5, 1] × [0, 0.5] and find that 10 Newton iterations, but not fewer, is sufficient for

the norm of the gradient of the log posterior to achieve machine precision. Thus, the total
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number of offline evaluations of the surrogate model G(h) is set to N0 = 40.

Pilot study

To estimate the constants K̃0, K1, we follow the same procedure as in the steady-state

heat flow and Euler Bernoulli problems with the exception that here we fit the Laplace

approximations using the adjoint method for the derivatives. We estimate the chi-squared

divergences using (2.53) with 5×105 total samples and then fit a curve of the form K̃0e
K1δ(h).

The resulting fitted curve as well as the estimated χ2 values are shown in Figure 2.10, where

we see the same behavior as in the earlier examples of the χ2 divergence quickly leveling

off. Recall that the fidelity h corresponds to the max-width of the mesh in the spatial

domain. For the surrogate error δ(h) we fit a curve of the form δ(h) ∝ hα, following from

the convergence theory of finite elements. To do this we first compute a reference solution

u(h0) for a small max mesh width h0 and then compare the L2 error

∥∥u(h0) − u(h)∥∥
of the surrogate model solutions u(h). Similarly, to obtain the cost function c(h), we measure

the runtime of each surrogate and high fidelity model and average over 10,000 trials. Using

the measured costs we fit a curve of the form c(h) = c0h
−β since the logarithm of the

maximum mesh width scales proportionally to the logarithm of the number of degrees of

freedom, for the particular mesh obtained with FEniCS [Alnaes et al., 2015].

Results

Using the constants K̃0, K1 as well as the functions c, δ obtained during the pilot study, we

can formulate the optimization problem (2.34) for the optimal fidelity h∗ required for the

CAIS estimator. Although computing the Laplace approximation in the offline phase must
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be done in serial, the online phase is trivially parallelizable as the samples may be drawn

and re-weighted according to the high-fidelity posterior density π independently. Thus,

when considering total runtime as the costs we may scale the necessary number of samples

by the number of available processors. Here we paralleilize the online phase over nproc = 64

processors. The optimal fidelity or max mesh width in this case is given by the solution to

the optimization problem

min
h>0

4 ∥f∥2L∞ K̃0C
high

ϵnproc

eK1δ(h) +N0c(h) . (2.61)

Since here we consider only finitely many surrogate models we do a brute-force search to

solve (2.61) for the optimal mesh width, which in turn gives the optimal number of degrees

of freedom for the discretization as shown in Figure 2.10. We again see that optimal number

of degrees of freedom levels off after shrinking the tolerance ϵ below 10−2 since the surrogate

model is already sufficiently accurate. Figure 2.11 shows the theoretical speedup in runtime

predicted by the optimization problem (2.61) versus the actual measured speedup for the

CAIS estimator (2.39) over the fixed high and low fidelity MFIS estimators. The ground truth

reference value used to compute the MSE was estimated using the MFIS estimator (2.12) with

the high-fidelity surrogate model and 106 total samples. In the regime where the tolerance

ϵ is moderate, e.g. larger than 10−2, the CAIS estimator (2.39) is able to take advantage of

the cheap surrogate models to attain large speedups over the fixed high-fidelity estimator.

However, as ϵ → 0 this speedup over the MFIS estimator with the high-fidelity surrogate

model diminishes as optimal fidelity shown in Figure 2.10 levels off. Alternatively, as more

computational resources are invested into the CAIS estimator, a more accurate surrogate

model is required eliminating speedup in the offline phase. When compared to the MFIS

estimator that only uses a low fidelity surrogate model we observe the opposite, which is that

for moderate error tolerances an inaccurate surrogate model with χ2 (π || µh) large is still
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Figure 2.10: (Left) The measured and fitted values of χ2 (π || µh)+1 for each Laplace approxima-
tion to a surrogate model π(h). (Right) The optimal number of degrees of freedom corresponding
the optimal mesh width as given by (2.61) for different tolerances ϵ.

sufficient, As ϵ→ 0 and the online costs begin to dominate, larger effective sample sizes are

required giving rise to speedup over low-fidelity only estimators that derived poor biasing

densities. Note that when comparing the left and right plots of Figure 2.11, the plot on the

left shows the tolerance ϵ which is an upper bound on the MSE through (2.8). Moreover,

the discrepancy between the MSE and the tolerance ϵ can be accounted for with the fact

that the bound (2.8) is uniform over all test functions and that for a fixed test function f one

may obtain a tighter bound. Despite this, the curves in both the left and right plots behave

similar qualitatively i.e. show similar speedups and asymptotic cost complexity rates.

Extension to 12-dimensional parameter

So far the three examples we have looked at are in relatively low parameter dimensions

(6, 6, and 2, respectively). For the advection-diffusion problem we can easily change the

dimension of the parameter to correspond to additional centers for the initial concentration.

In particular, we now look at a 12-dimensional extension of the advection-diffusion problem

by considering six unique centers for the initial concentration (2 dimensions per center). The

forward models F and F (h), which approximate the solution operator, remain the same, but
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Figure 2.11: (Left) The tolerance ϵ on the MSE vs. the theoretical cost in seconds of runtime of
the entire computational procedure. (Right) The estimated MSE of the CAIS estimator with the
optimal surrogate model vs. cost. For the CAIS estimator, the MSE is computed by averaging
over 100 independent trials. For the fixed high and low-fidelity estimators the MSE is estimated
by averaging over 50 independent trials.

we now define the interpolation operator to be

I int(θ) =
6∑
i=1

e−10(x1−θ2i−1)
2−10(x2−θ2i)2 , x ∈ Ω ,

which maps θ ∈ R12 to the initial concentration u(x, 0;θ) ∈ C2(Ω). We also add four new

observation points, for eight total, in the top left corner of the domain Ω, which are the same

as the observation points shown in 2.9 but reflected across the line x1 = x2. Therefore, the

observation operator Bobs : C2[0, 1] → R8 and hence G : R12 → R8 as well as the surrogate

models G(h). To generate the synthetic data y we also increase the standard deviation of

the added noise η to 20% of the norm of the true solution ∥u(·, 1;θ⋆)∥L∞ . We set the prior

π0 to be Gaussian with a covariance of Σ0 = 4 × 10−3I12×12. The rest of the problem set

up is the same as the 2-dimensional problem as well as performing an analogous pilot study.

Figures 2.12 and 2.13 show that the context-aware estimator outperforms both the estimator

that uses the high-fidelity alone and the estimator that only uses the low-fidelity model for

constructing the biasing density. This example also suggests that the CAIS and MFIS
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Figure 2.12: (Left) The estimated values of χ2 (π || µh) + 1 for each surrogate model π(h) as well
as the fitted curve with constants K̃0 and K1. (Right) The optimal number of degrees of freedom
as given by (2.61) for different tolerances ϵ.

estimators are independent of the dimension, a notable feature of Monte Carlo methods, as

long as χ2 divergence does not blow up with the dimension d. This means that the CAIS

can achieve speedup over a fixed fidelity MFIS estimator as long as the surrogate models

and biasing densities are sufficiently accurate to provide a useful approximation with small

χ2 divergence.
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Figure 2.13: (Left) The tolerance ϵ on the MSE vs. the theoretical cost in seconds of runtime of
the entire computational procedure. (Right) The estimated MSE of the CAIS estimator with the
optimal surrogate model vs. cost. For the CAIS estimator, the MSE is computed by averaging
over 100 independent trials. For the fixed high and low-fidelity estimators the MSE is estimated
by averaging over 50 independent trials.
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Chapter 3

Multilevel Stein variational gradient

descent

In this chapter we present the published work [Alsup et al., 2021] as well as our pre-print [Al-

sup et al., 2022]. Many computational applications admit a hierarchy of available surrogate

models that become increasingly accurate and expensive as the level increases. Here we

consider a multilevel extension to Stein variational gradient descent (SVGD), that leverages

such a hierarchy of surrogate models to learn increasingly accurate densities. First proposed

by Liu and Wang [Liu and Wang, 2016], SVGD mimics traditional variational inference but

avoids an explicit parametrization of the approximating distribution by instead updating an

ensemble of particles [Liu et al., 2019]. More efficient extensions of SVGD seek to exploit

curvature of the target distribution such as in the Stein variational Newton method [Detom-

maso et al., 2018] or by using adaptive kernels [Duncan et al., 2019,Wang et al., 2019].

SVGD has also been extended to take advantage of low-dimensional structure in the target

distribution [Chen et al., 2019] as well as having a gradient-free version [Han and Liu, 2018]

that instead computes gradients with respect to a surrogate model and then re-weights using
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importance sampling. Other variants, which are more akin to traditional MCMC methods

based on [Ma et al., 2015], include stochastic analogues [Gallego and Insua, 2020, Leviyev

et al., 2022] that are highly efficient and can be Metropolized to eliminate bias at each it-

eration. Most of the analysis of SVGD stems from the works [Liu, 2017, Lu et al., 2019]

which showed that SVGD follows a gradient flow with respect to the KL divergence in the

mean-field and continuous-time limit. The work [Chewi et al., 2020] showed an analogous

result for the chi-squared divergence. Limited progress, primarily in the work [Korba et al.,

2020], has been made towards extending this analysis to obtain pre-asymptotic and finite

particle convergence results and largely remains an open problem. Finally, other directions

of analysis include understanding the performance of SVGD in high-dimensions [Ba et al.,

2019].

3.1 Stein variational gradient descent

SVGD [Liu and Wang, 2016] is a general purpose inference method that performs variational

inference in a nonparametric fashion using an ensemble of particles. Because SVGD is

nonparametric, it does not require specifying a parametrized family of distributions to be

optimized over as is the case with fitting transport map approximations, normalizing flows,

or Gaussian mixture models. Similar to other variational approaches for inference, SVGD

seeks to find an approximation µ that minimizes the KL divergence KL (µ || π) to the target

density π. While more traditional variational approaches attempt to solve

µ⋆ = min
µ∈P

KL (µ || π) =
∫
R
µ(θ) log

µ(θ)

π(θ)
dθ

directly over a family of densities P , SVGD uses an iterative approach by performing steepest

descent to update the density µ. For SVGD, one starts with an initial density µ0 and updates
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it in the steepest descent direction of a transport map that minimizes the KL divergence.

Instead of minimizing over a parametrization of maps, such as transport map or normalizing

flow approximations, SVGD minimizes over maps in a reproducing kernel Hilbert space

(RKHS). Let H be a RKHS with positive definite kernel K : Θ × Θ → R of functions

g : Θ→ R so that

⟨K(θ, ·), g(·)⟩H = g(θ), ∀g ∈ H, θ ∈ Θ ,

and let Hd ≃ H×· · ·×H be the corresponding RKHS of vector fields g = (g1, . . . , gd) : Θ→

Rd. For any density µ such that µ is absolutely continuous with respect to π and

KL (µ || π) <∞ ,

define the KL functional Jµ : Hd → R by

Jµ(g) = KL ((I− g)#µ || π) ,

where g ∈ Hd. The functional Jµ(g) evaluates the KL divergence of the updated density

(I − g)#µ to the target density π, and so the functional gradient at zero is the function

∇µJ(0) ∈ Hd such that

⟨∇Jµ(0), g⟩Hd = lim
ϵ→0

KL ((I− ϵg)#µ || π)−KL (µ || π)
ϵ

.

The initial SVGD work [Liu and Wang, 2016] showed that the functional gradient ∇Jµ(0)

has a closed form solution using the RKHS structure of H and Stein’s identity. In particular,

it was shown that

∇Jµ(0) (θ) = −Ez∼µ [K(z,θ)∇ log π(z) +∇1K(z,θ)] , (3.1)
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where ∇1 denotes the gradient with respect to the first argument only.

Continuous-time SVGD

From a particle’s perspective, SVGD starts with an initial particle θ0 ∼ µ0 and evolves it

along the steepest descent direction, also known as the mean-field characteristic flow [Lu

et al., 2019],

θ̇t = −∇Jµt(0)(θt) , (3.2)

where µt denotes the density of θt at time t ≥ 0. At any instance in time t the particle is

moving in the direction −∇Jµt(0) which depends on the current density of the particle µt.

This density is governed by the following nonlinear Fokker-Planck equation

∂tµt(θ) = ∇ · (µt(θ)∇Jµt(0)(θ))

= −∇ · (µt(θ)Ez∼µt [K(z,θ)∇ log π(z) +∇1K(z,θ)]) .

(3.3)

We refer to the approximation µt that solves (3.3) as the continuous-time SVGD approx-

imation in contrast to a discrete-time version which we present in the next section. An

important result concerned with the convergence of the solution µt to (3.3) derived in [Liu,

2017, Theorem 3.4] is that, for the solution µt of (3.3), it holds that

d

dt
KL (µt || π) = −D(µt || π)2 , (3.4)

where

D(µt || π) = max
g∈Hd

{
Eθ∼µt [∇ log π(θ)⊤g(θ) +∇ · g(θ)] : ∥g∥Hd ≤ 1

}
is the Stein discrepancy. Equation (3.4) guarantees that the solution µt to (3.3) decreases

the KL but does not necessarily need to converge to 0. The solution µt may fail to converge

to π whenever the space H is not sufficiently rich and so the kernel K must be chosen
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appropriately. We note that the converse is true however, D(µ || π) = 0 if µ = π.

Discrete-time SVGD

Continuous-time SVGD requires integrating the characteristic flow (3.2) exactly to obtain a

sample θt ∼ µt where µt solves (3.3). However, this may be difficult because the flow (3.2)

depends on the current density µt as well as potentially no closed-form solution for µt existing.

Instead we may apply the explicit Euler method to integrate the flow (3.2) to obtain

θτ+1 = θτ − δgτ (θτ ) , gτ = ∇Jµτ (0) , (3.5)

where τ = 1, 2, . . . now corresponds to an iteration and δ > 0 is a predetermined step size.

The updated density µτ+1 becomes the pushforward of the previous density

µτ+1 = (I− δgτ )#µτ , τ = 1, 2, . . . . (3.6)

We refer to the density µτ obtained by the sequence of updates (3.6) as the discrete-time

SVGD approximation.

Remark 8. Both the continuous-time (3.3) and discrete-time (3.6) SVGD approximations

assume that the gradients ∇µJ(0) are evaluated exactly, which may not be achievable in

practice and gives rise to the particle formulation presented in Section 3.5.

A bound similar to (3.4) was shown in [Liu, 2017, Theorem 3.3] to hold for discrete-time

SVGD as long as the step size δ is sufficiently small

KL (µτ+1 || π) ≤ KL (µτ || π)− δ(1− δB)D(µτ || π)2 , (3.7)

where the constant B depends on the kernel K and the target density π. As with continuous-

time SVGD, the sequence of densities (µτ )τ≥1 minimizes the KL divergence.
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3.2 Continuous-time single-level SVGD and

MLSVGD

In this section we consider only continuous-time SVGD and MLSVGD and reserve discussion

of their discrete-time counterparts to Section 3.3. SVGD requires being able to evaluate the

score function∇ log π exactly to ensure that the solution µt to (3.3) converges to π. However,

in the setting where the score function is intractable, which is often the case for Bayesian

inverse problems, we may still obtain an approximation µ to arbitrary accuracy ϵ in the

Hellinger metric [Tsybakov, 2009] defined as

dHell (π, µ)
2 =

1

2

∫
Θ

(√
π(θ)−

√
µ(θ)

)2
dθ , (3.8)

so that

dHell (µ, π) ≤ ϵ

given that sufficiently accurate surrogate models are available. Let (π(ℓ))∞ℓ=1 denote a se-

quence of approximating densities over Θ ⊂ Rd and integrating continuous-time SVGD (3.3)

for unit time with target density π(ℓ) incurs a cost cℓ. Let each π(ℓ) ∈ C1(Θ) be continu-

ously differentiable and be such that we may evaluate its score function ∇ log π(ℓ). Further,

let π(ℓ)(θ) → π(θ) for each θ ∈ Θ. The pointwise convergence of the densities guarantees

convergence of the distributions π(ℓ) → π in the total variation, and also Hellinger, metrics

by Scheffe’s lemma. Given a tolerance ϵ and an initial distribution µ0, the approximation is

obtained by first selecting a high-fidelity level L = L(ϵ) ∈ N such that

dHell

(
π(L), π

)
≤ ϵ

2
. (3.9)
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This allows us to focus on learning an approximation µ to π(L) which is tractable and satisfies

dHell

(
µ, π(L)

)
≤ ϵ

2
.

The triangle-inequality for the Hellinger distance will then guarantee that

dHell (µ, π) ≤ dHell

(
µ, π(L)

)
+ dHell

(
π(L), π

)
≤ ϵ

as desired. Note that the Hellinger distance is appealing because it admits a triangle-

inequality allowing us to separate the deterministic error due to the fidelity L and the

statistical error from the learned approximation µ. Moreover, the Hellinger distance satisfies

the following upper bound

2dHell (µ1, µ2)
2 ≤ KL (µ1 || µ2) , (3.10)

which is convenient for SVGD in particular which minimizes the KL divergence (3.4).

3.2.1 Single-level SVGD

One option to obtain a density µSL with

dHell

(
µSL, π(L)

)
≤ ϵ

2
, (3.11)

which we refer to as the (continuous-time) single-level SVGD approximation, is to apply

SVGD to the high-fidelity target density π(L) by solving (3.3) up to time

TSL(ϵ) = inf
{
t ≥ 0 : dHell

(
µt, π

(L)
)
≤ ϵ

2

}
, (3.12)
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so that

µSL = µTSL .

Note that the time TSL = TSL(ϵ) will necessarily depend on the initial density µ0 as well

and will increase as ϵ → 0. The computational cost of single-level SVGD to obtain the

approximation µSL is therefore

cSL(ϵ) = cL(ϵ)TSL(ϵ) . (3.13)

3.2.2 MLSVGD

MLSVGD uses the high-fidelity density π(L), with L the same as in (3.9), as well the lower

fidelity surrogate densities π(1), . . . , π(L−1) as opposed to single-level SVGD which only uses

the high-fidelity density. Because single-level SVGD only integrates with respect to the high-

fidelity density π(L), which may be computationally expensive, poor initial densities µ0 may

result in a large integration time TSL leading to large a computational cost cSL. MLSVGD

aims to circumvent this issue by using the surrogate densities (π(ℓ))L−1
ℓ=1 to learn increasingly

better initial distributions. At the first level ℓ = 1 we start with the initial density µ0 and

integrate (3.3) with respect to the lowest fidelity surrogate density π(1) for time T1 to obtain

an approximation µ
(1)
T1

of π(1). Then for the next level ℓ = 2 we start with the new initial

density µ
(1)
T1

and integrate (3.3) with respect to π(2) for time T2 to obtain µ
T

(2)
2
. In general,

for levels ℓ = 2, . . . , L we start with the initial density µ
(ℓ−1)
Tℓ−1

and integrate (3.3) with respect

to π(ℓ) for time Tℓ to obtain the initial density µ
(ℓ)
Tℓ

for the next level. The process terminates

at the high-fidelity level L at which point µ
(L)
TL

serves as an approximation to π(L). We refer

to this final approximation as the (continuous-time) MLSVGD approximation

µML = µ
(L)
TL
.
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Figure 3.1 presents a schematic of the procedure for MLSVGD in comparison to the procedure

followed by single-level SVGD. Note that the integration times T1, . . . , TL at each level must

be chosen to guarantee that the MLSVGD approximation satisfies

dHell

(
µML, π(L)

)
≤ ϵ

2
, (3.14)

which motivates us to recursively define

Tℓ = inf

{
t ≥ 0 : KL

(
µ
(ℓ)
t || π(ℓ)

)
≤ ϵ2ℓ

2

}
, (3.15)

for ℓ = 1, . . . , L and where ϵ1 ≥ ϵ2 ≥ . . . ≥ ϵL and ϵL ≤ ϵ is a sequence of tolerances and µ
(ℓ)
t

is the solution of (3.3) at time t with initial density µ
(ℓ−1)
Tℓ−1

. At the final level ϵL ≤ ϵ, which

by (3.10) guarantees that the MLSVGD approximation satisfies (3.14). The cost complexity

of deriving the MLSVGD approximation µML then becomes

cML(ϵ) =
L∑
ℓ=1

cℓTℓ , (3.16)

where both L and T1, . . . , TL will depend on ϵ. Note that by changing the sequence of

tolerances ϵ1, . . . , ϵL the integration times (3.15) at each level will necessarily change as well.

The motivation behind allowing different tolerances at each level comes from the fact that

the objective is to derive an approximation for the high-fidelity density π(L) but we are

agnostic to whether the intermediate approximations µ
(ℓ)
Tℓ

are accurate. This means that if

a surrogate density π(ℓ) is not close in KL divergence to the high-fidelity density π(L) then

we do not need to integrate (3.3) for a long time to derive a close approximation µ
(ℓ)
Tℓ

to π(ℓ)

since it will be of limited use for approximating π(L). This suggests setting each tolerance ϵℓ

to correspond to how close the surrogate density π(ℓ) is to π in the KL divergence, which we

make precise in Proposition 4.
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single-level SVGD:

µ0
π(L)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
T

µSL

MLSVGD:

µ0
π(1)−−−−−−−→
T1

µ
(1)
T1

π(2)−−−−−−−→
T2

µ
(2)
T2

π(3)−−−−−−−→
T3

· · · π(L)−−−−−−−→
TL

µML

Figure 3.1: An illustration of the procedure for single-level SVGD which only uses the high-fidelity
density π(L) as opposed to the procedure for MLSVGD which uses the intermediate densities
π(1), . . . , π(L−1) sequentially.

3.2.3 Cost-complexity of single-level SVGD and MLSVGD

Single-level SVGD

The cost complexity of single-level SVGD (3.13) depends on the tolerance ϵ, the cost cL of

integrating with respect to the high-fidelity density model π(L), and how quickly the SVGD

converges to the target distribution. Each of the following three assumptions addresses one

of these points and together allow us to derive an upper bound on the cost complexity (3.13)

of single-level SVGD in terms ϵ and relevant constants.

Assumption 7. The costs cℓ of integrating (3.3) with target density π(ℓ) for any unit time

interval are bounded as

cℓ ≤ c0s
γℓ , ℓ ∈ N ,

with constants c0, γ > 0 independent of ℓ and s > 1.

Assumption 8. There exist constants α, k0, k1 > 0 independent of ℓ such that

KL
(
µ0 || π(ℓ)

)
≤ k0 ,
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for all ℓ ∈ N and

KL
(
π(ℓ) || π

)
≤ k1s

−αℓ , ℓ ∈ N ,

where s is the same constant independent of ℓ as in Assumption 7 and µ0 is the initial

distribution.

Assumption 9. There exists a decreasing function r : [0,∞) → [0, 1] such that r(0) = 1,

limt→∞ r(t) = 0, and for an initial distribution ν0

KL
(
νt || π(ℓ)

)
≤ r(t)KL

(
ν0 || π(ℓ)

)
, ℓ ∈ N ,

holds, where νt is the solution of the nonlinear Fokker-Planck equation (3.3) at time t.

The first assumption 7 is a typical assumption in the multilevel literature (see Sec-

tion 1.1.3) that allows us to compare the costs of different fidelity models. The second

assumption 8 typically goes together with Assumption 7 and captures how quickly the sur-

rogate models converge to the intractable target density π and will allow us to select the

high-fidelity level L so that (3.9) is satisfied. The final assumption 9 is independent of the

first two assumptions and will guarantee that the single-level SVGD approximation is suffi-

ciently accurate so that (3.11) is satisfied. Note that both Assumptions 8 and 9 use bounds

on the KL divergence as opposed to the Hellinger distance directly, which is needed for (3.9)

and (3.11). This is advantageous for two reasons. The first is that the Hellinger distance may

be upper bounded by the KL divergence so that convergence in the KL divergence implies

convergence in the Hellinger distance (3.10). The second is that the KL divergence is much

more amenable to the convergence theory of SVGD for the solution of (3.3). In particular,

note that for any fixed ℓ ∈ N the bound in Assumption 9 is guaranteed to hold following

from (3.4). Assumption 9 requires that such a function r exists and that this bound holds

uniformly for each level ℓ ∈ N. An example of a function r that measures the convergence

of SVGD to the target density, which was considered in [Alsup et al., 2021], is the expo-
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nential rate r(t) = e−λt for λ > 0. It was shown in [Korba et al., 2020] that the bound in

Assumption 9 is satisfied with an exponential rate if the distributions π(ℓ) satisfy a Stein

log-Sobolev inequality. Moreover, [Chewi et al., 2020] showed that SVGD converges in the

KL divergence with an exponential rate for a specific choice of the kernel K.

Remark 9. There is a strong connection between SVGD and the Langevin algorithm. First

note that the Langevin algorithm satisfies a linear Fokker-Planck equation for the density

and converges at an exponential rate in the KL divergence when the target measure satisfies

a log-Sobolev inequality [Bakry et al., 2014, Theorem 5.2.1]. SVGD on the other hand

satisfies a nonlinear Fokker-Planck equation and converges at an exponential rate under

a Stein log-Sobolev inequality [Korba et al., 2020]. The exponential rate comes from the

gradient flow structure of both the Langevin algorithm and SVGD which gives rise to their

corresponding Fokker-Planck equations. We refer to [Jordan et al., 1998] for the connection

between gradient dynamics in the space of probability measures and the Fokker-Planck

equation. The main difference between the Langevin algorithm and SVGD is that for SVGD

the gradient is restricted to be in a RKHS.

Under these assumptions, Proposition 2 derives the cost complexity of obtaining the

single-level SVGD approximation.

Proposition 2. If Assumptions 7,8,9 hold, then the costs of continuous-time SVGD to

obtain µSL with

dHell

(
µSL, π

)
≤ ϵ

is bounded as

cSL(ϵ) ≤ c0s
γLTSL ≤ 2c0s

γ(2k1)
γ/αr−1

(
ϵ2

2KL (µ0 || π(L))

)
ϵ−2γ/α . (3.17)
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In the case where r from Assumption 9 is not invertible, which is needed for the cost

complexity (3.17), we define

r−1(ϵ) = inf {t ∈ [0,∞) : r(t) ≤ ϵ} ,

which always exists and is decreasing as ϵ→∞, or equivalently increasing as ϵ→ 0.

Proof. By the triangle inequality for the Hellinger distance we have that

dHell

(
µSL, π

)
≤ dHell

(
µSL, π(L)

)
+ dHell

(
π(L), π

)
,

so we will bound both of these terms independently by ϵ/2. By inequality (3.10), it is

sufficient to bound the KL divergence because

dHell

(
µSL, π(L)

)
≤
√

KL (µSL || π(L))

2
, (3.18)

and similarly for dHell

(
π(L), π

)
. By Assumption 8 choose L to be

L =

⌈
1

α
logs

(
2k1
ϵ2

)⌉
≤ 1

α
logs

(
2k1
ϵ2

)
+ 1, (3.19)

so that

dHell

(
π(L), π

)
≤
√

KL (π(L) || π)
2

≤
√
k1s−αL

2
≤ ϵ

2
. (3.20)

The time needed to integrate with SVGD to achieve dHell

(
µSL, π(L)

)
≤ ϵ/2 is

TSL = inf
{
t ≥ 0 : dHell

(
µt, π

(L)
)
≤ ϵ

2

}
.
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Again by inequality (3.10),

TSL ≤ inf

{
t ≥ 0 : KL

(
µt || π(L)

)
≤ ϵ2

2

}
.

Now by Assumptions 9, the rate function r is invertible and the time needed to integrate

with SVGD to achieve dHell

(
µSL, π(L)

)
≤ ϵ/2 is bounded as

TSL ≤ r−1

(
ϵ2

2KL (µ0 || π(L))

)
. (3.21)

With Assumption 7, the total cost to integrate until time TSL at level L is therefore bounded

as

cSL(ϵ) ≤ c0s
γLTSL ≤ 2c0s

γ(2k1)
γ/αr−1

(
ϵ2

2KL (µ0 || π(L))

)
ϵ−2γ/α .

The cost complexity of single-level SVGD (3.17) derived in Proposition 2 directly shows

that if the initial distribution µ0 is far from the high-fidelity distribution π(L) in terms of

the KL divergence, then a long integration time TSL will be required to converge within the

tolerance ϵ resulting in a large computational cost. Moreover, the computational complexity

depends on how quickly SVGD converges through the inverse of the rate function r−1 from

Assumption 9. If SVGD converges slowly, then r will decay slowly as well and hence r−1 will

be large even for moderate tolerances ϵ.

MLSVGD

Because MLSVGD makes use of the cheaper surrogate densities π(1), . . . , π(L−1) to find a

good initial density µ
(L−1)
TL−1

before integrating (3.3) with respect to the high-fidelity density

π(L), it can avoid a large integration time TL at the high-fidelity level and reduce the overall

computational cost. MLSVGD iterates over each level, repeatedly performing SVGD. Thus
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analogous to (3.12), the integration time Tℓ required at level ℓ depends on the KL diver-

gence KL
(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ)
)
. Bounding this KL divergence will allow us to bound the times Tℓ

and hence the cost complexity for MLSVGD. To do so, we make the following additional

assumption to ensure that the KL divergences between successive densities converges.

Assumption 10. There exists a constant k2 > 0 independent of ℓ such that

KL
(
π(ℓ−1) || π(ℓ)

)
≤ k2s

−αℓ ,

where s > 1 and α > 0 are the same constants as in Assumption 8.

Note that Assumption 10 is not immediately implied by Assumption 8 because the KL

divergence is not symmetric and does not satisfy the triangle inequality. For example, the

surrogate densities π(ℓ) may all be absolutely continuous with respect to π, but it is possible

that for a level ℓ, π(ℓ−1) is not absolutely continuous with respect to π(ℓ) resulting in an infinite

KL divergence. However, the KL divergence can still be decomposed similar to the triangle

inequality, which will be the key result in bounding the KL divergences KL
(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ)
)
.

In particular, we have

KL
(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ)
)
= KL

(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ−1)
)
+KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ , (3.22)

with the remainder Rℓ given by

Rℓ =

∫
Rd

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
π(ℓ−1)(θ)

π(ℓ)(θ)

)
dθ . (3.23)

Since π(ℓ)(θ)→ π(θ) pointwise for θ ∈ Θ, log π(ℓ−1)(θ)/π(ℓ)(θ)→ 0 as well and the remainder

Rℓ → 0 under mild conditions. The following proposition provides a bound on the cost

complexity (3.16) of MLSVGD whenever the remainder term Rℓ ≤ R is bounded by a

constant R, while Proposition 4 provides a bound on the cost complexity under the slightly
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stronger assumption where Rℓ → 0 at the same rate s−αℓ as in Assumptions 8 and 10.

Proposition 3. If Assumptions 7, 8, 9, and 10 hold, and the remainder in (3.23) Rℓ ≤ R

is bounded, and the sequence ϵℓ = ϵ for ℓ = 1, . . . , L in the definition (3.15) of Tℓ, then

continuous-time MLSVGD gives µML with dHell

(
µML, π

)
≤ ϵ with costs bounded as

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

1 + 2(k2 +R)ϵ−2

)
ϵ−2γ/α . (3.24)

Proof. As in Equation (3.19) in the proof of Proposition 2 we select the level L as

L =

⌈
1

α
logs

(
2k1
ϵ2

)⌉
≤ 1

α
logs

(
2k1
ϵ2

)
+ 1, (3.25)

so that dHell

(
π(L), π

)
≤ ϵ/2. By Assumption 7, the total cost for MLSVGD is bounded by

cML(ϵ) ≤
L∑
ℓ=1

c0s
γℓTℓ , (3.26)

where it remains to bound the integration times Tℓ at each level. By Assumption 9 and

Equation (3.22), we have

KL
(
µ
(ℓ)
Tℓ
|| π(ℓ)

)
≤ r(Tℓ)KL

(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ)
)

= r(Tℓ)
(
KL
(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ−1)
)
+KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ

)
,

(3.27)

giving a recursive bound on the KL divergence in terms of the KL divergence at the previous

level. By the definition (3.15) of the integration times Tℓ at level ℓ, we know that

KL
(
µ
(ℓ)
Tℓ
|| π(ℓ)

)
≤ ϵ2ℓ

2
(3.28)
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is satisfied for each level ℓ = 1, . . . , L. Using (3.28) at level ℓ− 1 gives

KL
(
µ
(ℓ)
Tℓ
|| π(ℓ)

)
≤ r(Tℓ)

(
ϵ2ℓ−1

2
+ KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ

)
. (3.29)

Note that by (3.28) we know that the left-hand-side of (3.29) is guaranteed to be bounded

below ϵ2ℓ/2, but the same is not necessarily true for the right-hand-side which is an upper

bound. Instead define T ′
ℓ as

T ′
ℓ = inf

{
t ≥ 0 : r(t)

(
ϵ2ℓ−1

2
+ KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ

)
≤ ϵ2ℓ

2

}
, (3.30)

for each level ℓ = 1, . . . , L. By (3.29) we know that Tℓ ≤ T ′
ℓ. Solving directly gives

T ′
ℓ = r−1

(
ϵ2ℓ

ϵ2ℓ−1 + 2KL (π(ℓ−1) || π(ℓ)) + 2Rℓ

)
. (3.31)

We now use the facts that r−1 is decreasing, ϵℓ = ϵ for ℓ = 1, . . . , L, Rℓ ≤ R, and

KL
(
π(ℓ−1) || π(ℓ)

)
≤ k2s

−αℓ ≤ k2 to obtain

Tℓ ≤ r−1

(
ϵ2

ϵ2 + 2k2 + 2R

)
. (3.32)

Therefore, the total cost can be bounded by

cML(ϵ) ≤
L∑
ℓ=1

c0s
γℓr−1

(
ϵ2

ϵ2 + 2k2 + 2R

)
. (3.33)

Since the terms in this sum correspond to a geometric series, we can compute the sum

in (3.33) exactly

cML(ϵ) ≤ c0s
γr−1

(
ϵ2

ϵ2 + 2k2 + 2R

)
sγL − 1

sγ − 1
≤ c0s

γr−1

(
ϵ2

ϵ2 + 2k2 + 2R

)
sγL

sγ − 1
, (3.34)
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where we have added 1 in the numerator on the right-hand-side only for convenience. Plug-

ging in the upper bound (3.19) on the level L and simplifying terms gives the final upper

bound on the cost complexity of the continuous-time MLSVGD approximation µML

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

1 + 2(k2 +R)ϵ−2

)
ϵ−2γ/α . (3.35)

First note that the proof of Proposition 3 is presented slightly differently from the proof

in [Alsup et al., 2021] in order to elucidate the dependence of the cost complexity on As-

sumption 10 and the assumption that Rℓ ≤ R. When ϵ→ 0 the term

r−1

(
1

1 + 2(k2 +R)ϵ−2

)

behaves asymptotically as

r−1

(
ϵ2

2(k2 +R)

)
,

which is analogous to the term

r−1

(
ϵ2

2KL (µ0 || π(L))

)

from the upper bound on the cost complexity (3.17) of single-level SVGD arising from bound-

ing the integration time TSL. This means that asymptotically the cost complexities for

MLSVGD and single-level SVGD may grow at the same rate with k2 + R analogous to

KL (µ0 || π). However, we used three crude approximations throughout the proof of Propo-

sition 3. First is that we only used Assumption 10 to obtain a bound KL
(
π(ℓ−1) || π(ℓ)

)
,

which is actually much weaker than what Assumption 10 required. Second is that the re-

mainder term Rℓ is only bounded, when in fact it will typically converge at a rate s−αℓ as
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well. We show that this happens in the Bayesian inverse problem setting presented later

in Section 3.4. Third and finally, we set the sequence of tolerances ϵℓ = ϵ to be fixed.

However, this defeats the motivation behind the choice of tolerances ϵ discussed earlier. A

better choice is to select ϵℓ to be decreasing and correspond to the KL divergences at each

level. Proposition 4 that follows shows that MLSVGD may have a much more favorable cost

complexity compared to single-level SVGD when these mild assumptions are met.

Proposition 4. If Assumptions 7, 8, 10, and 9 hold and Rℓ ≤ k3s
−αℓ, then by setting ϵℓ =

√
2k1s

−αℓ/2 for ℓ = 1, . . . , L, the costs of continuous-time MLSVGD to have dHell

(
µML, π

)
≤

ϵ can be bounded as

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

sα + (k2 + k3)/k1

)
ϵ−2γ/α . (3.36)

Proof. First note that by setting ϵℓ =
√
2k1s

−αℓ/2 for ℓ = 1, . . . , L in (3.15) we have that

ϵ2L
2

= k1s
−αL ≤ ϵ

2
,

by the choice of the high-fidelity level L (3.19). Proceeding as in the proof of Proposition 3

we use Assumption 10 and the new assumption that Rℓ ≤ k3s
−αℓ to replace the bound (3.32)

on Tℓ with

Tℓ = r−1

(
2k1s

−αℓ

2k1sαs−αℓ + 2k2s−αℓ + 2k3s−αℓ

)
,

where we have directly plugged in ϵℓ and ϵℓ−1. Simplifying gives the bound

Tℓ ≤ r−1

(
1

sα + (k2 + k3)/k1

)
, (3.37)
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which is independent of the tolerance ϵ. The total cost can now be bounded by

cML(ϵ) ≤
L∑
ℓ=1

c0s
γℓr−1

(
1

sα + (k2 + k3)/k1

)
, (3.38)

which we may again compute explicitly

cML(ϵ) ≤ c0s
γr−1

(
1

sα + (k2 + k3)/k1

)
sγL − 1

sγ − 1

≤ c0s
γr−1

(
1

sα + (k2 + k3)/k1

)
sγL

sγ − 1
,

(3.39)

and we have again added 1 in the numerator of the last term for convenience. Plugging in

the upper bound (3.19) on the level L and simplifying terms gives the final upper bound on

the improved cost complexity of the continuous-time MLSVGD approximation µML

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

sα + (k2 + k3)/k1

)
ϵ−2γ/α . (3.40)

The improved MLSVGD cost complexity bound derived in Proposition 4 when the sur-

rogate densities satisfy Assumption 10 and the remainder also converges at the same rate

has two notable advantages over the single-level SVGD cost complexity (3.13) or the cost

complexity of MLSVGD without these assumptions (3.24). The first notable difference is

that the bounds on the integration times Tℓ (3.37) for MLSVGD in Proposition 4 are inde-

pendent of the tolerance ϵ. However, we note that as ϵ → 0 the high-fidelity level L will

increase as well and so although the times Tℓ remain bounded the number of levels that

MLSVGD iterates over will increase. A consequence of bounded integration times, is that

the cost complexity (3.40) scales only as ϵ−2γ/α as opposed to single-level SVGD which has

an additional r−1(ϵ2/2KL
(
µ0 || π(L)

)
) factor. If SVGD converges slowly, then this additional
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factor may provide a large contribution to the cost complexity of single-level SVGD. In this

setting MLSVGD may have longer integration times at the cheaper levels and shorter inte-

gration times at the more expensive higher levels. On the other hand, if SVGD converges

quickly, then there is little speedup that can be achieved since the integration times will

be short regardless. The second notable advantage of MLSVGD over single-level SVGD is

that the bound on the cost complexity (3.36) for MLSVGD is independent of the initial KL

divergence KL
(
µ0 || π(L)

)
, but rather depends on the constants k2 from Assumption 10 and

k3 from (3.23). The constant k2 controls the KL divergence between two consecutive levels

and the constant k3 controls how close the SVGD approximation µ
(ℓ−1)
Tℓ−1

is to π(ℓ−1). If k2 and

k3 are both small, then KL divergence between consecutive levels is small as well and the

approximations µ
(ℓ−1)
Tℓ

at each level ℓ serve as good initial densities for the following level,

resulting in reduced integration times and costs.

3.3 Discrete-time single-level SVGD and MLSVGD

The analysis presented in Section 3.2 as well as that presented in [Alsup et al., 2021] only

applies to continuous-time MLSVGD and continuous-time single-level SVGD obtained by

solving the nonlinear Fokker-Planck equation (3.3). However, drawing samples from either

µSL or µML in this setting requires integrating the characteristic flow (3.2) exactly, which

may not be practical. In this section, we show that the analysis from the continuous-time

setting may be carried over with minimal adjustments to the discrete-time setting where the

particles are updated iteratively according to the discretization (3.5) of the characteristic

flow (3.2).
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3.3.1 Discrete-time notation and modifications

The discrete-time single-level SVGD approximation is defined similarly to the continuous-

time single-level SVGD approximation. Given the tolerance ϵ we select the high-fidelity level

L the same as in (3.19) so that

dHell

(
π(L), π

)
≤ ϵ

2
,

which is independent of the SVGD approximation, whether discrete or continuous in time.

Next we define

TSL = inf
{
τ ≥ 0 : dHell

(
µτ , π

(L)
)
≤ ϵ

2

}
, (3.41)

where µτ is given by the updates (3.6). The only differences from the continuous-time setting

is that the infimum is taken over integers τ and that the density µτ is obtained from (3.6) as

opposed to solving (3.3). Due to the near-identical definitions we overload our notation and

also write µSL = µTSL to denote the discrete-time single-level SVGD approximation, where it

will be clear from context whether µSL refers to the continuous-time or discrete-time version.

The discrete-time MLSVGD definition is analgous to the discrete-time single-level SVGD

approximation with the only difference being the definition of the integration times Tℓ at

each level

Tℓ = inf

{
τ ≥ 0 : KL

(
µ(ℓ)
τ || π(ℓ)

)
≤ ϵ2ℓ

2

}
, (3.42)

where µ
(ℓ)
τ is the density given at iteration τ of (3.6) when starting from distribution µ

(ℓ−1)
Tℓ−1

and updating with respect to the surrogate density π(ℓ).

3.3.2 Cost complexity for discrete-time versions

Using the overloaded notation in the previous section we can trivially extend the results

of Propositions 2, 3, and 4 to the discrete time setting. To do so we make two minor

modifications to the assumptions presented earlier to be compatible with the discrete time

104



setting. The first change is to Assumption 7, which now concerns the cost of evaluating

the score functions surrogate densities as opposed to integrating with respect to them. The

second change is regarding Assumption 9, which is again primarily notational to instead

consider functions r defined over the non-negative integers N0.

Assumption 11. The costs cℓ of evaluating the score functions ∇ log π(ℓ)(θ) at any point

θ ∈ Θ, are bounded as

cℓ ≤ c0s
γℓ , ℓ ∈ N ,

with constants c0, γ > 0 and s > 1 independent of ℓ.

Assumption 12. There exists a strictly decreasing function r : N0 → [0, 1] such that r(0) = 1,

limτ→∞ r(τ) = 0, and for any initial distribution ν0

KL
(
ντ || π(ℓ)

)
≤ r(τ)KL

(
ν0 || π(ℓ)

)
, ℓ ∈ N ,

holds, where ντ evolves according to the discrete-time SVGD update (3.5).

Just as in the continuous-time setting where (3.4) guarantees that the KL divergence

of the solution to (3.3) decreases over time, the discrete analogue (3.7) guarantees that the

density updates µτ of (3.6) also decrease the KL divergence. Since the rate function r in

Assumption 12 is now a function on the non-negative integers it may no longer have an

inverse defined on [0, 1]. Instead we define

r−1(ϵ) = inf {τ ≥ 0 : r(τ) ≤ ϵ} ,

which is again notationally the same as in the continuous-time case. We now can state the

cost complexity bounds for the discrete-time versions of single-level SVGD and MLSVGD.

With the overloaded notation presented in this section, the proofs of each of the following

three propositions are identical to their continuous-time counterparts. In particular, we see
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that the same cost complexities whether the discrete or continuous time setting is used.

Proposition 5. If Assumptions 11,8,12 hold, then the cost of discrete-time single-level

SVGD to obtain µSL with

dHell

(
µSL, π

)
≤ ϵ

is bounded as

cSL(ϵ) ≤ c0s
γLTSL ≤ 2c0s

γ(2k1)
γ/αr−1

(
ϵ2

2KL (µ0 || π(L))

)
ϵ−2γ/α . (3.43)

Proposition 6. If Assumptions 11, 8, 12, and 10 hold, and the remainder in (3.23) Rℓ ≤ R

is bounded, and the sequence ϵℓ = ϵ for ℓ = 1, . . . , L in the definition (3.42) of Tℓ, then

discrete-time MLSVGD gives µML with dHell

(
µML, π

)
≤ ϵ with costs bounded as

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

1 + 2(k2 +R)ϵ−2

)
ϵ−2γ/α . (3.44)

Proposition 7. If Assumptions 11, 8, 10, and 12 hold and Rℓ ≤ k3s
−αℓ, then by setting ϵℓ =

√
2k1s

−αℓ/2 for ℓ = 1, . . . , L, the costs of discrete-time MLSVGD to have dHell

(
µML, π

)
≤ ϵ

can be bounded as

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

sα + (k2 + k3)/k1

)
ϵ−2γ/α . (3.45)

Because the cost-complexities and definitions of the single-level SVGD and MLSVGD are

the same in both discrete-time and continuous-time, from now on we simply write “single-
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level SVGD” (or just SVGD) and “MLSVGD” where the setting is clear from context or

does not matter.

3.4 MLSVGD for Bayesian inverse problems

Bayesian inverse problems arising from scientific and engineering applications often depend

on the solution of an underlying PDE that describes some physical process. In this case, the

forward model G and hence the corresponding posterior density

π(θ) =
1

Z
exp

(
−1

2
∥y −G(θ)∥2Γ−1

)
π0(θ) , (3.46)

may be intractable to evaluate exactly, c.f. Section 1.3. Furthermore, by discretizing the un-

derlying PDE to approximate the solution operator, we can obtain a hierarchy of surrogate

models (G(ℓ))ℓ≥1 to obtain the sequence of posterior surrogate densities (π(ℓ))ℓ≥1. Single-level

SVGD and especially MLSVGD are attractive methods that provide theoretical guarantees

on the error with respect to the true posterior π while only having to evaluate the surro-

gate densities π(1), . . . , π(L). The next two assumptions are specific to the Bayesian inverse

problem setting and will allow us to recover the cost complexities derived in the previous

sections.

Assumption 13 (Model error). There is a function ψ : N→ (0,∞), with ψ(ℓ)→ 0 as ℓ→∞,

such that ∥∥G(θ)−G(ℓ)(θ)
∥∥
L2(π0)

≤ ψ(ℓ) , (3.47)

where the ∥·∥L2(π0)
is the L2 norm over π0.

Assumption 14. There exists a constant b3 > 0 independent of ℓ such that

µ
(ℓ)
Tℓ
(θ) ≤ b3π0(θ) (3.48)
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for all ℓ ≥ 1.

Using Assumption 13, the next two lemmas will translate the bound on the L2 error of

the surrogate models to a bound on the KL divergence of the surrogate posterior density

needed for Assumptions 8 and 10. Thus, in the Bayesian inverse problem setting, one may

effectively replace Assumptions 8 and 10 with Assumption 13, which may be easier to

verify from standard approximation results in numerical analysis. We note the proof of the

following lemma closely mirrors the proofs of Lemmas 4.2 and 4.3 in [Marzouk and Xiu,

2009], but is slightly more general.

Lemma 3. If Assumption 13 holds, there exists a constant C > 0 such that for all 1 ≤

ℓ1, ℓ2 ≤ ∞ sufficiently large

KL(π(ℓ1) || π(ℓ2)) ≤ C∥G(ℓ1) −G(ℓ2)∥L2(π0) . (3.49)

Note that for ℓ =∞ we set G(ℓ) = G.

Proof. For brevity write Gi = G(ℓi), Zi = Zℓi , and πi = π(ℓi) for i = 1, 2. Consider that for

any vectors u,v,w ∈ Rd and symmetric positive definite matrix A ∈ Rd×d we have

∥u−w∥2A − ∥v −w∥2A = ∥(u− v) + (v −w)∥2A − ∥v −w∥2A

= ⟨(u− v), A(u− v)⟩+ 2⟨(u− v), A(v −w)⟩

= ⟨(u− v), A(u+ v − 2w)⟩

≤ ∥u− v∥ · ∥A(u+ v − 2w)∥ ,

(3.50)

with the last line following from the Cauchy-Schwarz inequality. Applying this bound with

108



u = G1(θ), v = G2(θ), w = y, and A = Γ−1 gives

∫
Θ

∣∣∥y −G1(θ)∥2Γ−1 − ∥y −G2(θ)∥2Γ−1

∣∣ π0(θ) dθ
≤
∫
Θ

∥G1(θ)−G2(θ)∥ · ∥Γ−1(2y −G1(θ)−G2(θ))∥π0(θ) dθ

≤ ∥G1 −G2∥L2(π0) · ∥Γ−1(2y −G1 −G2)∥L2(π0) ,

(3.51)

where the last line again follows from the Cauchy-Schwarz inequality on the inner-product

space L2(π0). The KL divergence can now be bounded using Equation (3.51)

KL(π1 || π2) =
∫
Θ

π1(θ) log

(
π1(θ)

π2(θ)

)
dθ

=

∫
Θ

π1(θ) log

(
Z2 exp

(
−1

2
∥y −G1(θ)∥2Γ−1

)
Z1 exp

(
−1

2
∥y −G2(θ)∥2Γ−1

)) dθ

= log

(
Z2

Z1

)
+

∫
Θ

π1(θ) log

(
exp

(
−1

2
∥y −G1(θ)∥2Γ−1

)
exp

(
−1

2
∥y −G2(θ)∥2Γ−1

)) dθ

≤ log

(
Z2

Z1

)
+

1

2Z1

∫
Θ

∣∣∥y −G1(θ)∥2Γ−1 − ∥y −G2(θ)∥2Γ−1

∣∣ π0(θ) dθ
≤
∣∣∣∣log(Z2

Z1

)∣∣∣∣+ 1

2Z1

∥G1 −G2∥L2(π0) · ∥Γ−1(2y −G1 −G2)∥L2(π0) ,

(3.52)

where in the second-to-last line we used the fact that 1
2
∥y −G1(θ)∥2Γ−1 ≥ 0 and hence

exp

(
−1

2
∥y −G1(θ)∥2Γ−1

)
≤ 1 . (3.53)

We bound the logarithm of the ratio of the normalizing constants by first bounding the
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difference of the normalizing constants using the bound in Equation (3.51)

|Z1 − Z2| =
∣∣∣∣∫

Θ

{
exp

(
−1

2
∥y −G1(θ)∥2Γ−1

)
− exp

(
−1

2
∥y −G2(θ)∥2Γ−1

)}
π0(θ) dθ

∣∣∣∣
≤
∫
Θ

∣∣∣∣exp(−1

2
∥y −G1(θ)∥2Γ−1

)
− exp

(
−1

2
∥y −G2(θ)∥2Γ−1

)∣∣∣∣ π0(θ) dθ
≤ 1

2

∫
Θ

∣∣∥y −G1(θ)∥2Γ−1 − ∥y −G2(θ)∥2Γ−1

∣∣ π0(θ) dθ
≤ 1

2
∥G1 −G2∥L2(π0) · ∥Γ−1(2y −G1 −G2)∥L2(π0) .

(3.54)

The third line follows from the fact that |e−x − e−y| ≤ |x− y| for all x, y ≥ 0. Let γmin > 0

denote the smallest eigenvalue of the noise covariance matrix Γ. By the triangle inequality

∥Γ−1(2y −G1 −G2)∥L2(π0) ≤ 2∥Γ−1y∥L2(π0) + ∥Γ−1(G1 +G2)∥L2(π0)

≤ 2∥Γ−1y∥L2(π0) + 2∥Γ−1G∥L2(π0) + ∥Γ−1(G1 +G2 − 2G)∥L2(π0)

≤ 2∥Γ−1y∥L2(π0) + 2∥Γ−1G∥L2(π0)

+
1

γmin

∥G1 −G∥L2(π0) +
1

γmin

∥G2 −G∥L2(π0) .

(3.55)

Since ∥G(ℓ)−G∥L2(π0) → 0 by Assumption 13, we can bound ∥G1−G∥L2(π0) and ∥G2−G∥L2(π0)

independently of ℓ1 and ℓ2. Therefore, there exists a constant b1 > 0 independent of ℓ such

that

∥Γ−1(2y −G1 −G2)∥L2(π0) ≤ b1. (3.56)

Combining Equations (3.54) and (3.56) yields

|Z1 − Z2| ≤
b1
2
∥G1 −G2∥L2(π0) . (3.57)
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The ratio of the normalizing constants can be written

∣∣∣∣Z2

Z1

− 1

∣∣∣∣ = 1

Z1

|Z1 − Z2| , (3.58)

so the logarithm can be bounded as

∣∣∣∣log(Z2

Z1

)∣∣∣∣ ≤ max

{∣∣∣∣log(1− |Z2 − Z1|
Z1

)∣∣∣∣ , log(1 + |Z2 − Z1|
Z1

)}
(3.59)

since x 7→ | log x| is decreasing on (0, 1] and increasing on [1,∞). Combining this with the

inequality that x
1+x
≤ log(1 + x) ≤ x for all x > −1 gives

∣∣∣∣log(Z2

Z1

)∣∣∣∣ ≤ max

{ |Z2−Z1|
Z1

1− |Z2−Z1|
Z1

,
|Z2 − Z1|

Z1

}
≤ |Z1 − Z2|
Z1 − |Z1 − Z2|

. (3.60)

Since Zℓ → Z ∈ (0,∞) is a convergent sequence, there exists a constant b2 > 0 such that

Z−1
1 ≤ sup

ℓ≥1
Z−1
ℓ ≤ b2 . (3.61)

Moreover, for all ℓ1, ℓ2 sufficiently large |Z1 − Z2| ≤ b−1
2 /2. Using the bound gives

∣∣∣∣log(Z2

Z1

)∣∣∣∣ ≤ |Z1 − Z2|
b−1
2 − |Z1 − Z2|

≤ 2b2|Z1 − Z2| . (3.62)

Combining Equations (3.52), (3.56), (3.57), (3.61), and (3.62) gives

KL(π1 || π2) ≤
3

2
b1b2∥G1 −G2∥L2(π0) . (3.63)

Now set C = 3
2
b1b2 to obtain the result.

Lemma 4. If Assumption 13 holds with ψ(ℓ) = b0s
−αℓ, then Assumptions 8, 10 also hold

with the same rate α.
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Proof. Let ℓ1 = ℓ and ℓ2 =∞, so that by Lemma 3 we immediately have

KL
(
π(ℓ) || π

)
≤ C

∥∥G(ℓ) −G
∥∥
L2(π0)

≤ Cψ(ℓ) = Cb0s
−αℓ, (3.64)

and k1 = Cb0. Moreover, setting ℓ1 = ℓ−1 and ℓ2 = ℓ and using the triangle inequality gives

KL
(
π(ℓ−1) || π(ℓ)

)
≤ C∥Gℓ−1−G(ℓ)∥L2(π0) ≤ C

(
∥Gℓ−1 −G∥L2(π0) + ∥Gℓ −G∥L2(π0)

)
. (3.65)

Thus,

KL
(
π(ℓ−1) || π(ℓ)

)
≤ C

(
1 +

ψ(ℓ− 1)

ψ(ℓ)

)
ψ(ℓ) ≤ Cb0 (1 + sα) s−αℓ , (3.66)

so that k2 = Cb0 (1 + sα).

Note that Assumption 14 has not yet been used and is only needed in the following the-

orem to help bound the remainder terms Rℓ by ensuring that the SVGD densities obtained

by solving (3.3) (or equivalently (3.6) in the discrete-time setting) are absolutely continuous

with respect to the prior. The next theorem shows that in the Bayesian inverse problem set-

ting, under these new assumptions on the surrogate models and prior, the cost complexities

obtained in Sections 3.2 and 3.3 still hold where (π(ℓ))ℓ≥1 is now the sequence of posterior

distributions. Although the next theorem gives an upper bound on the cost complexity for

continuous-time MLSVGD, the corresponding result for discrete-time MLSVGD will be the

same by replacing Assumption 7 with Assumption 11 and Assumption 9 with Assumption 12.

Additionally, we may derive a similar upper bound on the cost complexity for single-level

SVGD in the Bayesian inverse problem setting through the same steps.

Theorem 4. If Assumptions 7, 9 (or equivalently Assumption 11 and 12 in the discrete-

time setting), and 14 hold and Assumption 13 holds with ψ(ℓ) = b0s
−αℓ, then Assumptions 8
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and 10 hold and thus the cost complexity to find µML with dHell

(
µML, π

)
≤ ϵ is given by

cML(ϵ) ≤
c0s

2γ(2Cb0)
γ/α

sγ − 1
r−1

(
1

(1 + sα)
(
2 + b1b2+b3

2C

)
− 1

)
ϵ−2γ/α , (3.67)

where the constants b1, b2 are independent of ϵ and given in the proof of Lemma 3.

Proof. By Lemma 4 we know that Assumptions 8 and 10 hold with k1 = Cb0 and k2 =

Cb0(1 + sα). Thus, we just need to verify that Rℓ ≤ k3s
−αℓ for some constant k3 to apply

Proposition 4.

Rℓ =

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
π(ℓ−1)(θ)

π(ℓ)(θ)

)
dθ

=

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
Zℓ exp

(
−1

2
∥y −G(ℓ−1)(θ)∥2

Γ−1

)
Zℓ−1 exp

(
−1

2
∥y −G(ℓ)(θ)∥2

Γ−1

)) dθ

=

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
exp

(
−1

2
∥y −G(ℓ−1)(θ)∥2

Γ−1

)
exp

(
−1

2
∥y −G(ℓ)(θ)∥2

Γ−1

) ) dθ,

(3.68)

where the last line follows from the fact that

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
Zℓ
Zℓ−1

)
dθ = 0 (3.69)

since Zℓ

Zℓ−1
is a constant and π(ℓ−1) and µ

(ℓ−1)
Tℓ−1

both integrate to one. By the triangle inequality

we have that

Rℓ ≤
1

2

∫
Θ

∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣µ(ℓ−1)
Tℓ−1

(θ) dθ

+
1

2

∫
Θ

∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣ π(ℓ−1)(θ) dθ .

(3.70)

We have that

π(ℓ−1)(θ) ≤ 1

Zℓ−1

π0(θ) , (3.71)
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so that when combined with Assumption 14

Rℓ ≤
1

2

∫
Θ

∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣µ(ℓ−1)
Tℓ−1

(θ) dθ

+
1

2

∫
Θ

∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣ π(ℓ−1)(θ) dθ

≤ b3
2

∫
Θ

∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣ π0(θ) dθ
+

1

2Zℓ−1

∫
Θ

∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣ π0(θ) dθ
≤
(
b3
2
+
b1b2
2

)
∥G(ℓ) −G(ℓ−1)∥L2(π0),

(3.72)

so that k3 =
(
b3
2
+ b1b2

2

)
b0(1+ s

α). Plugging in the values of k1, k2, and k3 into Proposition 4

gives the result.

3.5 A practical MLSVGD algorithm with adaptive

stopping criterion

In practice, one wishes to draw samples θ ∼ µML from the MLSVGD (or SVGD) approxima-

tion to perform inference of the intractable distribution π. For this purpose, discrete-time

MLSVGD and SVGD are more amenable because they avoid integrating the characteristic

flow (3.2) but rather update the particle with a sequence of transport maps (3.5). However,

the updates (3.5) require exact computation of the gradient ∇Jµ(0), which again may not

be feasible. Practical implementations of SVGD, and hence MLSVGD as well, update an

ensemble of particles {θ[i]
τ }Ni=1 simultaneously to approximate the gradient gτ = ∇Jµτ (0) by

replacing the expectation in (3.1) with a sample average over the ensemble

ĝ(ℓ)
τ (θ) = − 1

N

N∑
i=1

K(θ[i]
τ ,θ)∇ log π(ℓ)(θ[i]

τ ) +∇1K(θ[i]
τ ,θ) . (3.73)
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The update for the ensemble of particles at level ℓ ∈ {1, . . . , L} with step size δ > 0 in the

practical implementation then becomes

θ
[i]
τ+1 = θ[j]

τ − δĝ(ℓ)
τ (θ[i]

τ ) , i = 1, . . . , N . (3.74)

Computing the gradients (3.73) requires choosing a kernel K that defines the RKHS in which

the gradients lie. As discussed in Section 3.1 a good choice of the kernel is necessary to ensure

that the updates (3.3) and (3.6) minimize the KL divergence and converge to the desired

target distribution as required by Assumptions 9 and 12. A common choice that works well

in practice is the radial basis function kernel

K(θ,θ′) = exp

(
− 1

2σ
∥θ − θ′∥2

)
, (3.75)

where the bandwidth σ controls the range of the interactions between the particles. For

MLSVGD, as well as single-level SVGD, we must determine the number of iterations Tℓ to

perform before switching to the next level given the stopping criteria definition (3.42). This

stopping criteria is not implementable because it requires monitoring the KL divergences

KL
(
µτ || π(ℓ)

)
in turn requires the normalized densities π(ℓ) and the density of the MLSVGD

approximation. Instead we monitor the average norm of the gradients

ḡ(ℓ)τ =
1

N

N∑
i=1

∥∥∥ĝ(ℓ)
τ (θ[i]

τ )
∥∥∥ , (3.76)

which approximates the expected norm of the gradient E
µ
(ℓ)
τ

∥∥∥ĝ(ℓ)
τ (θτ )

∥∥∥. We terminate the

SVGD updates (3.74) at level ℓ and switch to the next level whenever the average norm of

the gradient (3.76) ḡ
(ℓ)
τ ≤ ϵℓ. In our implementation used for the numerical experiments, we

find that setting ϵℓ = ϵ works well in practice. This adaptive stopping criteria based on the

gradient norm is motivated by [Duncan et al., 2019, Equation 61] which shows that for small
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Algorithm 3: Discrete-time MLSVGD with approximate gradients and adaptive
stopping criterion

1 Inputs: (unnormalized) densities π(1), . . . , π(L), initial particles {θ[i]
0 }Ni=1, step size δ,

tolerance ϵ;

Result: Particles {θ[i]
τ }Ni=1

2 for ℓ = 1, . . . , L do
3 Set τ = 0;
4 repeat

5 Compute scores si = ∇ log π(ℓ)(θ[i]
τ ) for i = 1, . . . , N ;

6 for i = 1, . . . , N do

7 θ
[i]
τ+1 = θ[i]

τ + δ
N

(∑N
j=1∇1K(θ[j]

τ ,θ
[i]
τ ) +

∑N
j=1K(θ[j]

τ ,θ
[i]
τ )sj

)
;

8 end

9 Estimate the norm of the gradient ḡ
(ℓ)
τ as in (3.76) ;

10 Set τ ← τ + 1;

11 until ḡ
(ℓ)
τ ≤ ϵ;

12 end

perturbations from the target density, the KL divergence between the perturbed distribution

and the target distribution is asymptotically the same as the norm of the gradient squared.

Algorithm 12 outlines the practical implementation of MLSVGD that we use in the following

numerical examples.

3.6 Numerical Experiments

The following two examples demonstrate the computational savings of MLSVGD over single-

level SVGD for inference of a posterior in a Bayesian inverse problem depending on an

underlying PDE. In both examples, we use a Matlab implementation with Intel Xeon CPU

E5-2690 v2 processors, restricted to 8 cores and 32GB memory.
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3.6.1 Nonlinear reaction diffusion

Set up

The first example we consider is inferring a nonlinear reaction term in a nonlinear reaction

diffusion equation. Consider the spatial domain Ω = (0, 1)2 and the nonlinear reaction

diffusion equation

−∆u(x1, x2;θ) + q(u(x1, x2;θ),θ) = 100 sin(2πx1) sin(2πx2) , x = (x1, x2)
⊤ ∈ Ω , (3.77)

with homogeneous Dirichlet boundary conditions. The solution u : Ω × Θ → R depending

on the parameter θ = (θ1, θ2)
⊤ ∈ Θ = R2 corresponds the concentration of a chemical

undergoing a nonlinear reaction determined by the term

q(u(x;θ),θ) = (0.1 sin(θ1) + 2) exp(−2.7θ21)(exp(1.8θ2u(x;θ))− 1) .

Let F (ℓ) : Θ → C(Ω) denote the forward models which map the parameters θ ∈ Θ to

the numerical solution u(ℓ)(·;θ). In particular, the model F (ℓ) solves the PDE (3.77) by

discretizing with finite differences on a grid with equidistant grid points and mesh width

h = 2−ℓ−2. The resulting nonlinear system of equations is then solved to obtain a vector

u ∈ Rp (p = (2ℓ+2−2)2) of the solution at the grid points by using Newton’s method where the

step length is determined by an inexact line search based on the Armijo condition [Nocedal

and Wright, 2006]. The numerical solution u(ℓ) is obtained as a piecewise linear interpolant

between the grid points so that u(ℓ)(xi;θ) = ui at the grid points xi ∈ Ω for i = 1, . . . , p.

Once the solution u(ℓ) is obtained, the observation operator Bobs : C(Ω)→ R12 maps u(ℓ) to

its pointwise evaluations on the grid [0.25i, 0.2j] for i = 1, 2, 3 and j = 1, 2, 3, 4. The full

parameter-to-observable map is therefore, Gℓ = Bobs◦F (ℓ) and we consider levels ℓ ∈ {1, 2, 3}
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(so L = 3). Note that because of the nonlinear dependence of the reaction term q on both

the solution u and the parameter θ we cannot write F (ℓ) as a composition of an interpolation

operator and a solution operator as we did for the examples 2.5.1 and 2.5.2 in Chapter 2. The

observed data y ∈ R12 is generated by evaluating a high-fidelity parameter-to-observable at

the true parameters θ⋆ = (−π/4, 3)⊤ and perturbed by Gaussian noise

y = G(L+1)(θ⋆) + η .

The standard deviation of the added noise η is 0.5% of the true solution and is independent

in each coordinate. Finally, the prior distribution π0 is Gaussian N(µ0,Σ0) with

µ0 =

π/2
3/2

 , Σ0 =

50 0

0 1/2

 .

SVGD and MLSVGD

For both SVGD and MLSVGD we use N = 1000 particles drawn from a Gaussian initial

distribution µ0 = N (12, 10
−4I2×2). The kernel K that defines the RKHS for the gradient is

taken to be the radial basis function kernel (3.75) with bandwidth σ = 10−2. To compute

the score functions ∇ log π(ℓ) of each posterior, we approximate the gradient with central

finite differences with a mesh width of 2−6 and 12 total model evaluations per particle per

iteration. In both SVGD and MLSVGD with a step size of δ = 10−1. The step size δ and

kernel bandwidth σ are chosen manually to see ensure that SVGD performed at the highest

level L = 3 converges. We run SVGD with respect to the high-fidelity level π(3) until the

average norm of the gradients (3.76) falls below the tolerance ϵ, while for MLSVGD we

consider both the levels ℓ ∈ {1, 2, 3} and ℓ ∈ {1, 3}.
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Runtime comparison of SVGD and MLSVGD

Figure 3.2 compares the average norm of the gradient (3.76) that defines the stopping criteria

in Algorithm 12 over time across MLSVGD with 3 levels (ℓ ∈ {1, 2, 3}), MLSVGD with 2

levels (ℓ ∈ {1, 3}), and SVGD at the highest level L = 3 only when the tolerance is set

to ϵ = 10−4. Figures 3.2(a,b) show that although MLSVGD requires more total iterations

than SVGD, almost all of these iterations are on the lower levels which are significantly

cheaper to perform. Because the surrogate densities π(1) and π(2) are good approximations

to the high-fidelity density π(3), by the time MLSVGD switches to the final level the particles

already have a favorable initialization. This leads to a factor of 8 speedup for MLSVGD with

3 levels over SVGD at the highest level only. MLSVGD with 2 levels (ℓ ∈ {1, 3}) achieves a

slightly lower speedup than MLSVGD with 3 levels in this example. Figure 3.2(c) shows the

speedup of MLSVGD with 3 levels over SVGD at the highest level for different tolerances

ϵ. As expected from the bounds on the cost complexities (3.16) and (3.13), we see that

the speedup increases as ϵ → 0. Notice that for MLSVGD in Figures 3.2(a-b) there are

spikes in the average gradient norm when the tolerance ϵ has been reached at level ℓ and

MLSVGD switches to the next higher level. These spikes are due to the sudden change

in the objective function KL
(
· || π(ℓ)

)
, which SVGD seeks to minimize, between levels and

then shrink again quickly as the particles converge due to their good initialization from the

previous level. The results from Figure 3.2(c) are extended in Figure 3.3 where we repeat

this experiment and observe consistent speedups across for different numbers of particles

N ∈ {500, 1000, 2500, 5000}. The speedup of MLSVGD over SVGD is consistent as the

number of particles changes in this case because the costs of each iteration of MLSVGD and

SVGD scale the same with respect to the number of particles.
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Figure 3.2: Nonlinear reaction-diffusion: MLSVGD achieves speedups because most of the iterations
are on lower, cheaper levels, in contrast to SVGD which performs all iterations on the highest, most
expensive level. A spike in the gradient norm for MLSVGD indicates switching to a higher level.
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Figure 3.3: Nonlinear reaction-diffusion: The costs of both MLSVGD and SVGD scale quadratically
with the number of particles due to the computation of the pairwise interactions through the kernel,
which means that the speedups that MLSVGD obtains compared to SVGD in this example remain
constant for different number of particles.
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Accuracy comparison of SVGD and MLSVGD

Figure 3.4 shows the final samples (in red) obtained from running MLSVGD with 3 levels

as well as the final samples attained from running SVGD at the lowest level ℓ = 1 and at

the highest level L = 3 when a tolerance of ϵ = 10−3 is set. The samples in black are 104

reference samples obtained by running the delayed-rejection adaptive Metropolis (DRAM)

MCMC method [Haario et al., 2001,Haario et al., 2006] at the highest level. For the DRAM

method a Gaussian proposal distribution is used and initialized with the covariance matrix

10−2I2×2. We take a burn-in period of 104 samples and then compute another 2 × 104

samples taking every other sample as a reference sample i.e. 104 total reference samples.

From inspection of the samples in Figure 3.4 we see that MLSVGD and SVGD on the

highest level (i.e. single-level SVGD) are indistinguishable and that when compared to the

samples obtained by SVGD at the lowest level there are only minor differences visually. This

is expected since SVGD at the highest level and MLSVGD converge asymptotically to the

high-fidelity posterior π(L), while SVGD at the lowest level converges to surrogate density

π(1). Although the samples obtained from SVGD at the lowest level are biased, they are

distributed closely to the high-fidelity posterior and serve as a good initialization for higher

levels as is done in MLSVGD. Figure 3.5(a) shows the error of the inferred posterior mean

(i.e. mean of the particles) for each method compared to a ground truth reference value

computed using the MCMC reference samples. For each method, the error of the particle

mean is estimated by averaging over 10 independent runs

1

10

10∑
i=1

∥∥∥θ̄ − θ̂
(i)
∥∥∥
2
,
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Figure 3.4: Nonlinear reaction-diffusion: Sample particles (N = 1000) obtained with tolerance
ϵ = 10−3 in red compared to the MCMC reference samples in black. (a) Samples obtained from
MLSVGD with levels ℓ = 1, 2, 3. (b) Samples obtained from running SVGD on the highest level
L = 3. (c) Samples obtained from running SVGD on the lowest level ℓ = 1.

where θ̄ is the MCMC reference mean and θ̂
(i)

is the i-th replicate of the particle mean

θ̂
(i)

=
1

N

N∑
j=1

θ[j] ,

with samples {θ[j]}Nj=1 obtained from the i-th run of each method. We see immediately that

SVGD at the lowest level is biased as the error of the inferred posterior mean levels off

despite increasing computational costs (runtime). On the other hand, SVGD at the highest

level correctly infers the posterior mean but is computationally expensive with MLSVGD

achieving more than one order of magnitude in speedup for the same error. From this

perspective, MLSVGD leverages the computational savings of SVGD on the lowest level while

retaining the accuracy guarantees that SVGD on the highest level enjoys. Figures 3.5(b, c)

show the pointwise error of the finite-difference solution u of (3.77) computed at the particle

mean of MLSVGD and the particle mean of SVGD with the same costs as MLSVGD. The

error is computed with respect to the solution computed at the MCMC reference mean. For

the same costs as SVGD, MLSVGD recovers a more accurate solution with lower pointwise

error.
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Figure 3.5: Nonlinear reaction-diffusion: MLSVGD infers the posterior mean with error 10−3 with
respect to an MCMC reference with more than one order of magnitude speedup compared to SVGD.

3.6.2 Euler-Bernoulli beam

In this example we consider the same problem as in Section 2.5.2 of inferring the effective

stiffness of an Euler-Bernoulli beam.

Set up

The set up of the inverse problem is the similar to the set up presented in Section 2.5.2,

and so we only highlight the differences here. The high-fidelity model is now taken to

use 601 grid points in the finite difference discretization of the differential equation (2.58).

Additionally, we consider five surrogate models ,so that L = 6, which discretize (2.58)

using 51, 101, 201, 301, 401, and 501 grid points, respectively. The observation operator

Bobs : C[0, 1] → R41 evaluates the finite difference solution u(ℓ) at 41 equally spaced points

xi = (i − 1)/40 for i = 1, . . . , 41 throughout the domain Ω = [0, 1]. Note that here we

also observe the solution at the left end-point which is fixed by the boundary conditions.

Observational data y is generated by computing the finite-difference solution to (2.58) with

601 grid points and constant effective stiffness E(x) = 1, and then perturbing with the

output of the observation operator with mean-zero 0.01% Gaussian noise. In this example, we
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consider different dimensions d of the problem: d ∈ {3, 6, 9, 12, 16} as opposed to Section 2.5.2

where we only considered d = 6. For this we take the prior to be log-normal with mean

µ0 = 1d and covariance Σ0 = 5× 10−2Id×d.

Results for SVGD and MLSVGD

We compare the results for MLSVGD with 6 levels (ℓ ∈ {1, . . . , 6}), MLSVGD with 3 levels

(ℓ ∈ {1, 3, 6}), and SVGD at the highest level L = 6. For all methods we sample N = 500

particles from the initial distribution µ0 = N(1d, 4×10−4Id×d). As in the nonlinear reaction-

diffusion example we determine the step sizes for each dimension manually. For d = 3 we

set δ = 10−3, for d = 6, 9 we set δ = 10−2, and for d = 12, 16 we set δ = 5× 10−3. Similarly

for d = 3 the kernel bandwidth is chosen to be σ = 10−6, for d = 6, 9 it is σ = 10−5, and

for d = 12, 16 it is σ = 5× 10−5. Figure 3.6 shows the convergence of MLSVGD and SVGD

across dimensions d ∈ {3, 6, 9, 12, 16} as well as the error of the particle means with respect

to the MCMC reference mean when the tolerance ϵ = 5 × 10−3. Again we compute the

MCMC reference mean as in the nonlinear reaction-diffusion example by averaging over 10

replicates. We see that each dimension shares the same behavior, namely that MLSVGD

requires more iterations for convergence, most of which occur on the lowest level leading

to runtime improvements over SVGD. Note that MLSVGD with 3 levels achieves about

the same speedup as MLSVGD with 6 levels, indicating that adding more intermediate

levels has diminishing returns in terms of computational savings and cannot further reduce

the costs. By looking at the last column of plots in Figure 3.6 we see that MLSVGD

recovers the true particle mean faster than SVGD with the same accuracy. The speedups of

MLSVGD with 3 levels over SVGD for each dimension are summarized in Figure 3.7 where

the speedup is consistently between a factor of 6 to 10 regardless of the dimension. For each

dimension, Figure 3.8 shows the relative pointwise error of the finite-difference solution u

of (2.58) computed at the final particles obtained with MLSVGD and single-level SVGD
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when compared to the MCMC reference solution. In particular, Figure 3.8 shows error bars

corresponding to minimum and maximum pointwise relative error over each final particle in

the ensemble. The results show that MLSVGD achieves a similar error as single-level SVGD

despite MLSVGD being faster by up to one order of magnitude as shown in Figure 3.6.

Moreover, the variance of the errors are comparable as well as indicated by the minimum

and maximum error bars.
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3.7 Inferring ice sheet flow of the Arolla glacier

In this section we demonstrate that MLSVGD outperforms SVGD for the task of inferring

the basal sliding coefficient to understand the flow of a glacial mass sliding across underlying

bedrock based on pointwise velocity observations. This problem is an ISMIP-HOM [Pattyn

et al., 2008] benchmark problem and is made difficult by the nonlinearity in the flow of the

ice, the curvature of the domain, and the computational cost of solving the model at a fine

resolution. For the set up of the Bayesian inverse problem for inferring the basal sliding

coefficient, we closely follow the problem formulation introduced in [Petra et al., 2014].

We use a Python 3 implementation with FEniCS and hIPPYlib [Alnaes et al., 2015,Villa

et al., 2016,Villa et al., 2018,Villa et al., 2021] to discretize the forward model and perform

adjoint-based gradient computations required by SVGD. All runtimes were measured on Intel

Xeon Platinum 8268 24C 205W 2.9GHz Processors and the computation of the gradients

∇ log π(ℓ)(θ[j]
τ ) at each iteration was parallelized over 32 cores.

3.7.1 Forward model of sliding of Arolla glacier ice

Following [Petra et al., 2014], the glacier is modeled as a sliding mass of ice whose velocity is

determined primarily by the force of gravity and a frictional force experienced while sliding

against the underlying bedrock. The ice itself is modeled as a non-Newtonian, viscous, and

incompressible fluid whose velocity field u : Ω→ R2 over the glacier domain Ω ⊂ R2, shown

in Figure 3.9, is the solution to the Stokes equation

∇ · u = 0, in Ω ,

−∇ · σu = ρg, in Ω ,

(3.78)
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Figure 3.6: Euler-Bernoulli: Runtime, iterations, and error with respect to MCMC reference of
MLSVGD and SVGD for dimensions d ∈ {3, 6, 9, 12, 16}.
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Figure 3.7: Euler-Bernoulli: MLSVGD achieves speedups between 6–10 across different dimensions
in this example compared to SVGD.

with stress tensor σu, ice density ρ = 910 [kg/m3], and the downwards gravitational force

is g = (0,−9.81) [m/s2]. The boundary conditions along the top Γt and bottom Γb of the

glacier where the ice slides across the bedrock (see Figure 3.9) are given as

n⊤ (σun+ λu) = 0, on Γb ,

Tσun+ exp(β)Tu = 0, on Γb ,

σun = 0, on Γt .

(3.79)

The vector n represents the outward unit normal vector and T = I−nn⊤ is the tangential

projection. The first boundary condition where n⊤ (σun+ λu) = 0 approximates a no out-

flow condition u · n = 0, which is difficult to enforce directly due to the curvature of the

domain Ω. In this example, we set λ = 106. The second boundary condition involves the

log basal sliding coefficient field β : [0, 5000] → R which determines the frictional force by

relating the tangential velocity to the tangential traction as the ice sheet slides downhill
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Figure 3.8: Euler-Bernoulli: Minimum and maximum of pointwise error over the ensemble of
inferred solutions for d ∈ {3, 6, 9, 12, 16}.
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across the underlying bedrock. The stress tensor can be split into

σu = τ u − Ip,

with pressure p and deviatoric stress tensor

τ u = 2η(u)ε̇(u) ,

defined in terms of the strain rate tensor

ε̇(u) =
1

2

(
∇u+∇u⊤) ,

and the effective viscosity

η(u) =
1

2
A− 1

n ε̇
1−n
2n

II
.

The constants that determine the effective viscosity are Glen’s flow law exponent n = 3 and

the flow rate factor A = 10−16 [Pa−na−1] (Pascals and years, respectively) and the second

invariant is

ε̇II =
1

2
Tr
(
ε̇2u
)
,

where Tr denotes the trace operator. To solve (3.78), we discretize (3.78)–(3.79) using

Taylor-Hood finite elements on a triangular mesh where the velocity is discretized with

quadratic Lagrange elements and the pressure is discretized with linear Lagrange elements.

The resulting nonlinear system is then solved using a constrained Newton solver with the

tolerance set to 10−6 on the L2 norm of the gradient. In this example, we consider three

different refinements of the mesh giving rise to the high-fidelity model and two low-fidelity

models. The high-fidelity forward model F (3) (L = 3) approximates the solution operator

that maps the log basal sliding coefficient field β to the velocity field solution u using
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Figure 3.9: The Arolla domain Ω along with the location of the sensors (red) where velocity
measurements are taken.

3,602 and 501 degrees of freedom for the velocity and pressure components, respectively.

Similarly, the coarsest low-fidelity model F (1) uses 448 and 73 degrees of freedom for the

velocity and pressure and the second low-fidelity model F (2) uses 1002 and 151 degrees of

freedom, respectively.

3.7.2 Setup of Bayesian inverse problem

For this problem, we are interested in inferring the log basal sliding coefficient field β, which

through the boundary condition along the bottom of the domain Γb, determines the velocity

of the ice as it slides along the bedrock. We approximate the coefficient field in a finite

dimensional space, in order to be compatible with the SVGD algorithm (c.f. Section 3.1),

by discretizing the coefficient field β : [0, 5000]→ R with a vector β ∈ Rd (d = 25) that we
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aim to infer from the observational data. The parameter vector β ∈ R25 corresponds to 25

equally-spaced pointwise evaluations of the coefficient field β throughout the domain [0, 5000]

and the finite dimensional approximation arises by considering piecewise linear interpolants

through these points. In particular, let I int be the interpolation operator that maps a

vector β ∈ R25 to its piecewise linear interpolant β̄ : [0, 5000] → R defined at the nodes

xi = 5000(i − 1)/24 by β̄(xi) = βi for i = 1, . . . , 25. Given the piecewise linear interpolant

β̄, the forward models F (ℓ) for ℓ = 1, 2, 3 map the parameter to the corresponding velocity

field u that solves (3.78) with the boundary conditions (3.79). Finally, define the observation

operator Bobs which maps the solution u of (3.78), given by the output of the forward models

F (ℓ), to a 20 dimensional vector of horizontal and vertical velocity measurements at 10 sensor

locations throughout the right side of the domain along the surface of the glacier as shown

in 3.9. The full parameter-to-observable map G(ℓ) : R25 → R20 is therefore

G(ℓ) = Bobs ◦ F (ℓ) ◦ I int ,

for ℓ = 1, 2, 3. We generate synthetic observational velocity data y ∈ R20

y = G(L+1)(β∗) + η, η ∼ N(0,Γ) ,

by solving (3.78) using a further refinement of the high-fidelity mesh (denoted by level L+1)

and then corrupting with Gaussian noise. The noise covariance matrix Γ is diagonal with

σvert = 3 and σhorz = 18 corresponding to the vertical and horizontal velocity measurements,

respectively. The true parameter β⋆ ∈ R25 used to generate the data y is obtained by taking

pointwise evaluations β⋆i = β0(xi) for xi = 5000(i − 1)/24 for i = 1, . . . , 25 of the true
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coefficient field

β0(x) = log


1000 + 1000 sin

(
3πx
5000

)
+ δ if 0 ≤ x < 2500,

1000
(
16− x

250

)
+ δ if 2500 ≤ x < 4000,

1000 + δ if 4000 ≤ x < 5000 ,

and δ = 10−6 is a small positive constant to ensure that the log basal coefficient field remains

bounded. The prior π0 is Gaussian with mean perturbed from the true parameters β⋆ and

a diagonal covariance matrix Σ0 = 5× 10−2I25×25.

3.7.3 Numerical results

In the following we compare the performance of MLSVGD and SVGD. We run both SVGD

and MLSVGD with N = 1, 000 particles from the 25-dimensional standard normal distri-

bution, a step size of δ = 5 × 10−2, and the Gaussian radial basis function kernel (3.75)

with the bandwidth parameter σ = 10−1. The bandwidth parameter is kept constant, but

is comparable to the one obtained from using the median heuristic presented in [Liu and

Wang, 2016]. The gradients of the log posterior density needed for 12 are computed using

adjoints with hIPPYlib [Villa et al., 2016,Villa et al., 2018,Villa et al., 2021] similar to the

advection-diffusion example in Section 2.5.3. The quantity of interest is the high-fidelity

posterior mean Eπ(L) [β]. A reference value β̂
Ref

of Eπ(L) [β] is computed using the precon-

ditioned Crank-Nicolson (pCN) method [Cotter et al., 2013] where we run 100 independent

chains and use a burn-in period of 10,000 samples for each chain to obtain 107 total samples.

The parameter in the pCN algorithm is set to 10−2.
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Number of iterations and runtime of SVGD and MLSVGD

As in the nonlinear reaction-diffusion 3.6.1 and Euler-Bernoulli 3.6.2 examples, we assess

the convergence of SVGD and MLSVGD by monitoring the norm of the gradient at each

iteration. With a gradient tolerance of ϵ = 10−2, MLSVGD achieves a speedup of a factor

of 5 over SVGD despite requiring more iterations as shown in Figures 3.10(a,c). Similar to

both of the examples in Section 3.6, over 80% of the iterations for MLSVGD are performed

on the lowest level ℓ = 1 with the coarsest mesh. Because the low-fidelity model is orders of

magnitude faster than the high-fidelity model in this case, MLSVGD is able to quickly (in

terms of runtime) converge to the low-fidelity posterior π(1), which serves as a good initial

distribution for the following two levels. On the other hand, SVGD requires a comparable

number of iterations, all of which are at the high-fidelity level, resulting in high computational

costs. Figure 3.10(b,d) shows that both SVGD and MLSVGD accurately infer the quantity

of interest (posterior mean) in terms of the relative error

rel(β) =

∥∥∥β − β̂
Ref
∥∥∥
2∥∥∥β̂Ref

∥∥∥
2

(3.80)

when compared to the MCMC reference value and suggests that the distribution of the

particles {θ[j]
τ }Nj=1 converges to the high-fidelity target posterior π(L).

Speedups

Because MLSVGD leverages the low-fidelity models to find a good initialization of the par-

ticles before the final level, it is able to accurately infer the high-fidelity posterior mean

Eπ(L) [β] is less than a quarter of the time that SVGD takes. Snapshots of the particle mean

at different fixed amounts of training time (runtime) for both MLSVGD and SVGD are

shown in Figure 3.11. The left column shows snapshots of the MLSVGD inferred parameter
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mean (red) at different times while the right column shows snapshots of the SVGD inferred

parameter mean (blue) at the same times. In each plot the solid light gray curve shows the

computed reference value. We see that after only 2 hours MLSVGD is able to recover the

posterior mean, and hence the approximation to the coefficient field β, whereas SVGD still

has not even after 8 hours. Notice that the coordinates i = 12, . . . , 25 of the parameter vec-

tor β, which correspond to the coefficient field on the right side of the domain [2500, 5000],

are recovered much faster due to the location of the sensors that observe the velocity as

shown in Figure 3.9. Figure 3.12 shows the inferred velocity field u by solving (3.78) with

the inferred parameter mean after approximately 8 hours of run time over 32 cores. We see

that the velocity field obtained with the MLSVGD inferred parameter mean closely matches

the velocity field obtained with the ground truth reference value of the mean while SVGD

fails to recover the correct velocity field within the same amount of time. Again we see that

the inferred velocity on the left side of the domain [0, 2500] is inaccurate concurrent with

the slow recovery of the parameter in this region. Moreover, note that the magnitude of the

velocity is overestimated for SVGD which is consistent with the fact that the parameter,

which controls the frictional forces to resist the downward pull of gravity, is underestimated.

Sample quality

One of the advantages of SVGD is that, with an appropriately chosen kernel, the samples

may be more evenly spread out due to the repulsive interaction between particles. These

repulsive interactions prevent the particles from clustering near each other allowing SVGD to

avoid high correlations that some MCMC methods suffer from resulting in slow convergence.

One way that sample quality can be measured is with the maximum mean discrepancy

(MMD) [Gretton et al., 2012]

MMD[µ, ν]2 = sup
∥f∥H≤1

(Eµ[f ]− Eν [f ])2 , (3.81)
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Figure 3.10: (a) The average gradient norm ḡτ vs. iteration for MLSVGD and SVGD with a
tolerance of ϵ = 10−2. (b) The relative error of MLSVGD and SVGD compared to an MCMC
reference vs. iteration. (c) The average gradient norms vs. the actual runtime in hours over 32
cores. (d) The relative error vs. actual runtime.
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Figure 3.11: Parameter snapshots of MLSVGD (Left, red) and SVGD (Right, blue).
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(c) MLSVGD inferred velocity field (d) SVGD inferred velocity field

Figure 3.12: (a) The true velocity field given by β⋆. The color indicates the magnitude of the

velocity in [m a−1] (meters per year). (b) The reference velocity field computed using β̂
Ref

of the
posterior mean. (c) The velocity field corresponding to the inferred parameters using MLSVGD
after eight hours. (d) The velocity field corresponding to the inferred parameters using SVGD with
equivalent costs as MLSVGD (eight hours of runtime).
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where H is the RKHS with kernel K and is zero if and only if the distributions are equal

µ = ν. When the expectations in (3.81) cannot be evaluated exactly, one may use the

following estimator [Gretton et al., 2012, Eq. 5], which leverages the RKHS structure, instead

M̂MD
(
{xi}Ni=1, {yj}Mj=1

)2
=

1

N2

N∑
i=1

N∑
i′=1

K(xi,xi′) +
1

M2

M∑
j=1

M∑
j′=1

K(yj,yj′)

− 2

NM

N∑
i=1

M∑
j=1

K(xi,yj) , (3.82)

but requires samples {xi}Ni=1 ∼ µ and {yj}Mj=1 ∼ ν from both distributions. In our setting,

we approximate samples from the target distribution by using pCN with β = 0.01. We

run pCN for a burn-in period of 20,000 iterations and then an additional 100,000 iterations

taking every 5th sample for M = 20, 000 samples in total. Note that we only choose to take

every 5th sample to reduce the computational cost of computing the MMD estimator (3.82),

which scales quadratically in the number of samples. These 20,000 samples serve as reference

samples from the high-fidelity target distribution π(L). Figure 3.13 below shows the estimated

squared MMD for MLSVGD, SVGD, and MCMC (pCN) with equal sample sizes (N =

1, 000). Both MLSVGD and SVGD have comparable sample quality and outperform the

quality of samples produced by MCMC, which has a higher MMD. When computing the

MMD for MCMC, the samples were taken from a chain that was independent of the one

used to generate the 20,000 reference samples. For this independent chain we again used an

initial burn-in period of 20,000 iterations and then take the following 1, 000 samples. Note

that for this second chain we do not skip samples so as not to ignore their autocorrelation.
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Figure 3.13: The estimated squared MMD using the estimator (3.82). The MLSVGD approximation
has a comparable MMD to the original SVGD with the high-fidelity model only. Both have a lower
MMD than MCMC suggesting higher quality samples.
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Chapter 4

Conclusion and Outlook

4.1 Summary of contributions

To perform inference of an intractable target distribution that cannot be directly sampled, we

may learn a tractable approximation to sample from instead. For multifidelity approaches to

inference, the approximation may be derived using only a single surrogate model or through

a hierarchy of increasingly accurate surrogate models as in multilevel methods. The quality

of the learned approximation, often quantified through a probability divergence or metric,

dictates the computational costs, or amount of sampling effort, that is required by the

sampling procedure to achieve an estimate of the quantity of interest (2.1) within some error

tolerance. Moreover, the measure of how good the learned approximation is depends on the

fidelity of the surrogate model, leading to a trade-off between the costs of using a better

surrogate model for training and the costs of evaluating the high-fidelity model to maintain

accuracy of the outer-loop result (inferred quantity of interest).

In Chapter 2 we presented context-aware importance sampling, that selects an optimal,

context-aware, surrogate model to minimize the costs of learning the biasing density and then
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re-weighting samples according to the high-fidelity density. In this case the approximation

took the form of the Laplace approximation to the context-aware surrogate density and the

sampling effort required was determined by the χ2 divergence to the target density. Both a

theoretical analysis of the cost complexity and numerical results demonstrate that using the

adaptive context-aware surrogate model can lead to runtime speedups of up to one order of

magnitude over using a fixed surrogate model.

In Chapter 3 we considered a multilevel extension to SVGD that uses a hierarchy of

surrogate models to build a sequence of increasingly accurate approximations as opposed to

selecting a single optimal approximation. Here the sequence of approximations were given

by integrating SVGD with respect to the surrogate distributions π(1), . . . , π(L−1). The accu-

racy of these approximations were measured through the KL divergence and the sampling

effort required at each level, including the final high-fidelity level, is determined by the KL

divergence of the initial density to the target density. For MLSVGD, the surrogate models

successfully learn a good approximation that serves as the initialization for the final level.

This is again shown through both theoretical cost complexity bounds as well as several nu-

merical examples, including a challenging 25-dimensional problem of inferring a glacier ice

model, that exhibit up to an order of magnitude in speedup over traditional SVGD at the

highest level.

4.2 Future work

Multifidelity inference is a rich area with many possible directions to either improve and

analyze existing methods or to develop new ones.

More expressive approximations

The decomposition (1.5) of sampling effort in the example of Section 1.2.1 shows that

increasing the capacity of the family of approximating densities can lead to better approxima-
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tions. Two prominent examples of this are normalizing flows [Tabak and Turner, 2012,Tabak

and Vanden-Eijnden, 2010,Gabrié et al., 2022] and transport maps [Moselhy and Marzouk,

2012,Parno and Marzouk, 2018]. Both of these parametric families of densities can provide

more expressive approximations and can be trained efficiently. However, these methods lack

approximation guarantees and finding the global optimum is challenging as their objective

functions are non-convex. Despite this, both transport maps and normalizing flows have

seen tremendous success in practice.

Extending existing methods

Another line of research to consider is extending the capabilities of existing methods. For

example, in context-aware importance sampling we do not optimize over the number of offline

evaluations N0, but rather consider it to be a fixed constant. Translating approximation

bounds in terms of N0 would allow us to further exploit trade-off between online and offline

costs. Alternatively, we only considered a single optimal surrogate model when perhaps it

would be more advantageous to use multiple surrogate models as in sequential importance

sampling [Liu, 2004,Latz et al., 2018]. For MLSVGD one could replace SVGD with one of

its variants, for example the Stein variational Newton (SVN) method [Detommaso et al.,

2018] or using a more adaptive kernels [Wang et al., 2019], in a straightforward manner. In

this thesis we were primarily interested in inverse uncertainty quantification. However, one

could also apply these methods to forward uncertainty propagation, particularly rare-event

estimation. Such a transition would require careful adjustments of how the approximating

densities are chosen.

Analyzing existing methods

Yet another potential direction to consider, related to the previous one discussed, involves

building up analysis of existing methods. A more in-depth study of how to select the needed

rates, which currently are determined during an expensive pilot study, could greatly improve

the practicality of not only these methods, but multifidelity methods in general. For SVGD

143



there is still limited convergence analysis. Most of the convergence analysis is in the mean-

field limit, a disconnect from practical implementations that use finite sample sizes. Such a

convergence theory remains largely elusive for interacting particle methods and is a problem

for the analysis of ensemble Kalman inversion [Iglesias et al., 2013, Schillings and Stuart,

2017] as well. As a separate example, there has been growing literature on the convergence

guarantees of Langevin methods for log-concave sampling [Dwivedi et al., 2019,Brosse et al.,

2017,Bubeck et al., 2015]. Understanding both the convergence of a sampling procedure as

well as approximation guarantees can help us determine how to best allocate computational

resources and minimize sampling effort.
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APPENDIX A

Sub-Gaussian results

A.1 Orlicz norm of a Gaussian vector

Let X ∼ N(0, σ2Id×d). Because, X is rotationally symmetric, for any unit vector v, v⊤X ∼

N(0, σ2). Thus, if X ∼ N(0, σ2) we know that

∥X∥ψ2
= ∥X∥ψ2

.

By integrating directly, we have that

E
[
exp(X2/t2)

]
=

1√
2πσ

∫
R
exp

(
− x2

2σ2
+
x2

t2

)
dx

=
1√
2πσ

∫
R
exp

(
−x

2

2

(
1

σ2
− 2

t2

))
dx

=
1

σ
√

1
σ2 − 2

t2

=
1√

1− 2σ2/t2
.

145



Setting the last line equal to 2 and solving for t gives the Orlicz norm

∥X∥ψ2
=

√
8

3
σ .

A.2 Proof of Lemma 1

Proof. Suppose that X is a sub-Gaussian random vector and consider the matrix A to be

a multiple of the identity, A = αI with α > 0. We now only need to show that there exists

an α > 0 such that for all m ∈ Rd

Eη
[
exp

(
α∥X −m∥2

)]
= Eη

[
exp

(
(X −m)TA(X −m)

)]
<∞ .

Since ∥v +w∥2 ≤ 2 ∥v∥2 + 2 ∥w∥2 by the triangle inequality and the fact that (a + b)2 ≤

2a2 + 2b2, we get the upper bound

Eη
[
exp

(
α ∥X −m∥2

)]
≤ Eη

[
exp

(
2α ∥m∥2 + 2α ∥X∥2

)]
= exp

(
2α ∥m∥2

)
Eη
[
exp

(
2α ∥X∥2

)]
.

Therefore, we now need to find α > 0 such that

Eη
[
exp

(
2α∥X∥2

)]
<∞ .
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We now use the assumption thatX = (X1, . . . , Xd)
⊤ is sub-Gaussian by taking the marginals

Eη
[
exp

(
2α∥X∥2

)]
= Eη

[
exp

(
2α

d∑
i=1

X2
i

)]

= Eη

[
exp

(
2α

d∑
i=1

|eTi X|2
)]

= Eη

[
d∏
i=1

exp
(
2α|eTi X|2

)]
,

where ei is the i-th canonical basis vector. We proceed by induction on the dimension d and

make repeated use of the Cauchy-Schwarz inequality to show that this expectation is finite.

When d = 1, take α1 such that 1√
2α1

> ∥X∥ψ2
so that

Eη
[
exp

(
2α1|e⊤

1 X|2
)]

= Eη
[
exp

(
|e⊤

1 X|2

(1/
√
2α1)2

)]
≤ 2 .

Note that since X is sub-Gaussian ∥X∥ψ2
<∞ we can indeed find an α1 > 0 to satisfy the

inequality. Now suppose that for dimension d− 1 there exists an αd−1 such that

Eη

[
d−1∏
i=1

exp
(
2αd−1|e⊤

i X|2
)]

= Cd−1 <∞ .

By using the Cauchy-Schwarz inequality, we get that

Eη

[
d∏
i=1

exp
(
2αd|e⊤

i X|2
)]
≤ Eη

[
d−1∏
i=1

exp
(
4αd|e⊤

i X|2
)]1/2

Eη
[
exp

(
4αd|e⊤

dX|2
)]1/2

.

Taking αd ≤ αd−1/2 gives

Eη

[
d−1∏
i=1

exp
(
4αd|e⊤

i X|2
)]1/2

≤ Eη

[
d−1∏
i=1

exp
(
2αd−1|e⊤

i X|2
)]1/2

= C
1/2
d−1 .
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Taking αd such that 1√
4αd

> ∥X∥ψ2 gives

Eη
[
exp

(
4αd|e⊤

dX|2
)]1/2 ≤ Eη

[
exp

(
|e⊤
dX|2

(1/
√
4αd)2

)]1/2
≤
√
2 .

Thus, take αd <
1
4
min{2αd−1, ∥X∥−2

ψ2
}, so that

Eη

[
d∏
i=1

exp
(
2αd|e⊤

i X|2
)]
≤
√
2Cd−1 <∞ .

Since the dimension is finite, we know that we will always be able to take αd > 0. Setting

α = αd, shows the first direction of the lemma.

For the converse suppose that there exists a symmetric positive-definite matrix A ≻ 0 so

that for all vectors m

Eη
[
exp

(
(X −m)⊤A(X −m)

)]
<∞ .

In particular, for m = 0

Eη
[
exp

(
X⊤AX

)]
= C <∞ .

For any v ∈ Sd−1, we have that

Eη
[
exp

(
|v⊤X|2

t2

)]
≤ Eη

[
exp

(
∥X∥2

t2

)]
,

since |v⊤X| ≤ ∥v∥ ∥X∥. Also, since the minimum eigenvalue satisfies λAmin ≤ X⊤AX
∥X∥2 for all

X ̸= 0, we get

Eη

[
exp

(
∥X∥2

t2

)]
≤ Eη

[
exp

(
X⊤AX

λAmint
2

)]
= Eη

[{
exp

(
X⊤AX

)}1/λmin(A)t2
]
.
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If λmin(A)t2 > 1, then the function

g(x) = x1/(λmin(A)t2)

is concave and increasing in x. By Jensen’s inequality, we obtain

Eη
[{

exp
(
X⊤AX

)}1/λAmint
2
]
≤ Eη

[
exp

(
XTAX

)]1/λmin(A)t2

= C1/λmin(A)t2 .

Setting C1/λmin(A)t2 ≤ 2 and solving for t gives

t ≥

√
logC

λmin(A) log 2
.

Since this inequality holds for every v ∈ Sd−1 we know that ∥X∥ψ2
< ∞ and hence X is

sub-Gaussian.
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APPENDIX B

Chi-squared divergence for Gaussian

distributions

Let π = N(m,Σ) and µ = N(m0,Σ0). The chi-squared divergence is

χ2 (π || µ) =
∫
Rd

π(θ)

µ(θ)
π(θ)dθ − 1 . (B.1)

Plugging in the density functions gives

∫
Rd

|Σ0|1/2

(2π)d/2|Σ|
exp

(
−1

2
Q(θ)

)
dθ − 1 . (B.2)

where the quadratic exponent is

Q(θ) = 2(θ −m)⊤Σ−1(θ −m)− (θ −m0)
⊤Σ−1

0 (θ −m0) .

Combining powers of x within the exponent gives

Q(θ) = θ⊤(2Σ−1−Σ−1
0 )θ−2

(
2m⊤Σ−1 −m⊤

0 Σ
−1
0

)
θ+
(
2m⊤Σ−1m−m⊤

0 Σ
−1
0 m0

)
. (B.3)
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Now set W = 2Σ−1 −Σ−1
0 ,

w = W−1
(
2Σ−1m−Σ−1

0 m0

)
,

and the constant

R = 2m⊤Σ−1m−m⊤
0 Σ

−1
0 m0 −w⊤Ww ,

so that the expression (B.3) becomes

Q(θ) = (θ −w)⊤W(θ −w) +R .

Plugging into (B.2) gives

χ2 (π || µ) =
∫
Rd

π(θ)

µ(θ)
π(θ)dθ − 1

=
|Σ0|1/2

(2π)d/2|Σ|
exp

(
−1

2
R

)∫
Rd

exp

(
−1

2
(θ −w)⊤W(θ −w)

)
dθ − 1 ,

(B.4)

which is a Gaussian integral with mean w and covariance W−1 and becomes

χ2 (π || µ) = |Σ0|1/2

|Σ| · |2Σ−1 −Σ−1
0 |1/2

exp

(
−1

2
R

)
− 1 . (B.5)

In the case where Σ = Σ0, the χ
2 divergence may then be simplified in this case

χ2 (π || µ) = exp

(
−1

2
R

)
− 1

= exp
(
(m−m0)

⊤Σ−1 (m−m0)
)
− 1 ,

(B.6)

which is zero exactly when m = m0 and closely corresponds to the exponential bound.
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