2024

  1. Further Analysis of Multilevel Stein Variational Gradient Descent with an Application to the Bayesian Inference of Glacier Ice Models
    T. Alsup, T. Hartland, B. Peherstorfer, and N. Petra
    Advances in Computational Mathematics, 2024

2023

  1. Multifidelity Covariance Estimation via Regression on the Manifold of Symmetric Positive Definite Matrices
    A. Maurais, T. Alsup, B. Peherstorfer, and Y. Marzouk
    arXiv:2307.12438, 2023
  2. Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
    A. Maurais, T. Alsup, B. Peherstorfer, and Y. Marzouk
    In ICML’23: Proceedings of the 40th International Conference on Machine Learning, 2023
  3. Context-Aware Surrogate Modeling for Balancing Approximation and Sampling Costs in Multi-Fidelity Importance Sampling and Bayesian Inverse Problems
    T. Alsup, and B. Peherstorfer
    SIAM/ASA Journal on Uncertainty Quantification, 2023
  4. Trading off Deterministic Approximations and Sampling in Multifidelity Bayesian Inference
    T. Alsup
    New York University, 2023

2021

  1. Multilevel Stein Variational Gradient Descent with Applications to Bayesian Inverse Problems
    T. Alsup, L. Venturi, and B. Peherstorfer
    In Mathematical and Scientific Machine Learning (MSML) 2021, 2021
  2. Expected Infomation Gain Estimates and Bayesian Optimal Experimental Design
    T. Alsup, and T. Catanach
    In Computer Science Research Institute Summer Proceedings 2021, 2021
    Technical Report: SAND2022-0653R