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1 Set-up

A two-layer neural network is a function f: R0 — R™2 defined by
f(X) = WQO’(W1X + bl) + bsy

where
V\/leR 1Xmo VVQER 2 X1
)

are the weights,
b1 S le, b2 c R™2

are the biases, and o(x) = max(z,0) is the rectified linear unit (ReLU) activa-
tion function. Here we overload notation so that o applies element-wise to each
entry in a matrix or vector as well.

Given paired training data {(x;,y;)}?" ;, the loss function is the mean-squared
error
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To vectorize over a batch of data points define the matrices
X = [Xl Xn] GRmOXn, Y = [Y1 Yn] 6Rm2xn7

and the vector 1,, = [1,...,1] € R™ as vector of all ones. A batch evaluation of
data points is given by

The outer-product by 1; ensures that by is added to each column of the matrix
W X.



2 Gradient derivations

To derive each of the gradients of the loss function with respect to the parameters
Wi, Wsy, by, by, we use the chain rule. For a scalar parameter 6,
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2.1 Gradient w.r.t. b,

Starting with the easiest gradient to compute, let bgj ) be a single component of
the vector by with 1 < 57 < mg, then
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Since f(x) = [f1(X), ..., fm,(X)] € R™2 we have
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so that for 1 < k < mgy
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which is 1 if K = j and 0 otherwise. Thus, the gradient is the coordinate vector
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Plugging this in gives
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which is the j-th component of the vector
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Therefore,
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2.2 Gradient w.r.t. Wy

Now let WQ(jk) be an entry in the matrix Ws for 1 < j <ms and 1 < k < mj.
We have
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and
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Notice that we have changed the use of the index i here and are considering
an arbitrary x. Again ¢(® is the p-th component of the vector ¢(W1x + by).

Then,
dfi
% = 50",
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so that
af = O'(k)ej .
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Plugging this in gives
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However, (f(x;) —yi)?o®) is the (j, k)-th entry of the rank-1 matrix given by
the outer product

(f(xi) = yi)o(Wix; +b1) ",
and therefore

o 2
W,  n Z(f(xz) —yi)o(Wix; +by) " € R™2X™
i=1

2.3 Gradient w.r.t. b;

Proceeding as before
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we have by the chain rule that
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which is the i-th component of the vector Wg (7) and therefore
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We have
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Plugging this in gives
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Notice that (f(x;) —yi) " Wae; gives the j-th component of the vector
W3 (f(xi) = ¥3),
and thus
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where ©® represents element-wise multiplication.

2.4 Gradient w.r.t. W;

Again, proceeding by the chain rule and for 1 < j < mj and 1 < k < mg we

have
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and
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3 Vectorized implementation

Let
R=fX)-Y=[r; - 1r,]eR™"
be the matrix of residuals with
r; = f(x;) —yi-
Also define the matrices S,D € R™*" by
S=0(W;X+bj1)), D=¢(W,;X+bi1)).
Also, for brevity and to avoid doing the multiplication twice set

V=W;R=W, (f(X)-Y)eR™*".

3.1 Implementation of gradient w.r.t. b,

Since
o 2 2 o
Oby = ﬁZ(f(Xi) —yi) = ﬁZri
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is a sum across the columns of the matrix R. We may write
or 2

= —sum (R, columns)
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to denote the operation.

3.2 Implementation of gradient w.r.t. W,
We may write
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where
S = [sl sn] .

The (4, k)-th entry is
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3.3 Implementation of gradient w.r.t. b,

Writing

M 2t , 2 ¢
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where

V=[vi - wvi], D=[d - d].
Thus,
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3.4 Implementation of gradient w.r.t. W,

Following the steps of the previous derivation
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By looking at the (4, k)-th component as before we see that
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