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1 Set-up

A two-layer neural network is a function f : Rm0 → Rm2 defined by

f(x) = W2σ(W1x+ b1) + b2

where
W1 ∈ Rm1×m0 , W2 ∈ Rm2×m1

are the weights,
b1 ∈ Rm1 , b2 ∈ Rm2

are the biases, and σ(x) = max(x, 0) is the rectified linear unit (ReLU) activa-
tion function. Here we overload notation so that σ applies element-wise to each
entry in a matrix or vector as well.

Given paired training data {(xi,yi)}ni=1, the loss function is the mean-squared
error

ℓ(W1,W2,b1,b2; {(xi,yi)}ni=1) =
1

n

n∑
i=1

∥f(xi)− yi∥2 .

To vectorize over a batch of data points define the matrices

X =
[
x1 · · · xn

]
∈ Rm0×n , Y =

[
y1 · · · yn

]
∈ Rm2×n ,

and the vector 1n = [1, . . . , 1] ∈ Rn as vector of all ones. A batch evaluation of
data points is given by

f(X) = W2σ(W1X+ b11
⊤
n ) + b21

⊤
n .

The outer-product b11
⊤
n ensures that b1 is added to each column of the matrix

W1X.
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2 Gradient derivations

To derive each of the gradients of the loss function with respect to the parameters
W1,W2,b1,b2, we use the chain rule. For a scalar parameter θ,

∂ℓ

∂θ
=

2

n

n∑
i=1

(f(xi)− yi)
⊤ ∂f

∂θ

and ∂f
∂θ ∈ Rm2 .

2.1 Gradient w.r.t. b2

Starting with the easiest gradient to compute, let b
(j)
2 be a single component of

the vector b2 with 1 ≤ j ≤ m2, then

∂ℓ

∂b
(j)
2

=
2

n

n∑
i=1

(f(xi)− yi)
⊤ ∂f

∂b
(j)
2

.

Since f(x) = [f1(x), . . . , fm2
(x)] ∈ Rm2 we have

∂f

∂b
(j)
2

=
[

∂f1

∂b
(j)
2

· · · ∂fm2

∂b
(j)
2

]
,

so that for 1 ≤ k ≤ m2
∂fk

∂b
(j)
2

= δkj

which is 1 if k = j and 0 otherwise. Thus, the gradient is the coordinate vector

∂f

∂b
(j)
2

= ej ∈ Rm2 .

Plugging this in gives

∂ℓ

∂b
(j)
2

=
2

n

n∑
i=1

(f(xi)− yi)
⊤ej =

2

n

n∑
i=1

(f(xi)− yi)
(j) ,

which is the j-th component of the vector

2

n

n∑
i=1

(f(xi)− yi) .

Therefore,

∂ℓ

∂b2
=

2

n

n∑
i=1

(f(xi)− yi) .
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2.2 Gradient w.r.t. W2

Now let W
(jk)
2 be an entry in the matrix W2 for 1 ≤ j ≤ m2 and 1 ≤ k ≤ m1.

We have
∂ℓ

∂W
(jk)
2

=
2

n

n∑
i=1

(f(xi)− yi)
⊤ ∂f

∂W
(jk)
2

,

and

fi(x) = b
(i)
2 +

m1∑
p=1

W
(ip)
2 σ(p) .

Notice that we have changed the use of the index i here and are considering
an arbitrary x. Again σ(p) is the p-th component of the vector σ(W1x + b1).
Then,

∂fi

∂W
(jk)
2

= δijσ
(k) ,

so that
∂f

∂W
(jk)
2

= σ(k)ej .

Plugging this in gives

∂ℓ

∂W
(jk)
2

=
2

n

n∑
i=1

(f(xi)− yi)
(j)σ(k) .

However, (f(xi)− yi)
(j)σ(k) is the (j, k)-th entry of the rank-1 matrix given by

the outer product
(f(xi)− yi)σ(W1xi + b1)

⊤ ,

and therefore

∂ℓ

∂W2
=

2

n

n∑
i=1

(f(xi)− yi)σ(W1xi + b1)
⊤ ∈ Rm2×m1 .

2.3 Gradient w.r.t. b1

Proceeding as before

∂ℓ

∂b
(j)
1

=
2

n

n∑
i=1

(f(xi)− yi)
⊤ ∂f

∂b
(j)
1

.

Since

fi(x) = b
(i)
2 +

m1∑
p=1

W
(ip)
2 σ(p)

we have by the chain rule that

∂fi

∂b
(j)
1

=

m1∑
p=1

W
(ip)
2

∂σ(p)

∂b
(j)
1

,
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which is the i-th component of the vector W2
∂σ

∂b
(j)
1

and therefore

∂f

∂b
(j)
1

= W2
∂σ

∂b
(j)
1

.

We have

σ(i) = σ

(
m0∑
k=1

W
(ik)
1 x(k) + b

(i)
1

)
,

so that
∂σ(i)

∂b
(j)
1

= δijσ
′ (W1x+ b1)

(j)
,

and therefore
∂σ

∂b
(j)
1

= ejσ
′ (W1x+ b1)

(j)
.

Plugging this in gives

∂ℓ

∂b
(j)
1

=
2

n

n∑
i=1

(f(xi)− yi)
⊤W2ejσ

′ (W1xi + b1)
(j)

.

Notice that (f(xi)− yi)
⊤W2ej gives the j-th component of the vector

W⊤
2 (f(xi)− yi) ,

and thus
∂ℓ

∂b1
=

2

n

n∑
i=1

W⊤
2 (f(xi)− yi)⊙ σ′ (W1xi + b1) ,

where ⊙ represents element-wise multiplication.

2.4 Gradient w.r.t. W1

Again, proceeding by the chain rule and for 1 ≤ j ≤ m1 and 1 ≤ k ≤ m0 we
have

∂ℓ

∂W
(jk)
1

=
2

n

n∑
i=1

(f(xi)− yi)
⊤W2

∂σ

∂W
(jk)
1

We have
∂σ(i)

∂W
(jk)
1

= δijσ
′(W1x+ b1)

(j)x(k) ,

so that
∂σ

∂W
(jk)
1

= ejσ
′(W1x+ b1)

(j)x(k) ,

and
∂ℓ

∂W
(jk)
1

=
2

n

n∑
i=1

(f(xi)− yi)
⊤W2ejσ

′(W1xi + b1)
(j)x

(k)
i
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and
∂ℓ

∂W1
=

2

n

n∑
i=1

(
W⊤

2 (f(xi)− yi)⊙ σ′ (W1xi + b1)
)
x⊤
i .

3 Vectorized implementation

Let
R = f(X)−Y =

[
r1 · · · rn

]
∈ Rm2×n

be the matrix of residuals with

ri = f(xi)− yi .

Also define the matrices S,D ∈ Rm1×n by

S = σ(W1X+ b11
⊤
n ) , D = σ′(W1X+ b11

⊤
n ) .

Also, for brevity and to avoid doing the multiplication twice set

V = W⊤
2 R = W⊤

2 (f(X)−Y) ∈ Rm1×n .

3.1 Implementation of gradient w.r.t. b2

Since
∂ℓ

∂b2
=

2

n

n∑
i=1

(f(xi)− yi) =
2

n

n∑
i=1

ri

is a sum across the columns of the matrix R. We may write

∂ℓ

∂b2
=

2

n
sum (R, columns)

to denote the operation.

3.2 Implementation of gradient w.r.t. W2

We may write

∂ℓ

∂W2
=

2

n

n∑
i=1

(f(xi)− yi)σ(W1xi + b1)
⊤ =

2

n

n∑
i=1

ris
⊤
i ,

where
S =

[
s1 · · · sn

]
.

The (j, k)-th entry is(
n∑

i=1

ris
⊤
i

)(jk)

=

n∑
i=1

R(ji)S(ki) = (RS⊤)(jk)

and therefore
∂ℓ

∂W2
=

2

n
RS⊤ .
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3.3 Implementation of gradient w.r.t. b1

Writing

∂ℓ

∂b1
=

2

n

n∑
i=1

W⊤
2 (f(xi)− yi)⊙ σ′ (W1xi + b1) =

2

n

n∑
i=1

vi ⊙ di ,

where
V =

[
v1 · · · vn

]
, D =

[
d1 · · · dn

]
.

Thus,
∂ℓ

∂b1
=

2

n
sum (V ⊙D, columns) .

3.4 Implementation of gradient w.r.t. W1

Following the steps of the previous derivation

∂ℓ

∂W1
=

2

n

n∑
i=1

(
W⊤

2 (f(xi)− yi)⊙ σ′ (W1xi + b1)
)
x⊤
i

=
2

n

n∑
i=1

(vi ⊙ di)x
⊤
i .

By looking at the (j, k)-th component as before we see that

∂ℓ

∂W1
=

2

n
(V ⊙D)X⊤ .
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